2022-06-22 11:20:57 +02:00
< script >
2023-08-09 12:42:25 +02:00
import { init , convert2uplot } from './utils.js'
2022-06-22 11:20:57 +02:00
import { getContext , onMount } from 'svelte'
2023-05-03 16:41:17 +02:00
import { queryStore , gql , getContextClient } from '@urql/svelte'
2023-08-11 09:41:39 +02:00
import { Row , Col , Spinner , Card , Table , Icon } from 'sveltestrap'
2022-06-22 11:20:57 +02:00
import Filters from './filters/Filters.svelte'
import PlotSelection from './PlotSelection.svelte'
2023-08-11 13:34:30 +02:00
import Histogram from './plots/Histogram.svelte'
2023-08-11 09:41:39 +02:00
import Pie, { colors } from './plots/Pie.svelte'
2023-08-11 13:34:30 +02:00
import { binsFromFootprint } from './utils.js'
2022-06-22 11:20:57 +02:00
import ScatterPlot from './plots/Scatter.svelte'
import PlotTable from './PlotTable.svelte'
import Roofline from './plots/Roofline.svelte'
const { query : initq } = init()
export let filterPresets
// By default, look at the jobs of the last 6 hours:
if (filterPresets?.startTime == null) {
if (filterPresets == null)
filterPresets = {}
let now = new Date(Date.now())
let hourAgo = new Date(now)
hourAgo.setHours(hourAgo.getHours() - 6)
filterPresets.startTime = { from : hourAgo . toISOString (), to : now.toISOString () }
}
2023-06-06 16:58:08 +02:00
let cluster;
let filterComponent; // see why here: https://stackoverflow.com/questions/58287729/how-can-i-export-a-function-from-a-svelte-component-that-changes-a-value-in-the
let jobFilters = [];
let rooflineMaxY;
2023-08-10 18:06:19 +02:00
let colWidth1, colWidth2, colWidth3, colWidth4;
2023-06-06 16:58:08 +02:00
let numBins = 50;
let maxY = -1;
2023-03-30 15:21:35 +02:00
const ccconfig = getContext('cc-config')
const metricConfig = getContext('metrics')
2022-06-22 11:20:57 +02:00
let metricsInHistograms = ccconfig.analysis_view_histogramMetrics,
metricsInScatterplots = ccconfig.analysis_view_scatterPlotMetrics
$: metrics = [...new Set([...metricsInHistograms, ...metricsInScatterplots.flat()])]
getContext('on-init')(({ data } ) => {
if (data != null) {
cluster = data.clusters.find(c => c.name == filterPresets.cluster)
console.assert(cluster != null, `This cluster could not be found: ${ filterPresets . cluster } `)
2023-04-12 10:57:32 +02:00
rooflineMaxY = cluster.subClusters.reduce((max, part) => Math.max(max, part.flopRateSimd.value), 0)
2023-05-09 15:01:56 +02:00
maxY = rooflineMaxY
2022-06-22 11:20:57 +02:00
}
})
2023-05-09 15:01:56 +02:00
const client = getContextClient();
$: statsQuery = queryStore({
client: client,
2023-05-03 16:41:17 +02:00
query: gql`
2023-06-06 16:58:08 +02:00
query($jobFilters: [JobFilter!]!) {
stats: jobsStatistics(filter: $jobFilters) {
2023-05-12 11:19:37 +02:00
totalJobs
shortJobs
totalWalltime
totalCoreHours
histDuration { count , value }
histNumNodes { count , value }
}
2022-06-22 11:20:57 +02:00
}
2023-05-12 11:19:37 +02:00
`,
2023-06-06 16:58:08 +02:00
variables: { jobFilters }
2023-05-03 16:41:17 +02:00
})
2022-06-22 11:20:57 +02:00
2023-08-25 17:38:25 +02:00
const paging = { itemsPerPage : 5 , page : 1 } ; // Top 5
// const sorting = { field : "totalCoreHours" , order : "DESC" } ;
$: topQuery = queryStore({
client: client,
query: gql`
query($jobFilters: [JobFilter!]!, $paging: PageRequest!) {
2023-08-28 10:19:26 +02:00
topUser: jobsStatistics(filter: $jobFilters, page: $paging, sortBy: COREHOURS, groupBy: USER) {
2023-08-25 17:38:25 +02:00
id
totalCoreHours
}
}
`,
variables: { jobFilters , paging }
})
2023-05-09 15:01:56 +02:00
$: footprintsQuery = queryStore({
client: client,
2023-05-03 16:41:17 +02:00
query: gql`
2023-06-06 16:58:08 +02:00
query($jobFilters: [JobFilter!]!, $metrics: [String!]!) {
footprints: jobsFootprints(filter: $jobFilters, metrics: $metrics) {
2023-08-24 11:52:36 +02:00
timeWeights { nodeHours , accHours , coreHours } ,
2023-05-12 11:19:37 +02:00
metrics { metric , data }
}
}`,
2023-06-06 16:58:08 +02:00
variables: { jobFilters , metrics }
2023-05-03 16:41:17 +02:00
})
2022-06-22 11:20:57 +02:00
2023-05-09 15:01:56 +02:00
$: rooflineQuery = queryStore({
client: client,
2023-05-03 16:41:17 +02:00
query: gql`
2023-06-06 16:58:08 +02:00
query($jobFilters: [JobFilter!]!, $rows: Int!, $cols: Int!,
2023-05-12 11:19:37 +02:00
$minX: Float!, $minY: Float!, $maxX: Float!, $maxY: Float!) {
2023-06-06 16:58:08 +02:00
rooflineHeatmap(filter: $jobFilters, rows: $rows, cols: $cols,
2023-05-12 11:19:37 +02:00
minX: $minX, minY: $minY, maxX: $maxX, maxY: $maxY)
}
`,
2023-06-06 16:58:08 +02:00
variables: { jobFilters , rows : 50 , cols : 50 , minX : 0.01 , minY : 1. , maxX : 1000. , maxY }
2023-05-03 16:41:17 +02:00
})
2022-06-22 11:20:57 +02:00
2023-06-06 16:58:08 +02:00
onMount(() => filterComponent.update())
2022-06-22 11:20:57 +02:00
< / script >
< Row >
{ #if $initq . fetching || $statsQuery . fetching || $footprintsQuery . fetching }
< Col xs = "auto" >
< Spinner / >
< / Col >
{ /if }
< Col xs = "auto" >
{ #if $initq . error }
< Card body color = "danger" > { $initq . error . message } </ Card >
{ :else if cluster }
< PlotSelection
availableMetrics={ cluster . metricConfig . map ( mc => mc . name )}
bind:metricsInHistograms={ metricsInHistograms }
bind:metricsInScatterplots={ metricsInScatterplots } />
{ /if }
< / Col >
< Col xs = "auto" >
< Filters
2023-06-06 16:58:08 +02:00
bind:this={ filterComponent }
2022-06-22 11:20:57 +02:00
filterPresets={ filterPresets }
disableClusterSelection={ true }
startTimeQuickSelect={ true }
on:update={({ detail }) => {
2023-06-06 16:58:08 +02:00
jobFilters = detail.filters;
2022-06-22 11:20:57 +02:00
}} />
< / Col >
< / Row >
< br / >
{ #if $statsQuery . error }
< Row >
< Col >
< Card body color = "danger" > { $statsQuery . error . message } </ Card >
< / Col >
< / Row >
{ :else if $statsQuery . data }
2023-08-10 18:06:19 +02:00
< Row cols = { 3 } class="mb-4" >
< Col >
< Table >
< tr >
< th scope = "col" > Total Jobs< / th >
< td > { $statsQuery . data . stats [ 0 ]. totalJobs } </ td >
< / tr >
< tr >
< th scope = "col" > Short Jobs< / th >
< td > { $statsQuery . data . stats [ 0 ]. shortJobs } </ td >
< / tr >
< tr >
< th scope = "col" > Total Walltime< / th >
< td > { $statsQuery . data . stats [ 0 ]. totalWalltime } </ td >
< / tr >
< tr >
< th scope = "col" > Total Core Hours< / th >
< td > { $statsQuery . data . stats [ 0 ]. totalCoreHours } </ td >
< / tr >
< / Table >
< / Col >
< Col >
< div bind:clientWidth = { colWidth1 } >
< h5 > Top Users< / h5 >
{ #key $statsQuery . data . topUsers }
< Pie
size={ colWidth1 }
2023-08-24 13:11:46 +02:00
sliceLabel='Core Hours'
2023-08-28 10:19:26 +02:00
quantities={ $topQuery . data . topUser . map (( tu ) => tu . totalCoreHours )}
entities={ $topQuery . data . topUser . map (( tu ) => tu . id )}
2023-08-10 18:06:19 +02:00
/>
{ /key }
< / div >
< / Col >
< Col >
< Table >
2023-08-24 12:51:55 +02:00
< tr class = "mb-2" > < th > Legend< / th > < th > User Name< / th > < th > Core Hours< / th > < / tr >
2023-08-28 10:19:26 +02:00
{ #each $topQuery . data . topUser as { id , totalCoreHours }, i }
2022-06-22 11:20:57 +02:00
< tr >
2023-08-11 09:41:39 +02:00
< td >< Icon name = "circle-fill" style = "color: { colors [ i ]} ;" /></ td >
2023-08-25 17:38:25 +02:00
< th scope = "col" >< a href = "/monitoring/user/ { id } ?cluster= { cluster . name } " > { id } </ a ></ th >
< td > { totalCoreHours } </ td >
2022-06-22 11:20:57 +02:00
< / tr >
2023-08-10 18:06:19 +02:00
{ /each }
< / Table >
< / Col >
< / Row >
< Row cols = { 3 } class="mb-2" >
< Col >
2022-06-22 11:20:57 +02:00
{ #if $rooflineQuery . fetching }
< Spinner / >
{ :else if $rooflineQuery . error }
< Card body color = "danger" > { $rooflineQuery . error . message } </ Card >
{ :else if $rooflineQuery . data && cluster }
2023-08-10 18:06:19 +02:00
< div bind:clientWidth = { colWidth2 } >
2022-06-22 11:20:57 +02:00
{ #key $rooflineQuery . data }
< Roofline
2023-08-10 18:06:19 +02:00
width={ colWidth2 } height={ 300 }
2022-06-22 11:20:57 +02:00
tiles={ $rooflineQuery . data . rooflineHeatmap }
cluster={ cluster . subClusters . length == 1 ? cluster . subClusters [ 0 ] : null }
maxY={ rooflineMaxY } />
{ /key }
2023-08-10 18:06:19 +02:00
< / div >
2022-06-22 11:20:57 +02:00
{ /if }
2023-08-10 18:06:19 +02:00
< / Col >
< Col >
< div bind:clientWidth = { colWidth3 } >
2022-06-22 11:20:57 +02:00
{ #key $statsQuery . data . stats [ 0 ]. histDuration }
2023-08-11 13:34:30 +02:00
< Histogram
2023-08-10 18:06:19 +02:00
width={ colWidth3 } height={ 300 }
2023-08-09 12:42:25 +02:00
data={ convert2uplot ( $statsQuery . data . stats [ 0 ]. histDuration )}
title="Duration Distribution"
xlabel="Current Runtimes"
xunit="Hours"
ylabel="Number of Jobs"
yunit="Jobs"/>
2022-06-22 11:20:57 +02:00
{ /key }
2023-08-10 18:06:19 +02:00
< / div >
< / Col >
< Col >
< div bind:clientWidth = { colWidth4 } >
2022-06-22 11:20:57 +02:00
{ #key $statsQuery . data . stats [ 0 ]. histNumNodes }
2023-08-11 13:34:30 +02:00
< Histogram
2023-08-10 18:06:19 +02:00
width={ colWidth4 } height={ 300 }
2023-08-09 12:42:25 +02:00
data={ convert2uplot ( $statsQuery . data . stats [ 0 ]. histNumNodes )}
title="Number of Nodes Distribution"
xlabel="Allocated Nodes"
xunit="Nodes"
ylabel="Number of Jobs"
yunit="Jobs"/>
2022-06-22 11:20:57 +02:00
{ /key }
2023-08-10 18:06:19 +02:00
< / div >
< / Col >
2022-06-22 11:20:57 +02:00
< / Row >
{ /if }
2023-08-10 18:06:19 +02:00
< hr class = "my-6" / >
2022-06-22 11:20:57 +02:00
{ #if $footprintsQuery . error }
< Row >
< Col >
< Card body color = "danger" > { $footprintsQuery . error . message } </ Card >
< / Col >
< / Row >
{ :else if $footprintsQuery . data && $initq . data }
< Row >
< Col >
< Card body >
2023-08-24 11:52:36 +02:00
These histograms show the distribution of the averages of all jobs matching the filters. Each job/average is weighted by its node hours by default
(Accelerator hours for native accelerator scope metrics, coreHours for native core scope metrics).
Note that some metrics could be disabled for specific subclusters as per metricConfig and thus could affect shown average values.
2022-06-22 11:20:57 +02:00
< / Card >
< br / >
< / Col >
< / Row >
< Row >
< Col >
< PlotTable
let:item
let:width
2023-06-19 16:11:16 +02:00
renderFor="analysis"
2022-06-22 11:20:57 +02:00
items={ metricsInHistograms . map ( metric => ({ metric , ... binsFromFootprint (
2023-08-24 11:52:36 +02:00
$footprintsQuery.data.footprints.timeWeights,
metricConfig(cluster.name, metric)?.scope,
2022-06-22 11:20:57 +02:00
$footprintsQuery.data.footprints.metrics.find(f => f.metric == metric).data, numBins) }))}
itemsPerRow={ ccconfig . plot_view_plotsPerRow } >
< Histogram
2023-08-09 12:42:25 +02:00
data={ convert2uplot ( item . bins )}
2022-06-22 11:20:57 +02:00
width={ width } height={ 250 }
2023-08-09 12:42:25 +02:00
title="Average Distribution of '{ item . metric } '"
2023-08-24 11:52:36 +02:00
xlabel={ `$ { item . metric } bin maximum [ $ {( metricConfig ( cluster . name , item . metric ) ? . unit ? . prefix ? metricConfig ( cluster . name , item . metric ) ? . unit ? . prefix : '' ) +
2023-03-30 15:21:35 +02:00
(metricConfig(cluster.name, item.metric)?.unit?.base ? metricConfig(cluster.name, item.metric)?.unit?.base : '')}]`}
2023-08-09 12:42:25 +02:00
xunit={ `$ {( metricConfig ( cluster . name , item . metric ) ? . unit ? . prefix ? metricConfig ( cluster . name , item . metric ) ? . unit ? . prefix : '' ) +
(metricConfig(cluster.name, item.metric)?.unit?.base ? metricConfig(cluster.name, item.metric)?.unit?.base : '')}`}
2023-08-24 11:52:36 +02:00
ylabel="Normalized Hours"
2023-08-09 12:42:25 +02:00
yunit="Hours"/>
2022-06-22 11:20:57 +02:00
< / PlotTable >
< / Col >
< / Row >
< br / >
< Row >
< Col >
< Card body >
Each circle represents one job. The size of a circle is proportional to its node hours. Darker circles mean multiple jobs have the same averages for the respective metrics.
2023-08-24 11:52:36 +02:00
Note that some metrics could be disabled for specific subclusters as per metricConfig and thus could affect shown average values.
2022-06-22 11:20:57 +02:00
< / Card >
< br / >
< / Col >
< / Row >
< Row >
< Col >
< PlotTable
let:item
let:width
2023-08-11 13:34:30 +02:00
renderFor="analysis"
2022-06-22 11:20:57 +02:00
items={ metricsInScatterplots . map (([ m1 , m2 ]) => ({
m1, f1: $footprintsQuery.data.footprints.metrics.find(f => f.metric == m1).data,
m2, f2: $footprintsQuery.data.footprints.metrics.find(f => f.metric == m2).data }))}
itemsPerRow={ ccconfig . plot_view_plotsPerRow } >
< ScatterPlot
width={ width } height={ 250 } color={ "rgba(0, 102, 204, 0.33)" }
2023-03-30 15:21:35 +02:00
xLabel={ `$ { item . m1 } [ $ {( metricConfig ( cluster . name , item . m1 ) ? . unit ? . prefix ? metricConfig ( cluster . name , item . m1 ) ? . unit ? . prefix : '' ) +
(metricConfig(cluster.name, item.m1)?.unit?.base ? metricConfig(cluster.name, item.m1)?.unit?.base : '')}]`}
yLabel={ `$ { item . m2 } [ $ {( metricConfig ( cluster . name , item . m2 ) ? . unit ? . prefix ? metricConfig ( cluster . name , item . m2 ) ? . unit ? . prefix : '' ) +
(metricConfig(cluster.name, item.m2)?.unit?.base ? metricConfig(cluster.name, item.m2)?.unit?.base : '')}]`}
2023-08-24 11:52:36 +02:00
X={ item . f1 } Y={ item . f2 } S={ $footprintsQuery . data . footprints . timeWeights . nodeHours } />
2022-06-22 11:20:57 +02:00
< / PlotTable >
< / Col >
< / Row >
{ /if }
2023-03-30 15:21:35 +02:00
< style >
2023-08-10 18:06:19 +02:00
h5 {
2023-03-30 15:21:35 +02:00
text-align: center;
}
< / style >