NuSiF-Solver/BasicSolver/3D-seq-multigrid/README.md

79 lines
1.6 KiB
Markdown

# C source skeleton
## Build
1. Configure the toolchain and additional options in `config.mk`:
```
# Supported: GCC, CLANG, ICC
TAG ?= GCC
ENABLE_OPENMP ?= false
OPTIONS += -DARRAY_ALIGNMENT=64
#OPTIONS += -DVERBOSE
#OPTIONS += -DVERBOSE_AFFINITY
#OPTIONS += -DVERBOSE_DATASIZE
#OPTIONS += -DVERBOSE_TIMER
```
The verbosity options enable detailed output about solver, affinity settings, allocation sizes and timer resolution.
For debugging you may want to set the VERBOSE option:
```
# Supported: GCC, CLANG, ICC
TAG ?= GCC
ENABLE_OPENMP ?= false
OPTIONS += -DARRAY_ALIGNMENT=64
OPTIONS += -DVERBOSE
#OPTIONS += -DVERBOSE_AFFINITY
#OPTIONS += -DVERBOSE_DATASIZE
#OPTIONS += -DVERBOSE_TIMER
`
2. Build with:
```
make
```
You can build multiple toolchains in the same directory, but notice that the Makefile is only acting on the one currently set.
Intermediate build results are located in the `<TOOLCHAIN>` directory.
To output the executed commands use:
```
make Q=
```
3. Clean up with:
```
make clean
```
to clean intermediate build results.
```
make distclean
```
to clean intermediate build results and binary.
4. (Optional) Generate assembler:
```
make asm
```
The assembler files will also be located in the `<TOOLCHAIN>` directory.
## Usage
You have to provide a parameter file describing the problem you want to solve:
```
./exe-CLANG dcavity.par
```
Examples are given in in dcavity (a lid driven cavity test case) and canal (simulating a empty canal).
You can plot the resulting velocity and pressure fields using gnuplot:
```
gnuplot vector.plot
```
and for the pressure:
```
gnuplot surface.plot
```