/* * Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg. * All rights reserved. This file is part of MD-Bench. * Use of this source code is governed by a LGPL-3.0 * license that can be found in the LICENSE file. */ #include #include #include #include #include #include static int *steparr; static MD_FLOAT *tmparr; static MD_FLOAT *engarr; static MD_FLOAT *prsarr; static MD_FLOAT mvv2e; static MD_FLOAT dof_boltz; static MD_FLOAT t_scale; static MD_FLOAT p_scale; static MD_FLOAT e_scale; static MD_FLOAT t_act; static MD_FLOAT p_act; static MD_FLOAT e_act; static int mstat; static MPI_Datatype type = (sizeof(MD_FLOAT) == 4) ? MPI_FLOAT : MPI_DOUBLE; /* exported subroutines */ void setupThermo(Parameter *param, int natoms) { int maxstat = param->ntimes / param->nstat + 2; steparr = (int*) malloc(maxstat * sizeof(int)); tmparr = (MD_FLOAT*) malloc(maxstat * sizeof(MD_FLOAT)); engarr = (MD_FLOAT*) malloc(maxstat * sizeof(MD_FLOAT)); prsarr = (MD_FLOAT*) malloc(maxstat * sizeof(MD_FLOAT)); if(param->force_field == FF_LJ) { mvv2e = 1.0; dof_boltz = (natoms * 3 - 3); t_scale = mvv2e / dof_boltz; p_scale = 1.0 / 3 / param->xprd / param->yprd / param->zprd; e_scale = 0.5; } else if(param->force_field == FF_EAM) { mvv2e = 1.036427e-04; dof_boltz = (natoms * 3 - 3) * 8.617343e-05; t_scale = mvv2e / dof_boltz; p_scale = 1.602176e+06 / 3 / param->xprd / param->yprd / param->zprd; e_scale = 524287.985533;//16.0; param->dtforce /= mvv2e; } } void computeThermo(int iflag, Parameter *param, Atom *atom) { MD_FLOAT t_sum = 0.0, t = 0.0, p; int me; MPI_Comm_rank(MPI_COMM_WORLD, &me); for(int i = 0; i < atom->Nlocal; i++) { t += (atom_vx(i) * atom_vx(i) + atom_vy(i) * atom_vy(i) + atom_vz(i) * atom_vz(i)) * param->mass; } MPI_Reduce(&t, &t_sum, 1, type, MPI_SUM, 0 ,MPI_COMM_WORLD); if(me == 0) { t = t_sum * t_scale; p = (t * dof_boltz) * p_scale; int istep = iflag; if(iflag == -1){ istep = param->ntimes; } if(iflag == 0){ mstat = 0; } steparr[mstat] = istep; tmparr[mstat] = t; prsarr[mstat] = p; mstat++; fprintf(stdout, "%i\t%e\t%e\n", istep, t, p); } } void adjustThermo(Parameter *param, Atom *atom) { /* zero center-of-mass motion */ MD_FLOAT vxtot = 0.0; MD_FLOAT vytot = 0.0; MD_FLOAT vztot = 0.0; MD_FLOAT v_sum[3], vtot[3]; for(int i = 0; i < atom->Nlocal; i++) { vxtot += atom_vx(i); vytot += atom_vy(i); vztot += atom_vz(i); } vtot[0] = vxtot; vtot[1] = vytot; vtot[2] = vztot; MPI_Allreduce(vtot, v_sum, 3, type, MPI_SUM, MPI_COMM_WORLD); vxtot = v_sum[0] / atom->Natoms; vytot = v_sum[1] / atom->Natoms; vztot = v_sum[2] / atom->Natoms; for(int i = 0; i < atom->Nlocal; i++) { atom_vx(i) -= vxtot; atom_vy(i) -= vytot; atom_vz(i) -= vztot; } MD_FLOAT t = 0.0; MD_FLOAT t_sum = 0.0; for(int i = 0; i < atom->Nlocal; i++) { t += (atom_vx(i) * atom_vx(i) + atom_vy(i) * atom_vy(i) + atom_vz(i) * atom_vz(i)) * param->mass; } MPI_Allreduce(&t, &t_sum, 1,type, MPI_SUM,MPI_COMM_WORLD); t = t_sum; t *= t_scale; MD_FLOAT factor = sqrt(param->temp / t); for(int i = 0; i < atom->Nlocal; i++) { atom_vx(i) *= factor; atom_vy(i) *= factor; atom_vz(i) *= factor; } }