2022-06-22 11:20:57 +02:00
< script >
2024-03-09 10:30:40 +01:00
import { init , convert2uplot } from "./utils.js";
import { getContext , onMount } from "svelte";
import {
queryStore,
gql,
getContextClient,
mutationStore,
} from "@urql/svelte";
import {
Row,
Col,
Spinner,
Card,
Table,
Icon,
} from "@sveltestrap/sveltestrap";
import Filters from "./filters/Filters.svelte";
import PlotSelection from "./PlotSelection.svelte";
import Histogram from "./plots/Histogram.svelte";
import Pie, { colors } from "./plots/Pie.svelte";
import { binsFromFootprint } from "./utils.js";
import ScatterPlot from "./plots/Scatter.svelte";
import PlotTable from "./PlotTable.svelte";
import RooflineHeatmap from "./plots/RooflineHeatmap.svelte";
2022-06-22 11:20:57 +02:00
2024-03-09 10:30:40 +01:00
const { query : initq } = init();
2022-06-22 11:20:57 +02:00
2024-03-09 10:30:40 +01:00
export let filterPresets;
2022-06-22 11:20:57 +02:00
2024-03-09 10:30:40 +01:00
// By default, look at the jobs of the last 6 hours:
if (filterPresets?.startTime == null) {
if (filterPresets == null) filterPresets = {} ;
2022-06-22 11:20:57 +02:00
2024-03-09 10:30:40 +01:00
let now = new Date(Date.now());
let hourAgo = new Date(now);
hourAgo.setHours(hourAgo.getHours() - 6);
filterPresets.startTime = {
from: hourAgo.toISOString(),
to: now.toISOString(),
};
}
2022-06-22 11:20:57 +02:00
2024-03-09 10:30:40 +01:00
let cluster;
let filterComponent; // see why here: https://stackoverflow.com/questions/58287729/how-can-i-export-a-function-from-a-svelte-component-that-changes-a-value-in-the
let jobFilters = [];
let rooflineMaxY;
let colWidth1, colWidth2, colWidth3, colWidth4;
let numBins = 50;
let maxY = -1;
2024-07-22 15:41:33 +02:00
const initialized = getContext("initialized");
const globalMetrics = getContext("globalMetrics");
2024-03-09 10:30:40 +01:00
const ccconfig = getContext("cc-config");
2022-06-22 11:20:57 +02:00
2024-03-09 10:30:40 +01:00
let metricsInHistograms = ccconfig.analysis_view_histogramMetrics,
metricsInScatterplots = ccconfig.analysis_view_scatterPlotMetrics;
2022-06-22 11:20:57 +02:00
2024-03-09 10:30:40 +01:00
$: metrics = [
...new Set([...metricsInHistograms, ...metricsInScatterplots.flat()]),
];
2022-06-22 11:20:57 +02:00
2024-03-09 10:30:40 +01:00
const sortOptions = [
{ key : "totalWalltime" , label : "Walltime" } ,
{ key : "totalNodeHours" , label : "Node Hours" } ,
{ key : "totalCoreHours" , label : "Core Hours" } ,
{ key : "totalAccHours" , label : "Accelerator Hours" } ,
];
const groupOptions = [
{ key : "user" , label : "User Name" } ,
{ key : "project" , label : "Project ID" } ,
];
2023-08-30 15:15:53 +02:00
2024-03-09 10:30:40 +01:00
let sortSelection =
sortOptions.find(
(option) =>
option.key ==
ccconfig[`analysis_view_selectedTopCategory:${ filterPresets . cluster } `],
) ||
sortOptions.find(
(option) => option.key == ccconfig.analysis_view_selectedTopCategory,
);
let groupSelection =
groupOptions.find(
(option) =>
option.key ==
ccconfig[`analysis_view_selectedTopEntity:${ filterPresets . cluster } `],
) ||
groupOptions.find(
(option) => option.key == ccconfig.analysis_view_selectedTopEntity,
);
2023-08-29 17:38:17 +02:00
2024-03-09 10:30:40 +01:00
getContext("on-init")(({ data } ) => {
if (data != null) {
cluster = data.clusters.find((c) => c.name == filterPresets.cluster);
console.assert(
cluster != null,
`This cluster could not be found: ${ filterPresets . cluster } `,
);
2022-06-22 11:20:57 +02:00
2024-03-09 10:30:40 +01:00
rooflineMaxY = cluster.subClusters.reduce(
(max, part) => Math.max(max, part.flopRateSimd.value),
0,
);
maxY = rooflineMaxY;
}
});
2023-05-09 15:01:56 +02:00
2024-03-09 10:30:40 +01:00
const client = getContextClient();
2022-06-22 11:20:57 +02:00
2024-03-09 10:30:40 +01:00
$: statsQuery = queryStore({
client: client,
query: gql`
query ($jobFilters: [JobFilter!]!) {
stats: jobsStatistics(filter: $jobFilters) {
totalJobs
shortJobs
totalWalltime
totalNodeHours
totalCoreHours
totalAccHours
histDuration {
count
value
}
histNumCores {
count
value
}
}
}
`,
variables: { jobFilters } ,
});
2023-08-25 17:38:25 +02:00
2024-03-09 10:30:40 +01:00
$: topQuery = queryStore({
client: client,
query: gql`
query (
$jobFilters: [JobFilter!]!
$paging: PageRequest!
$sortBy: SortByAggregate!
$groupBy: Aggregate!
) {
topList: jobsStatistics(
filter: $jobFilters
page: $paging
sortBy: $sortBy
groupBy: $groupBy
) {
id
totalWalltime
totalNodeHours
totalCoreHours
totalAccHours
}
}
`,
variables: {
jobFilters,
paging: { itemsPerPage : 10 , page : 1 } ,
sortBy: sortSelection.key.toUpperCase(),
groupBy: groupSelection.key.toUpperCase(),
},
});
2022-06-22 11:20:57 +02:00
2024-03-09 10:30:40 +01:00
$: footprintsQuery = queryStore({
client: client,
query: gql`
query ($jobFilters: [JobFilter!]!, $metrics: [String!]!) {
footprints: jobsFootprints(filter: $jobFilters, metrics: $metrics) {
timeWeights {
nodeHours
accHours
coreHours
}
metrics {
metric
data
}
}
}
`,
variables: { jobFilters , metrics } ,
});
2022-06-22 11:20:57 +02:00
2024-03-09 10:30:40 +01:00
$: rooflineQuery = queryStore({
client: client,
query: gql`
query (
$jobFilters: [JobFilter!]!
$rows: Int!
$cols: Int!
$minX: Float!
$minY: Float!
$maxX: Float!
$maxY: Float!
) {
rooflineHeatmap(
filter: $jobFilters
rows: $rows
cols: $cols
minX: $minX
minY: $minY
maxX: $maxX
maxY: $maxY
)
}
`,
variables: {
jobFilters,
rows: 50,
cols: 50,
minX: 0.01,
minY: 1,
maxX: 1000,
maxY,
},
});
2023-08-30 15:15:53 +02:00
2024-03-09 10:30:40 +01:00
const updateConfigurationMutation = ({ name , value } ) => {
return mutationStore({
client: client,
query: gql`
mutation ($name: String!, $value: String!) {
updateConfiguration(name: $name, value: $value)
2023-08-30 15:15:53 +02:00
}
2024-03-09 10:30:40 +01:00
`,
variables: { name , value } ,
});
};
2023-08-30 15:15:53 +02:00
2024-03-09 10:30:40 +01:00
function updateEntityConfiguration(select) {
if (
ccconfig[`analysis_view_selectedTopEntity:${ filterPresets . cluster } `] !=
select
) {
updateConfigurationMutation({
name: `analysis_view_selectedTopEntity:${ filterPresets . cluster } `,
value: JSON.stringify(select),
}).subscribe((res) => {
if (res.fetching === false && !res.error) {
// console.log(`analysis_view_selectedTopEntity:${ filterPresets . cluster } ` + ' -> Updated!')
} else if (res.fetching === false && res.error) {
throw res.error;
2023-08-30 15:15:53 +02:00
}
2024-03-09 10:30:40 +01:00
});
} else {
// console.log('No Mutation Required: Entity')
}
}
2023-08-30 15:15:53 +02:00
2024-03-09 10:30:40 +01:00
function updateCategoryConfiguration(select) {
if (
ccconfig[`analysis_view_selectedTopCategory:${ filterPresets . cluster } `] !=
select
) {
updateConfigurationMutation({
name: `analysis_view_selectedTopCategory:${ filterPresets . cluster } `,
value: JSON.stringify(select),
}).subscribe((res) => {
if (res.fetching === false && !res.error) {
// console.log(`analysis_view_selectedTopCategory:${ filterPresets . cluster } ` + ' -> Updated!')
} else if (res.fetching === false && res.error) {
throw res.error;
}
});
} else {
// console.log('No Mutation Required: Category')
}
}
2023-08-30 15:15:53 +02:00
2024-07-22 15:41:33 +02:00
let availableMetrics = [];
let metricUnits = {} ;
let metricScopes = {} ;
function loadMetrics(isInitialized) {
if (!isInitialized) return
availableMetrics = [...globalMetrics.filter((gm) => gm?.availability.find((av) => av.cluster == cluster.name))]
for (let sm of availableMetrics) {
metricUnits[sm.name] = (sm?.unit?.prefix ? sm.unit.prefix : "") + (sm?.unit?.base ? sm.unit.base : "")
metricScopes[sm.name] = sm?.scope
}
}
$: loadMetrics($initialized)
2024-03-09 10:30:40 +01:00
$: updateEntityConfiguration(groupSelection.key);
$: updateCategoryConfiguration(sortSelection.key);
2023-08-30 15:15:53 +02:00
2024-03-09 10:30:40 +01:00
onMount(() => filterComponent.update());
2022-06-22 11:20:57 +02:00
< / script >
< Row >
2024-03-09 10:30:40 +01:00
{ #if $initq . fetching || $statsQuery . fetching || $footprintsQuery . fetching }
2022-06-22 11:20:57 +02:00
< Col xs = "auto" >
2024-03-09 10:30:40 +01:00
< Spinner / >
2022-06-22 11:20:57 +02:00
< / Col >
2024-03-09 10:30:40 +01:00
{ /if }
< Col xs = "auto" >
{ #if $initq . error }
< Card body color = "danger" > { $initq . error . message } </ Card >
{ :else if cluster }
< PlotSelection
2024-07-22 15:41:33 +02:00
availableMetrics={ availableMetrics . map (( av ) => av . name )}
2024-03-09 10:30:40 +01:00
bind:metricsInHistograms
bind:metricsInScatterplots
/>
{ /if }
< / Col >
< Col xs = "auto" >
< Filters
bind:this={ filterComponent }
{ filterPresets }
disableClusterSelection={ true }
startTimeQuickSelect={ true }
on:update={({ detail }) => {
jobFilters = detail.filters;
}}
/>
< / Col >
2022-06-22 11:20:57 +02:00
< / Row >
2024-03-09 10:30:40 +01:00
< br / >
2022-06-22 11:20:57 +02:00
{ #if $statsQuery . error }
2024-03-09 10:30:40 +01:00
< Row >
< Col >
< Card body color = "danger" > { $statsQuery . error . message } </ Card >
< / Col >
< / Row >
2022-06-22 11:20:57 +02:00
{ :else if $statsQuery . data }
2024-03-09 10:30:40 +01:00
< Row cols = { 3 } class="mb-4" >
< Col >
< Table >
< tr >
< th scope = "col" > Total Jobs< / th >
< td > { $statsQuery . data . stats [ 0 ]. totalJobs } </ td >
< / tr >
< tr >
< th scope = "col" > Short Jobs< / th >
< td > { $statsQuery . data . stats [ 0 ]. shortJobs } </ td >
< / tr >
< tr >
< th scope = "col" > Total Walltime< / th >
< td > { $statsQuery . data . stats [ 0 ]. totalWalltime } </ td >
< / tr >
< tr >
< th scope = "col" > Total Node Hours< / th >
< td > { $statsQuery . data . stats [ 0 ]. totalNodeHours } </ td >
< / tr >
< tr >
< th scope = "col" > Total Core Hours< / th >
< td > { $statsQuery . data . stats [ 0 ]. totalCoreHours } </ td >
< / tr >
< tr >
< th scope = "col" > Total Accelerator Hours< / th >
< td > { $statsQuery . data . stats [ 0 ]. totalAccHours } </ td >
< / tr >
< / Table >
< / Col >
< Col >
< div bind:clientWidth = { colWidth1 } >
< h5 >
Top
< select class = "p-0" bind:value = { groupSelection } >
{ #each groupOptions as option }
< option value = { option } >
{ option . key . charAt ( 0 ). toUpperCase () + option . key . slice ( 1 )} s
< / option >
{ /each }
< / select >
< / h5 >
{ #key $topQuery . data }
{ #if $topQuery . fetching }
< Spinner / >
{ :else if $topQuery . error }
< Card body color = "danger" > { $topQuery . error . message } </ Card >
{ : else }
< Pie
size={ colWidth1 }
sliceLabel={ sortSelection . label }
quantities={ $topQuery . data . topList . map (
(t) => t[sortSelection.key],
)}
entities={ $topQuery . data . topList . map (( t ) => t . id )}
/>
{ /if }
{ /key }
< / div >
< / Col >
< Col >
{ #key $topQuery . data }
{ #if $topQuery . fetching }
< Spinner / >
{ :else if $topQuery . error }
< Card body color = "danger" > { $topQuery . error . message } </ Card >
{ : else }
< Table >
< tr class = "mb-2" >
< th > Legend< / th >
< th > { groupSelection . label } </ th >
< th >
< select class = "p-0" bind:value = { sortSelection } >
{ #each sortOptions as option }
< option value = { option } >
{ option . label }
< / option >
{ /each }
2023-08-29 17:38:17 +02:00
< / select >
2024-03-09 10:30:40 +01:00
< / th >
< / tr >
{ #each $topQuery . data . topList as te , i }
< tr >
< td >< Icon name = "circle-fill" style = "color: { colors [ i ]} ;" /></ td >
{ #if groupSelection . key == "user" }
< th scope = "col"
>< a href = "/monitoring/user/ { te . id } ?cluster= { cluster . name } "
>{ te . id } < /a
>< /th
>
2023-08-29 17:38:17 +02:00
{ : else }
2024-03-09 10:30:40 +01:00
< th scope = "col"
>< a
href="/monitoring/jobs/?cluster={ cluster . name } & project={ te . id } & projectMatch=eq"
>{ te . id } < /a
>< /th
>
2023-08-29 17:38:17 +02:00
{ /if }
2024-03-09 10:30:40 +01:00
< td > { te [ sortSelection . key ]} </ td >
< / tr >
{ /each }
< / Table >
{ /if }
{ /key }
< / Col >
< / Row >
< Row cols = { 3 } class="mb-2" >
< Col >
{ #if $rooflineQuery . fetching }
< Spinner / >
{ :else if $rooflineQuery . error }
< Card body color = "danger" > { $rooflineQuery . error . message } </ Card >
{ :else if $rooflineQuery . data && cluster }
< div bind:clientWidth = { colWidth2 } >
{ #key $rooflineQuery . data }
< RooflineHeatmap
width={ colWidth2 }
height={ 300 }
tiles={ $rooflineQuery . data . rooflineHeatmap }
cluster={ cluster . subClusters . length == 1
? cluster.subClusters[0]
: null}
maxY={ rooflineMaxY }
/>
{ /key }
< / div >
{ /if }
< / Col >
< Col >
< div bind:clientWidth = { colWidth3 } >
{ #key $statsQuery . data . stats [ 0 ]. histDuration }
< Histogram
width={ colWidth3 }
height={ 300 }
data={ convert2uplot ( $statsQuery . data . stats [ 0 ]. histDuration )}
title="Duration Distribution"
xlabel="Current Runtimes"
xunit="Hours"
ylabel="Number of Jobs"
yunit="Jobs"
/>
{ /key }
< / div >
< / Col >
< Col >
< div bind:clientWidth = { colWidth4 } >
{ #key $statsQuery . data . stats [ 0 ]. histNumCores }
< Histogram
width={ colWidth4 }
height={ 300 }
data={ convert2uplot ( $statsQuery . data . stats [ 0 ]. histNumCores )}
title="Number of Cores Distribution"
xlabel="Allocated Cores"
xunit="Cores"
ylabel="Number of Jobs"
yunit="Jobs"
/>
{ /key }
< / div >
< / Col >
< / Row >
2022-06-22 11:20:57 +02:00
{ /if }
2024-03-09 10:30:40 +01:00
< hr class = "my-6" / >
2023-08-10 18:06:19 +02:00
2022-06-22 11:20:57 +02:00
{ #if $footprintsQuery . error }
2024-03-09 10:30:40 +01:00
< Row >
< Col >
< Card body color = "danger" > { $footprintsQuery . error . message } </ Card >
< / Col >
< / Row >
2022-06-22 11:20:57 +02:00
{ :else if $footprintsQuery . data && $initq . data }
2024-03-09 10:30:40 +01:00
< Row >
< Col >
< Card body >
These histograms show the distribution of the averages of all jobs
matching the filters. Each job/average is weighted by its node hours by
default (Accelerator hours for native accelerator scope metrics,
coreHours for native core scope metrics). Note that some metrics could
be disabled for specific subclusters as per metricConfig and thus could
affect shown average values.
< / Card >
< br / >
< / Col >
< / Row >
< Row >
< Col >
< PlotTable
let:item
let:width
renderFor="analysis"
items={ metricsInHistograms . map (( metric ) => ({
metric,
...binsFromFootprint(
$footprintsQuery.data.footprints.timeWeights,
2024-07-22 15:41:33 +02:00
metricScopes[metric],
2024-03-09 10:30:40 +01:00
$footprintsQuery.data.footprints.metrics.find(
(f) => f.metric == metric,
).data,
numBins,
),
}))}
itemsPerRow={ ccconfig . plot_view_plotsPerRow }
>
< Histogram
data={ convert2uplot ( item . bins )}
{ width }
height={ 250 }
usesBins={ true }
title="Average Distribution of '{ item . metric } '"
2024-07-22 15:41:33 +02:00
xlabel={ ` ${ item . metric } bin maximum [ ${ metricUnits [ item . metric ] } ]` }
xunit={ ` ${ metricUnits [ item . metric ] } ` }
2024-03-09 10:30:40 +01:00
ylabel="Normalized Hours"
yunit="Hours"
/>
< / PlotTable >
< / Col >
< / Row >
< br / >
< Row >
< Col >
< Card body >
Each circle represents one job. The size of a circle is proportional to
its node hours. Darker circles mean multiple jobs have the same averages
for the respective metrics. Note that some metrics could be disabled for
specific subclusters as per metricConfig and thus could affect shown
average values.
< / Card >
< br / >
< / Col >
< / Row >
< Row >
< Col >
< PlotTable
let:item
let:width
renderFor="analysis"
items={ metricsInScatterplots . map (([ m1 , m2 ]) => ({
m1,
f1: $footprintsQuery.data.footprints.metrics.find(
(f) => f.metric == m1,
).data,
m2,
f2: $footprintsQuery.data.footprints.metrics.find(
(f) => f.metric == m2,
).data,
}))}
itemsPerRow={ ccconfig . plot_view_plotsPerRow }
>
< ScatterPlot
{ width }
height={ 250 }
color={ "rgba(0, 102, 204, 0.33)" }
2024-07-22 15:41:33 +02:00
xLabel={ ` ${ item . m1 } [ ${ metricUnits [ item . m1 ] } ]` }
yLabel={ ` ${ item . m2 } [ ${ metricUnits [ item . m2 ] } ]` }
2024-03-09 10:30:40 +01:00
X={ item . f1 }
Y={ item . f2 }
S={ $footprintsQuery . data . footprints . timeWeights . nodeHours }
/>
< / PlotTable >
< / Col >
< / Row >
2022-06-22 11:20:57 +02:00
{ /if }
2023-03-30 15:21:35 +02:00
< style >
2024-03-09 10:30:40 +01:00
h5 {
text-align: center;
}
2023-03-30 15:21:35 +02:00
< / style >