MD-Bench/common/thermo.c

134 lines
3.6 KiB
C
Raw Normal View History

2020-08-18 14:27:28 +02:00
/*
* Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg.
* All rights reserved. This file is part of MD-Bench.
* Use of this source code is governed by a LGPL-3.0
* license that can be found in the LICENSE file.
2020-08-18 14:27:28 +02:00
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <thermo.h>
#include <util.h>
2024-04-15 16:53:25 +02:00
#include <mpi.h>
2020-08-18 14:27:28 +02:00
static int *steparr;
static MD_FLOAT *tmparr;
static MD_FLOAT *engarr;
static MD_FLOAT *prsarr;
static MD_FLOAT mvv2e;
static MD_FLOAT dof_boltz;
static MD_FLOAT t_scale;
static MD_FLOAT p_scale;
static MD_FLOAT e_scale;
static MD_FLOAT t_act;
static MD_FLOAT p_act;
static MD_FLOAT e_act;
2020-08-18 14:27:28 +02:00
static int mstat;
2024-04-15 16:53:25 +02:00
static MPI_Datatype type = (sizeof(MD_FLOAT) == 4) ? MPI_FLOAT : MPI_DOUBLE;
2020-08-18 14:27:28 +02:00
/* exported subroutines */
2020-08-18 14:27:28 +02:00
void setupThermo(Parameter *param, int natoms)
{
int maxstat = param->ntimes / param->nstat + 2;
steparr = (int*) malloc(maxstat * sizeof(int));
tmparr = (MD_FLOAT*) malloc(maxstat * sizeof(MD_FLOAT));
engarr = (MD_FLOAT*) malloc(maxstat * sizeof(MD_FLOAT));
prsarr = (MD_FLOAT*) malloc(maxstat * sizeof(MD_FLOAT));
2020-08-18 14:27:28 +02:00
if(param->force_field == FF_LJ) {
mvv2e = 1.0;
dof_boltz = (natoms * 3 - 3);
t_scale = mvv2e / dof_boltz;
p_scale = 1.0 / 3 / param->xprd / param->yprd / param->zprd;
e_scale = 0.5;
} else if(param->force_field == FF_EAM) {
mvv2e = 1.036427e-04;
dof_boltz = (natoms * 3 - 3) * 8.617343e-05;
t_scale = mvv2e / dof_boltz;
p_scale = 1.602176e+06 / 3 / param->xprd / param->yprd / param->zprd;
e_scale = 524287.985533;//16.0;
param->dtforce /= mvv2e;
}
2020-08-18 14:27:28 +02:00
}
void computeThermo(int iflag, Parameter *param, Atom *atom)
{
2024-04-15 16:53:25 +02:00
MD_FLOAT t_sum = 0.0, t = 0.0, p;
int me;
MPI_Comm_rank(MPI_COMM_WORLD, &me);
2020-08-18 14:27:28 +02:00
for(int i = 0; i < atom->Nlocal; i++) {
t += (atom_vx(i) * atom_vx(i) + atom_vy(i) * atom_vy(i) + atom_vz(i) * atom_vz(i)) * param->mass;
2020-08-18 14:27:28 +02:00
}
2024-04-15 16:53:25 +02:00
MPI_Reduce(&t, &t_sum, 1, type, MPI_SUM, 0 ,MPI_COMM_WORLD);
if(me == 0)
{
t = t_sum * t_scale;
p = (t * dof_boltz) * p_scale;
int istep = iflag;
if(iflag == -1){
istep = param->ntimes;
}
if(iflag == 0){
mstat = 0;
}
steparr[mstat] = istep;
tmparr[mstat] = t;
prsarr[mstat] = p;
mstat++;
fprintf(stdout, "%i\t%e\t%e\n", istep, t, p);
2020-08-18 14:27:28 +02:00
}
}
void adjustThermo(Parameter *param, Atom *atom)
{
/* zero center-of-mass motion */
MD_FLOAT vxtot = 0.0; MD_FLOAT vytot = 0.0; MD_FLOAT vztot = 0.0;
2024-04-15 16:53:25 +02:00
MD_FLOAT v_sum[3], vtot[3];
2020-08-18 14:27:28 +02:00
for(int i = 0; i < atom->Nlocal; i++) {
vxtot += atom_vx(i);
vytot += atom_vy(i);
vztot += atom_vz(i);
2020-08-18 14:27:28 +02:00
}
2024-04-15 16:53:25 +02:00
vtot[0] = vxtot; vtot[1] = vytot; vtot[2] = vztot;
2020-08-18 14:27:28 +02:00
2024-04-15 16:53:25 +02:00
MPI_Allreduce(vtot, v_sum, 3, type, MPI_SUM, MPI_COMM_WORLD);
vxtot = v_sum[0] / atom->Natoms;
vytot = v_sum[1] / atom->Natoms;
vztot = v_sum[2] / atom->Natoms;
2020-08-18 14:27:28 +02:00
for(int i = 0; i < atom->Nlocal; i++) {
atom_vx(i) -= vxtot;
atom_vy(i) -= vytot;
atom_vz(i) -= vztot;
2020-08-18 14:27:28 +02:00
}
2024-04-15 16:53:25 +02:00
MD_FLOAT t = 0.0;
2024-04-15 16:53:25 +02:00
MD_FLOAT t_sum = 0.0;
2020-08-18 14:27:28 +02:00
for(int i = 0; i < atom->Nlocal; i++) {
t += (atom_vx(i) * atom_vx(i) + atom_vy(i) * atom_vy(i) + atom_vz(i) * atom_vz(i)) * param->mass;
2020-08-18 14:27:28 +02:00
}
2024-04-15 16:53:25 +02:00
MPI_Allreduce(&t, &t_sum, 1,type, MPI_SUM,MPI_COMM_WORLD);
t = t_sum;
2020-08-18 14:27:28 +02:00
t *= t_scale;
MD_FLOAT factor = sqrt(param->temp / t);
2020-08-18 14:27:28 +02:00
for(int i = 0; i < atom->Nlocal; i++) {
atom_vx(i) *= factor;
atom_vy(i) *= factor;
atom_vz(i) *= factor;
2020-08-18 14:27:28 +02:00
}
}