Files
IMB-Benchmarking-tools/results-and-plotting/python/scripts/plot_all.py
2025-10-17 13:57:23 +02:00

70 lines
2.4 KiB
Python

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.optimize import curve_fit
import matplotlib.cm as cm
def max_transfer_size(msg_size, np_procs, benchmark_type):
if benchmark_type == 'Allgather':
return (np_procs-72)*msg_size
elif benchmark_type == 'Scatter':
return (np_procs-72)*msg_size # ?
elif benchmark_type == 'Alltoall':
return 72*(np_procs-72)*msg_size
elif benchmark_type == 'Bcast':
return msg_size
elif benchmark_type == 'Gather':
return (np_procs)*msg_size # ?
elif benchmark_type == 'Reduce_scatter':
return 0.25*(np_procs-72)*(1/72)*msg_size # ?
elif benchmark_type == 'Allreduce':
return 0.25*(np_procs-72)*(1/72)*msg_size
elif benchmark_type == 'Reduce':
return 0.25*(np_procs-72)*(1/72)*msg_size
data_file = "data/data-multi-defand100cflag.csv"
df_multinode = pd.read_csv(data_file, delimiter=',')
df_multinode_offdef = df_multinode[df_multinode['off_cache_flag'] == 100]
benchmarks = df_multinode_offdef['benchmark_type'].unique().tolist()
benchmarks = [x for x in benchmarks if x[-1] != 'v']
print(benchmarks)
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type'].isin(
benchmarks)][df_multinode_offdef['msg_size_bytes'] > 1000]
df_multinode_offdef["max_transfer"] = df_multinode_offdef.apply(
lambda row: max_transfer_size(
msg_size=row["msg_size_bytes"],
np_procs=row["proc_num"],
benchmark_type=row["benchmark_type"]
),
axis=1
)
df_multinode_offdef["bytes/usec"] = df_multinode_offdef["max_transfer"] / \
df_multinode_offdef["t_avg_usec"]
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type']!='Allgather'][df_multinode_offdef['benchmark_type']!='Alltoall']
df_multinode_offdef = df_multinode_offdef[['benchmark_type','msg_size_bytes','t_avg_usec','proc_num']]
plt.figure(figsize=(16, 9))
sns.barplot(
data=df_multinode_offdef,
x="benchmark_type",
y="t_avg_usec",
dodge=True,
hue=df_multinode_offdef["msg_size_bytes"].astype(str),
)
# plt.yscale("log")
plt.title("Average Time (usec) per Benchmark Type and Message Size")
plt.ylabel("Average Time (usec)")
plt.xlabel("Benchmark Type")
plt.xticks(rotation=45)
plt.legend(title="Message Size (bytes)")
plt.tight_layout()
# plt.show()
plt.savefig("./plots/benchmark_avg_time_barplot.png", dpi=300)
plt.close()