Compare commits
11 Commits
0f7db21d6f
...
results-an
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7aef9f1ba2 | ||
|
|
1f004e0e38 | ||
|
|
b84118d944 | ||
|
|
bac7118ba6 | ||
|
|
a301cff458 | ||
|
|
76cdecbb3d | ||
| d494228d77 | |||
|
|
79bc443bcb | ||
|
|
da15851c5c | ||
| 80e0419083 | |||
| c3a1bef8b0 |
1
.gitignore
vendored
@@ -0,0 +1 @@
|
|||||||
|
**/.DS_Store
|
||||||
|
|||||||
206
launch_alg_bench.py
Executable file
@@ -0,0 +1,206 @@
|
|||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
################ HELPER FUNCTIONS ################
|
||||||
|
|
||||||
|
|
||||||
|
def load_template(template_path: str):
|
||||||
|
output_template = ""
|
||||||
|
with open(template_path, "r") as handle:
|
||||||
|
output_template = handle.read()
|
||||||
|
return output_template
|
||||||
|
|
||||||
|
|
||||||
|
def write_batch(batch_fpath: str, batch_content: str):
|
||||||
|
with open(batch_fpath, "w") as handle:
|
||||||
|
_ = handle.write(batch_content)
|
||||||
|
|
||||||
|
|
||||||
|
################### SETUP DIRS ###################
|
||||||
|
output_dir = os.getcwd()+"/output/"
|
||||||
|
err_dir = os.getcwd()+"/error/"
|
||||||
|
batch_files_dir = os.getcwd()+"/batchs/"
|
||||||
|
data_dir = os.getcwd()+"/data/"
|
||||||
|
|
||||||
|
if os.path.isdir(output_dir) == False:
|
||||||
|
os.mkdir(output_dir)
|
||||||
|
if os.path.isdir(err_dir) == False:
|
||||||
|
os.mkdir(err_dir)
|
||||||
|
if os.path.isdir(data_dir) == False:
|
||||||
|
os.mkdir(data_dir)
|
||||||
|
if os.path.isdir(batch_files_dir) == False:
|
||||||
|
os.mkdir(batch_files_dir)
|
||||||
|
|
||||||
|
################ GLOBAL DEFAULTS #################
|
||||||
|
mpi1_bin = "/home/hpc/ihpc/ihpc136h/workspace/mpi-benchmark-tool/bin/IMB-MPI1"
|
||||||
|
default_parameter = {
|
||||||
|
"time_stamp": datetime.now().strftime("%y_%m_%d_%H-%M-%S"),
|
||||||
|
"job_name": "",
|
||||||
|
"output_dir": os.getcwd()+"/output/",
|
||||||
|
"err_dir": os.getcwd()+"/error/",
|
||||||
|
"data_dir": os.getcwd()+"/data/",
|
||||||
|
"n_procs": 18,
|
||||||
|
"off_cache_flag": "",
|
||||||
|
"bin": mpi1_bin,
|
||||||
|
"n_nodes": 1
|
||||||
|
}
|
||||||
|
|
||||||
|
algs_dic = [{'name': "Allgather",
|
||||||
|
'flag': "I_MPI_ADJUST_ALLGATHER",
|
||||||
|
'algs': [
|
||||||
|
"Recursive doubling ",
|
||||||
|
"Bruck`s ",
|
||||||
|
"Ring ",
|
||||||
|
"Topology aware Gatherv + Bcast ",
|
||||||
|
"Knomial ",
|
||||||
|
]},
|
||||||
|
{'name': "Allreduce",
|
||||||
|
'flag': "I_MPI_ADJUST_ALLREDUCE",
|
||||||
|
'algs': [
|
||||||
|
"Recursive doubling ",
|
||||||
|
"Rabenseifner`s ",
|
||||||
|
"Reduce + Bcast ",
|
||||||
|
"Topology aware Reduce + Bcast ",
|
||||||
|
"Binomial gather + scatter ",
|
||||||
|
"Topology aware binominal gather + scatter ",
|
||||||
|
"Shumilin`s ring ",
|
||||||
|
"Ring ",
|
||||||
|
"Knomial ",
|
||||||
|
"Topology aware SHM-based flat ",
|
||||||
|
"Topology aware SHM-based Knomial ",
|
||||||
|
"Topology aware SHM-based Knary ",
|
||||||
|
]},
|
||||||
|
|
||||||
|
{'name': "Alltoall",
|
||||||
|
'flag': "I_MPI_ADJUST_ALLTOALL",
|
||||||
|
'algs': [
|
||||||
|
"Bruck`s ",
|
||||||
|
"Isend/Irecv + waitall ",
|
||||||
|
"Pair wise exchange ",
|
||||||
|
"Plum`s ",
|
||||||
|
]},
|
||||||
|
{'name': "Barrier",
|
||||||
|
'flag': "I_MPI_ADJUST_BARRIER",
|
||||||
|
'algs': [
|
||||||
|
"Dissemination ",
|
||||||
|
"Recursive doubling ",
|
||||||
|
"Topology aware dissemination ",
|
||||||
|
"Topology aware recursive doubling ",
|
||||||
|
"Binominal gather + scatter ",
|
||||||
|
"Topology aware binominal gather + scatter ",
|
||||||
|
"Topology aware SHM-based flat ",
|
||||||
|
"Topology aware SHM-based Knomial ",
|
||||||
|
"Topology aware SHM-based Knary ",
|
||||||
|
]},
|
||||||
|
{'name': "Bcast",
|
||||||
|
'flag': "I_MPI_ADJUST_BCAST",
|
||||||
|
'algs': [
|
||||||
|
"Binomial ",
|
||||||
|
"Recursive doubling ",
|
||||||
|
"Ring ",
|
||||||
|
"Topology aware binomial ",
|
||||||
|
"Topology aware recursive doubling ",
|
||||||
|
"Topology aware ring ",
|
||||||
|
"Shumilin`s ",
|
||||||
|
"Knomial ",
|
||||||
|
"Topology aware SHM-based flat ",
|
||||||
|
"Topology aware SHM-based Knomial ",
|
||||||
|
"Topology aware SHM-based Knary ",
|
||||||
|
"NUMA aware SHM-based (SSE4.2) ",
|
||||||
|
"NUMA aware SHM-based (AVX2) ",
|
||||||
|
"NUMA aware SHM-based (AVX512) ",
|
||||||
|
]},
|
||||||
|
|
||||||
|
{'name': "Gather",
|
||||||
|
'flag': "I_MPI_ADJUST_GATHER",
|
||||||
|
'algs': [
|
||||||
|
"Binomial ",
|
||||||
|
"Topology aware binomial ",
|
||||||
|
"Shumilin`s ",
|
||||||
|
"Binomial with segmentation ",
|
||||||
|
]},
|
||||||
|
|
||||||
|
{'name': "Reduce_scatter",
|
||||||
|
'flag': "I_MPI_ADJUST_REDUCE_SCATTER",
|
||||||
|
'algs': [
|
||||||
|
"Recursive halving ",
|
||||||
|
"Pair wise exchange ",
|
||||||
|
"Recursive doubling ",
|
||||||
|
"Reduce + Scatterv ",
|
||||||
|
"Topology aware Reduce + Scatterv ",
|
||||||
|
]},
|
||||||
|
|
||||||
|
{'name': "Reduce",
|
||||||
|
'flag': "I_MPI_ADJUST_REDUCE",
|
||||||
|
'algs': [
|
||||||
|
"Shumilin`s ",
|
||||||
|
"Binomial ",
|
||||||
|
"Topology aware Shumilin`s ",
|
||||||
|
"Topology aware binomial ",
|
||||||
|
"Rabenseifner`s ",
|
||||||
|
"Topology aware Rabenseifner`s ",
|
||||||
|
"Knomial ",
|
||||||
|
"Topology aware SHM-based flat ",
|
||||||
|
"Topology aware SHM-based Knomial ",
|
||||||
|
"Topology aware SHM-based Knary ",
|
||||||
|
"Topology aware SHM-based binomial ",
|
||||||
|
]},
|
||||||
|
|
||||||
|
{'name': "Scatter",
|
||||||
|
'flag': "I_MPI_ADJUST_SCATTER",
|
||||||
|
'algs': [
|
||||||
|
"Binomial ",
|
||||||
|
"Topology aware binomial ",
|
||||||
|
"Shumilin`s ",
|
||||||
|
]},
|
||||||
|
]
|
||||||
|
log = ""
|
||||||
|
|
||||||
|
############## MULTIPLE-NODE LAUNCH ##############
|
||||||
|
off_cache_flags = [
|
||||||
|
"-off_cache -1",
|
||||||
|
"-off_cache 50",
|
||||||
|
""
|
||||||
|
]
|
||||||
|
|
||||||
|
ndcnt = [
|
||||||
|
2,
|
||||||
|
3,
|
||||||
|
4,
|
||||||
|
5,
|
||||||
|
6,
|
||||||
|
7,
|
||||||
|
8,
|
||||||
|
9,
|
||||||
|
10
|
||||||
|
]
|
||||||
|
|
||||||
|
proc_per_node = 72
|
||||||
|
multiple_node_parameter = dict(default_parameter)
|
||||||
|
multiple_node_template = load_template("./templates/multinode_algs.template")
|
||||||
|
|
||||||
|
for flag in off_cache_flags:
|
||||||
|
multiple_node_parameter["off_cache_flag"] = flag
|
||||||
|
for n_nodes in ndcnt:
|
||||||
|
n_procs = n_nodes*proc_per_node
|
||||||
|
multiple_node_parameter["n_procs"] = int(n_procs)
|
||||||
|
multiple_node_parameter["n_nodes"] = n_nodes
|
||||||
|
for alg_conf in algs_dic:
|
||||||
|
collective = alg_conf['name']
|
||||||
|
multiple_node_parameter["job_name"] = collective
|
||||||
|
multiple_node_parameter["alg_flag"] = alg_conf['flag']
|
||||||
|
algs = alg_conf["algs"]
|
||||||
|
for idx, alg in enumerate(algs):
|
||||||
|
multiple_node_parameter["alg_name"] = alg
|
||||||
|
multiple_node_parameter["alg_idx"] = idx
|
||||||
|
batch_file = os.path.join(batch_files_dir,
|
||||||
|
f"{collective}_{alg.strip().replace('`','').replace(' ','_').replace('/','_')}.sh")
|
||||||
|
write_batch(batch_file,
|
||||||
|
multiple_node_template.format(**multiple_node_parameter))
|
||||||
|
result = subprocess.run(["sbatch", batch_file],
|
||||||
|
capture_output=True, text=True)
|
||||||
|
log += f"#{collective} {n_procs}" + "\n"
|
||||||
|
log += "\tSTDOUT:" + result.stdout + "\n"
|
||||||
|
log += "\tSTDERR:" + result.stderr + "\n"
|
||||||
|
print(log)
|
||||||
112
postprocess_data_algs.py
Executable file
@@ -0,0 +1,112 @@
|
|||||||
|
from venv import create
|
||||||
|
import pandas as pd
|
||||||
|
import os
|
||||||
|
|
||||||
|
data_markers = {
|
||||||
|
"block_separator": "#----------------------------------------------------------------",
|
||||||
|
"benchmark_type": "# Benchmarking",
|
||||||
|
"processes_num": "# #processes = ",
|
||||||
|
"min_bytelen": "# Minimum message length in bytes",
|
||||||
|
"max_bytelen": "# Maximum message length in bytes",
|
||||||
|
"mpi_datatype": "# MPI_Datatype :",
|
||||||
|
"mpi_red_datatype": "# MPI_Datatype for reductions :",
|
||||||
|
"mpi_red_op": "# MPI_Op",
|
||||||
|
"end_of_table": "# All processes entering MPI_Finalize",
|
||||||
|
"creation_time": "# CREATION_TIME :",
|
||||||
|
"n_nodes": "# N_NODES :",
|
||||||
|
"off_cache_flag": "# OFF_CACHE_FLAG :",
|
||||||
|
"algorithm":"# ALGORITHM :"
|
||||||
|
}
|
||||||
|
|
||||||
|
column_names = [
|
||||||
|
"benchmark_type",
|
||||||
|
"proc_num",
|
||||||
|
"msg_size_bytes",
|
||||||
|
"repetitions",
|
||||||
|
"t_min_usec",
|
||||||
|
"t_max_usec",
|
||||||
|
"t_avg_usec",
|
||||||
|
"mpi_datatype",
|
||||||
|
"mpi_red_datatype",
|
||||||
|
"mpi_red_op",
|
||||||
|
"creation_time",
|
||||||
|
"n_nodes",
|
||||||
|
"off_cache_flag",
|
||||||
|
"algorithm"
|
||||||
|
]
|
||||||
|
|
||||||
|
data = list()
|
||||||
|
|
||||||
|
for file in os.listdir("data/"):
|
||||||
|
with open("data/"+file, 'r') as f:
|
||||||
|
lines = f.readlines()
|
||||||
|
|
||||||
|
past_preheader = False
|
||||||
|
in_header = False
|
||||||
|
in_body = False
|
||||||
|
|
||||||
|
btype = "NA"
|
||||||
|
proc_num = "NA"
|
||||||
|
mpi_datatype = "NA"
|
||||||
|
mpi_red_datatype = "NA"
|
||||||
|
mpi_red_op = "NA"
|
||||||
|
creation_time = "NA"
|
||||||
|
n_nodes = "NA"
|
||||||
|
off_cache_flag = "NA"
|
||||||
|
algorithm = "NA"
|
||||||
|
|
||||||
|
for line in lines:
|
||||||
|
if data_markers["block_separator"] in line:
|
||||||
|
if in_header and not past_preheader:
|
||||||
|
past_preheader = True
|
||||||
|
elif in_header and past_preheader:
|
||||||
|
in_body = True
|
||||||
|
in_header = not in_header
|
||||||
|
continue
|
||||||
|
if not in_header and not in_body and past_preheader:
|
||||||
|
if data_markers["mpi_datatype"] in line:
|
||||||
|
mpi_datatype = line.split()[-1]
|
||||||
|
elif data_markers["mpi_red_datatype"] in line:
|
||||||
|
mpi_red_datatype = line.split()[-1]
|
||||||
|
elif data_markers["mpi_red_op"] in line:
|
||||||
|
mpi_red_op = line.split()[-1]
|
||||||
|
|
||||||
|
if not in_header and not in_body and not past_preheader:
|
||||||
|
if data_markers["n_nodes"] in line:
|
||||||
|
n_nodes = line.split()[-1]
|
||||||
|
if data_markers["creation_time"] in line:
|
||||||
|
creation_time = line.split()[-1]
|
||||||
|
if data_markers["off_cache_flag"] in line:
|
||||||
|
off_cache_flag = line.split(":")[-1].strip()
|
||||||
|
if off_cache_flag == "": off_cache_flag = "NA"
|
||||||
|
else: off_cache_flag = off_cache_flag.replace("-off_cache","")
|
||||||
|
if data_markers["algorithm"] in line:
|
||||||
|
algorithm = line.split(":")[-1].strip()
|
||||||
|
|
||||||
|
if past_preheader and in_header:
|
||||||
|
if data_markers["benchmark_type"] in line:
|
||||||
|
btype = line.split()[2]
|
||||||
|
if data_markers["processes_num"] in line:
|
||||||
|
proc_num = int(line.split()[3])
|
||||||
|
|
||||||
|
if in_body:
|
||||||
|
if "#" in line or "".join(line.split()) == "":
|
||||||
|
continue
|
||||||
|
if data_markers["end_of_table"] in line:
|
||||||
|
break
|
||||||
|
if("int-overflow" in line) : continue
|
||||||
|
if("out-of-mem" in line) : continue
|
||||||
|
data.append([btype, proc_num]+[int(s) if s.isdigit()
|
||||||
|
else float(s) for s in line.split()] +
|
||||||
|
[
|
||||||
|
mpi_datatype,
|
||||||
|
mpi_red_datatype,
|
||||||
|
mpi_red_op,
|
||||||
|
creation_time,
|
||||||
|
n_nodes,
|
||||||
|
off_cache_flag,
|
||||||
|
algorithm
|
||||||
|
])
|
||||||
|
|
||||||
|
df = pd.DataFrame(data, columns=column_names)
|
||||||
|
df.to_csv("data.csv", index=False)
|
||||||
28463
results-and-plotting/data/data_04_11_25_algs.csv
Normal file
BIN
results-and-plotting/plots/allgather_algcomp.png
Normal file
|
After Width: | Height: | Size: 194 KiB |
BIN
results-and-plotting/plots/allgather_algcomp_log.png
Normal file
|
After Width: | Height: | Size: 268 KiB |
BIN
results-and-plotting/plots/allreduce_algcomp.png
Normal file
|
After Width: | Height: | Size: 210 KiB |
BIN
results-and-plotting/plots/allreduce_algcomp_log.png
Normal file
|
After Width: | Height: | Size: 284 KiB |
BIN
results-and-plotting/plots/alltoall_algcomp.png
Normal file
|
After Width: | Height: | Size: 184 KiB |
BIN
results-and-plotting/plots/alltoall_algcomp_log.png
Normal file
|
After Width: | Height: | Size: 261 KiB |
BIN
results-and-plotting/plots/bcast_algcomp.png
Normal file
|
After Width: | Height: | Size: 220 KiB |
BIN
results-and-plotting/plots/bcast_algcomp_log.png
Normal file
|
After Width: | Height: | Size: 286 KiB |
BIN
results-and-plotting/plots/gather_algcomp.png
Normal file
|
After Width: | Height: | Size: 214 KiB |
BIN
results-and-plotting/plots/gather_algcomp_log.png
Normal file
|
After Width: | Height: | Size: 281 KiB |
BIN
results-and-plotting/plots/reduce_algcomp.png
Normal file
|
After Width: | Height: | Size: 217 KiB |
BIN
results-and-plotting/plots/reduce_algcomp_log.png
Normal file
|
After Width: | Height: | Size: 290 KiB |
BIN
results-and-plotting/plots/reduce_scatter_algcomp.png
Normal file
|
After Width: | Height: | Size: 201 KiB |
BIN
results-and-plotting/plots/reduce_scatter_algcomp_log.png
Normal file
|
After Width: | Height: | Size: 271 KiB |
BIN
results-and-plotting/plots/scatter_algcomp.png
Normal file
|
After Width: | Height: | Size: 192 KiB |
BIN
results-and-plotting/plots/scatter_algcomp_log.png
Normal file
|
After Width: | Height: | Size: 234 KiB |
104
results-and-plotting/python/scripts/plot_alg.py
Normal file
@@ -0,0 +1,104 @@
|
|||||||
|
from matplotlib.ticker import FuncFormatter
|
||||||
|
import pandas as pd
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
from matplotlib.lines import Line2D
|
||||||
|
from enum import Enum
|
||||||
|
|
||||||
|
|
||||||
|
class columns ():
|
||||||
|
benchmark_type = 'benchmark_type'
|
||||||
|
proc_num = 'proc_num'
|
||||||
|
msg_size_bytes = 'msg_size_bytes'
|
||||||
|
repetitions = 'repetitions'
|
||||||
|
t_min_usec = 't_min_usec'
|
||||||
|
t_max_usec = 't_max_usec'
|
||||||
|
t_avg_usec = 't_avg_usec'
|
||||||
|
mpi_datatype = 'mpi_datatype'
|
||||||
|
mpi_red_datatype = 'mpi_red_datatype'
|
||||||
|
mpi_red_op = 'mpi_red_op'
|
||||||
|
creation_time = 'creation_time'
|
||||||
|
n_nodes = 'n_nodes'
|
||||||
|
off_cache_flag = 'off_cache_flag'
|
||||||
|
algorithm = 'algorithm'
|
||||||
|
|
||||||
|
|
||||||
|
class collectives(Enum):
|
||||||
|
Bcast = 'Bcast'
|
||||||
|
Reduce = 'Reduce'
|
||||||
|
Allreduce = 'Allreduce'
|
||||||
|
Alltoall = 'Alltoall'
|
||||||
|
Scatter = 'Scatter'
|
||||||
|
Reduce_scatter = 'Reduce_scatter'
|
||||||
|
Allgather = 'Allgather'
|
||||||
|
Gather = 'Gather'
|
||||||
|
|
||||||
|
|
||||||
|
data_file = "./data/data_04_11_25_algs.csv"
|
||||||
|
|
||||||
|
df_multinode = pd.read_csv(data_file, delimiter=',')
|
||||||
|
df_multinode.fillna(0, inplace=True)
|
||||||
|
df_multinode = df_multinode[df_multinode[columns.off_cache_flag] == 50]
|
||||||
|
for c in collectives:
|
||||||
|
|
||||||
|
df_single = df_multinode[df_multinode[columns.benchmark_type]
|
||||||
|
== c.value]
|
||||||
|
df_single = df_single[df_single[columns.msg_size_bytes] > 1000]
|
||||||
|
df_single = df_single[[columns.proc_num, columns.msg_size_bytes,
|
||||||
|
columns.t_avg_usec, columns.algorithm]]
|
||||||
|
|
||||||
|
df_gather_best = df_single.loc[ # pyright: ignore
|
||||||
|
df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore
|
||||||
|
columns.t_avg_usec].idxmin()
|
||||||
|
].reset_index(drop=True)
|
||||||
|
|
||||||
|
df_gather_best = df_gather_best[df_gather_best[columns.msg_size_bytes] > 2**17]
|
||||||
|
|
||||||
|
pivot_best = df_gather_best.pivot(index=columns.msg_size_bytes, # pyright: ignore
|
||||||
|
columns=columns.proc_num, values=columns.t_avg_usec)
|
||||||
|
|
||||||
|
X = pivot_best.columns.values # proc_num
|
||||||
|
Y = pivot_best.index.values # msg_size_bytes
|
||||||
|
X, Y = np.meshgrid(X, Y) # pyright: ignore
|
||||||
|
Z = pivot_best.values
|
||||||
|
|
||||||
|
alg_pivot = df_gather_best.pivot(
|
||||||
|
index=columns.msg_size_bytes,
|
||||||
|
columns=columns.proc_num,
|
||||||
|
values=columns.algorithm
|
||||||
|
)
|
||||||
|
|
||||||
|
algorithms = alg_pivot.values.flatten()
|
||||||
|
unique_algs = sorted(pd.unique(algorithms[~pd.isna(algorithms)]))
|
||||||
|
color_map = {alg: i for i, alg in enumerate(unique_algs)}
|
||||||
|
color_values = np.array([color_map.get(a, np.nan) for a in algorithms])
|
||||||
|
|
||||||
|
fig = plt.figure(figsize=(16, 9))
|
||||||
|
ax = fig.add_subplot(111, projection='3d')
|
||||||
|
surf = ax.plot_wireframe(X, Y, Z,
|
||||||
|
color='black', linewidths=1)
|
||||||
|
surf_points = ax.scatter(X,
|
||||||
|
Y, Z, c=color_values, cmap='viridis', s=20, depthshade=False) # pyright: ignore
|
||||||
|
|
||||||
|
handles = [
|
||||||
|
Line2D([0], [0],
|
||||||
|
marker='o', color='w',
|
||||||
|
label=alg,
|
||||||
|
markerfacecolor=plt.cm.viridis(
|
||||||
|
color_map[alg] / max(len(unique_algs)-1, 1)),
|
||||||
|
markersize=8)
|
||||||
|
for alg in unique_algs
|
||||||
|
]
|
||||||
|
|
||||||
|
ax.legend(handles=handles, title="Algorithm", loc='upper right')
|
||||||
|
ax.set_xlabel("Process Count")
|
||||||
|
ax.set_ylabel("Message Size [B]")
|
||||||
|
ax.set_zlabel("Average Time [μs]")
|
||||||
|
ax.set_title(f"{c.value}")
|
||||||
|
ax.set_xticks(pivot_best.columns.values) # pyright: ignore
|
||||||
|
ax.set_xticklabels(pivot_best.columns.values)
|
||||||
|
ax.set_yticks(Y[:, 0])
|
||||||
|
ymin, ymax = ax.get_ylim()
|
||||||
|
ax.set_ylim(ymin*0.8, ymax) # 30% more space at top
|
||||||
|
ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]])
|
||||||
|
plt.savefig(f"./plots/{c.value.lower()}_algcomp.png")
|
||||||
127
results-and-plotting/python/scripts/plot_alg_log.py
Normal file
@@ -0,0 +1,127 @@
|
|||||||
|
from matplotlib.ticker import FuncFormatter
|
||||||
|
import pandas as pd
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
from matplotlib.lines import Line2D
|
||||||
|
from enum import Enum
|
||||||
|
|
||||||
|
|
||||||
|
class columns ():
|
||||||
|
benchmark_type = 'benchmark_type'
|
||||||
|
proc_num = 'proc_num'
|
||||||
|
msg_size_bytes = 'msg_size_bytes'
|
||||||
|
repetitions = 'repetitions'
|
||||||
|
t_min_usec = 't_min_usec'
|
||||||
|
t_max_usec = 't_max_usec'
|
||||||
|
t_avg_usec = 't_avg_usec'
|
||||||
|
mpi_datatype = 'mpi_datatype'
|
||||||
|
mpi_red_datatype = 'mpi_red_datatype'
|
||||||
|
mpi_red_op = 'mpi_red_op'
|
||||||
|
creation_time = 'creation_time'
|
||||||
|
n_nodes = 'n_nodes'
|
||||||
|
off_cache_flag = 'off_cache_flag'
|
||||||
|
algorithm = 'algorithm'
|
||||||
|
|
||||||
|
|
||||||
|
class collectives(Enum):
|
||||||
|
Bcast = 'Bcast'
|
||||||
|
Reduce = 'Reduce'
|
||||||
|
Allreduce = 'Allreduce'
|
||||||
|
Alltoall = 'Alltoall'
|
||||||
|
Scatter = 'Scatter'
|
||||||
|
Reduce_scatter = 'Reduce_scatter'
|
||||||
|
Allgather = 'Allgather'
|
||||||
|
Gather = 'Gather'
|
||||||
|
|
||||||
|
|
||||||
|
def log_notation(val, pos):
|
||||||
|
return f" $1e{int(val)}$" if val != 0 else "1"
|
||||||
|
|
||||||
|
|
||||||
|
def log2_notation(val, pos):
|
||||||
|
return "$2^{"+str(int(val))+"}$" if val != 0 else "1"
|
||||||
|
|
||||||
|
|
||||||
|
data_file = "./data/data_04_11_25_algs.csv"
|
||||||
|
|
||||||
|
df_multinode = pd.read_csv(data_file, delimiter=',')
|
||||||
|
df_multinode.fillna(0, inplace=True)
|
||||||
|
df_multinode = df_multinode[df_multinode[columns.off_cache_flag] == 50]
|
||||||
|
for c in collectives:
|
||||||
|
|
||||||
|
df_single = df_multinode[df_multinode[columns.benchmark_type]
|
||||||
|
== c.value]
|
||||||
|
df_single = df_single[df_single[columns.msg_size_bytes] > 1000]
|
||||||
|
df_single = df_single[[columns.proc_num, columns.msg_size_bytes,
|
||||||
|
columns.t_avg_usec, columns.algorithm]]
|
||||||
|
|
||||||
|
df_gather_best = df_single.loc[ # pyright: ignore
|
||||||
|
df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore
|
||||||
|
columns.t_avg_usec].idxmin()
|
||||||
|
].reset_index(drop=True)
|
||||||
|
|
||||||
|
df_gather_worst = df_single.loc[ # pyright: ignore
|
||||||
|
df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore
|
||||||
|
columns.t_avg_usec].idxmax()
|
||||||
|
].reset_index(drop=True)
|
||||||
|
# df_gather_select = df_gather_select[df_gather_select[columns.msg_size_bytes] > 2**17]
|
||||||
|
|
||||||
|
pivot_best = df_gather_best.pivot(index=columns.msg_size_bytes, # pyright: ignore
|
||||||
|
columns=columns.proc_num, values=columns.t_avg_usec)
|
||||||
|
pivot_worst = df_gather_worst.pivot(index=columns.msg_size_bytes, # pyright: ignore
|
||||||
|
columns=columns.proc_num, values=columns.t_avg_usec)
|
||||||
|
|
||||||
|
X = pivot_best.columns.values # proc_num
|
||||||
|
Y = pivot_best.index.values # msg_size_bytes
|
||||||
|
X, Y = np.meshgrid(X, Y) # pyright: ignore
|
||||||
|
Z = pivot_best.values
|
||||||
|
|
||||||
|
X_w = pivot_worst.columns.values # proc_num
|
||||||
|
Y_w = pivot_worst.index.values # msg_size_bytes
|
||||||
|
X_w, Y_w = np.meshgrid(X_w, Y_w) # pyright: ignore
|
||||||
|
Z_w = pivot_worst.values
|
||||||
|
|
||||||
|
alg_pivot = df_gather_best.pivot(
|
||||||
|
index=columns.msg_size_bytes,
|
||||||
|
columns=columns.proc_num,
|
||||||
|
values=columns.algorithm
|
||||||
|
)
|
||||||
|
|
||||||
|
algorithms = alg_pivot.values.flatten()
|
||||||
|
unique_algs = sorted(pd.unique(algorithms[~pd.isna(algorithms)]))
|
||||||
|
color_map = {alg: i for i, alg in enumerate(unique_algs)}
|
||||||
|
color_values = np.array([color_map.get(a, np.nan) for a in algorithms])
|
||||||
|
|
||||||
|
fig = plt.figure(figsize=(16, 9))
|
||||||
|
ax = fig.add_subplot(111, projection='3d')
|
||||||
|
surf = ax.plot_wireframe(X, np.log2(Y), np.log(Z),
|
||||||
|
color='black', linewidths=1)
|
||||||
|
surf = ax.plot_wireframe(X_w, np.log2(
|
||||||
|
Y_w), np.log(Z_w), color='gray', linewidths=0.3)
|
||||||
|
|
||||||
|
surf_points = ax.scatter(X, np.log2(
|
||||||
|
Y), np.log(Z), c=color_values, cmap='viridis', s=20, depthshade=False) # pyright: ignore
|
||||||
|
|
||||||
|
surf_points = ax.scatter(X_w, np.log2(
|
||||||
|
Y_w), np.log(Z_w), c='gray', alpha=0.2, s=20, depthshade=False) # pyright: ignore
|
||||||
|
|
||||||
|
handles = [
|
||||||
|
Line2D([0], [0],
|
||||||
|
marker='o', color='w',
|
||||||
|
label=alg,
|
||||||
|
markerfacecolor=plt.cm.viridis(
|
||||||
|
color_map[alg] / max(len(unique_algs)-1, 1)),
|
||||||
|
markersize=8)
|
||||||
|
for alg in unique_algs
|
||||||
|
]
|
||||||
|
|
||||||
|
ax.legend(handles=handles, title="Algorithm", loc='upper right')
|
||||||
|
ax.set_xlabel("Process Count")
|
||||||
|
ax.set_ylabel("Message Size [B] (log2)")
|
||||||
|
ax.set_zlabel("Average Time [μs] (log10)")
|
||||||
|
ax.set_title(f"{c.value}")
|
||||||
|
ax.set_xticks(pivot_best.columns.values) # pyright: ignore
|
||||||
|
ax.set_xticklabels(pivot_best.columns.values)
|
||||||
|
ax.yaxis.set_major_formatter(FuncFormatter(log2_notation))
|
||||||
|
ax.zaxis.set_major_formatter(FuncFormatter(log_notation))
|
||||||
|
plt.savefig(f"./plots/{c.value.lower()}_algcomp_log.png")
|
||||||
@@ -3,13 +3,36 @@
|
|||||||
#SBATCH --output={output_dir}{job_name}_{n_procs}.out
|
#SBATCH --output={output_dir}{job_name}_{n_procs}.out
|
||||||
#SBATCH --error={err_dir}{job_name}_{n_procs}.err
|
#SBATCH --error={err_dir}{job_name}_{n_procs}.err
|
||||||
#SBATCH --nodes={n_nodes}
|
#SBATCH --nodes={n_nodes}
|
||||||
#SBATCH --time=00:10:00
|
#SBATCH --nodelist=f01[01-64]
|
||||||
|
#SBATCH --time=00:30:00
|
||||||
#SBATCH --export=NONE
|
#SBATCH --export=NONE
|
||||||
|
|
||||||
|
# Switch Help Table
|
||||||
|
# SwitchName=fswibl01 Level=0 LinkSpeed=1 Nodes=f01[01-64]
|
||||||
|
# SwitchName=fswibl02 Level=0 LinkSpeed=1 Nodes=f02[01-64]
|
||||||
|
# SwitchName=fswibl03 Level=0 LinkSpeed=1 Nodes=f03[01-64]
|
||||||
|
# SwitchName=fswibl04 Level=0 LinkSpeed=1 Nodes=f04[01-64]
|
||||||
|
# SwitchName=fswibl05 Level=0 LinkSpeed=1 Nodes=f05[01-64]
|
||||||
|
# SwitchName=fswibl06 Level=0 LinkSpeed=1 Nodes=f06[01-64]
|
||||||
|
# SwitchName=fswibl07 Level=0 LinkSpeed=1 Nodes=f01[65-88],f02[65-88]
|
||||||
|
# SwitchName=fswibl08 Level=0 LinkSpeed=1 Nodes=f03[65-88],f04[65-88],fritz[1-2]
|
||||||
|
# SwitchName=fswibl09 Level=0 LinkSpeed=1 Nodes=f05[65-88],f06[65-88],fritz[3-4],fviz1
|
||||||
|
# SwitchName=fswibl10 Level=0 LinkSpeed=1 Nodes=f07[01-64]
|
||||||
|
# SwitchName=fswibl11 Level=0 LinkSpeed=1 Nodes=f08[01-64]
|
||||||
|
# SwitchName=fswibl12 Level=0 LinkSpeed=1 Nodes=f09[01-64]
|
||||||
|
# SwitchName=fswibl13 Level=0 LinkSpeed=1 Nodes=f10[01-64]
|
||||||
|
|
||||||
unset SLURM_EXPORT_ENV
|
unset SLURM_EXPORT_ENV
|
||||||
|
|
||||||
module load intel intelmpi
|
module load intel intelmpi
|
||||||
|
|
||||||
|
# Enable tuned collectives
|
||||||
|
export I_MPI_TUNING=on
|
||||||
|
export I_MPI_TUNING_MODE=auto # or 'collectives'
|
||||||
|
|
||||||
|
# Options: 0=auto, 1=recursive doubling, 2=ring, 3=binomial tree, 4=scatter-allgather
|
||||||
|
export I_MPI_COLL_ALLGATHER=2
|
||||||
|
export I_MPI_COLL_GATHER=2
|
||||||
|
|
||||||
OUTPUT_FILENAME="{data_dir}/{job_name}_$SLURM_JOB_ID.dat"
|
OUTPUT_FILENAME="{data_dir}/{job_name}_$SLURM_JOB_ID.dat"
|
||||||
|
|
||||||
@@ -17,6 +40,5 @@ echo "# CREATION_TIME : {time_stamp}" > $OUTPUT_FILENAME
|
|||||||
echo "# N_NODES : {n_nodes}" >> $OUTPUT_FILENAME
|
echo "# N_NODES : {n_nodes}" >> $OUTPUT_FILENAME
|
||||||
echo "# OFF_CACHE_FLAG : {off_cache_flag}">> $OUTPUT_FILENAME
|
echo "# OFF_CACHE_FLAG : {off_cache_flag}">> $OUTPUT_FILENAME
|
||||||
|
|
||||||
srun --cpu-freq=2000000-2000000:performance -N {n_nodes} -n{n_procs} {bin} {job_name} -npmin {n_procs} {off_cache_flag} >> $OUTPUT_FILENAME
|
srun --cpu-freq=2000000-2000000:performance -N {n_nodes} -n{n_procs} {bin} {job_name} -npmin {n_procs} {off_cache_flag} -mem 2 -time 60 >> $OUTPUT_FILENAME
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
38
templates/multinode_algs.template
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
#!/bin/bash -l
|
||||||
|
#SBATCH --job-name={job_name}_{n_procs}_{alg_idx}
|
||||||
|
#SBATCH --output={output_dir}{job_name}_{n_procs}.out
|
||||||
|
#SBATCH --error={err_dir}{job_name}_{n_procs}.err
|
||||||
|
#SBATCH --nodes={n_nodes}
|
||||||
|
#SBATCH --nodelist=f01[01-64]
|
||||||
|
#SBATCH --time=00:30:00
|
||||||
|
#SBATCH --export=NONE
|
||||||
|
|
||||||
|
# SwitchName=fswibl01 Level=0 LinkSpeed=1 Nodes=f01[01-64]
|
||||||
|
# SwitchName=fswibl02 Level=0 LinkSpeed=1 Nodes=f02[01-64]
|
||||||
|
# SwitchName=fswibl03 Level=0 LinkSpeed=1 Nodes=f03[01-64]
|
||||||
|
# SwitchName=fswibl04 Level=0 LinkSpeed=1 Nodes=f04[01-64]
|
||||||
|
# SwitchName=fswibl05 Level=0 LinkSpeed=1 Nodes=f05[01-64]
|
||||||
|
# SwitchName=fswibl06 Level=0 LinkSpeed=1 Nodes=f06[01-64]
|
||||||
|
# SwitchName=fswibl07 Level=0 LinkSpeed=1 Nodes=f01[65-88],f02[65-88]
|
||||||
|
# SwitchName=fswibl08 Level=0 LinkSpeed=1 Nodes=f03[65-88],f04[65-88],fritz[1-2]
|
||||||
|
# SwitchName=fswibl09 Level=0 LinkSpeed=1 Nodes=f05[65-88],f06[65-88],fritz[3-4],fviz1
|
||||||
|
# SwitchName=fswibl10 Level=0 LinkSpeed=1 Nodes=f07[01-64]
|
||||||
|
# SwitchName=fswibl11 Level=0 LinkSpeed=1 Nodes=f08[01-64]
|
||||||
|
# SwitchName=fswibl12 Level=0 LinkSpeed=1 Nodes=f09[01-64]
|
||||||
|
# SwitchName=fswibl13 Level=0 LinkSpeed=1 Nodes=f10[01-64]
|
||||||
|
|
||||||
|
unset SLURM_EXPORT_ENV
|
||||||
|
|
||||||
|
module load intel intelmpi
|
||||||
|
|
||||||
|
export {alg_flag}={alg_idx}
|
||||||
|
|
||||||
|
OUTPUT_FILENAME="{data_dir}/{job_name}_$SLURM_JOB_ID.dat"
|
||||||
|
|
||||||
|
echo "# CREATION_TIME : {time_stamp}" > $OUTPUT_FILENAME
|
||||||
|
echo "# N_NODES : {n_nodes}" >> $OUTPUT_FILENAME
|
||||||
|
echo "# OFF_CACHE_FLAG : {off_cache_flag}">> $OUTPUT_FILENAME
|
||||||
|
echo "# ALGORITHM : {alg_name}">> $OUTPUT_FILENAME
|
||||||
|
|
||||||
|
srun --cpu-freq=2000000-2000000:performance -N {n_nodes} -n{n_procs} {bin} {job_name} -npmin {n_procs} {off_cache_flag} -mem 2 -time 60 >> $OUTPUT_FILENAME
|
||||||
|
|
||||||