forgotten due to .gitignore

This commit is contained in:
Erik Fabrizzi
2025-10-17 14:02:53 +02:00
parent 459f12b086
commit 0f7db21d6f
38 changed files with 15614 additions and 11 deletions

11
.gitignore vendored
View File

@@ -1,11 +0,0 @@
# Ignore everything
*
# But not these!
!.gitignore
!README.md
!*.py
!*.template
# Optional: Keep subdirectories and their Python files
!*/

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 645 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 696 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 683 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 376 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 389 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 243 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 266 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 232 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 581 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 203 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 197 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 657 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 637 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 580 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 623 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 586 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 588 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 644 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 527 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 572 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 662 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 648 KiB

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,175 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "da7c16b4",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from scipy.optimize import curve_fit\n",
"from matplotlib.cm import get_cmap"
]
},
{
"cell_type": "markdown",
"id": "47341b1d",
"metadata": {},
"source": [
"# Alltoall "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1cc39aab",
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mnotebook controller is DISPOSED. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"df_multinode = pd.read_csv(\"../data/data-multi-defand100cflag.csv\",delimiter = \",\")\n",
"df_multinode['benchmark_type'].unique()\n",
"df_gather = df_multinode[df_multinode[\"benchmark_type\"]==\"Bcast\"][df_multinode['msg_size_bytes']>1024][df_multinode['off_cache_flag']==-1]\n",
"df_gather.columns.tolist()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4336d3c6",
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mnotebook controller is DISPOSED. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"def model(proc_num, alpha, beta, msg_size):\n",
" return (alpha * msg_size * (proc_num - 72) * 72) / (12.5 * 1e3) + 1e6*beta\n",
"\n",
"results = []\n",
"msg_sizes = sorted(df_gather['msg_size_bytes'].unique())\n",
"n_rows = int(np.ceil(len(msg_sizes) / 3))\n",
"n_cols = min(len(msg_sizes), 3)\n",
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(5*n_cols, 4*n_rows), squeeze=False)\n",
"cmap = get_cmap('tab10')\n",
"\n",
"for idx, (msg_size, group) in enumerate(df_gather.groupby('msg_size_bytes')):\n",
" x = group['proc_num'].values.copy()\n",
" y = group['t_avg_usec'].values.copy()\n",
" sorted_indices = np.argsort(x)\n",
" x = x[sorted_indices]\n",
" y = y[sorted_indices]\n",
" fit_func = lambda proc_num, alpha, beta: model(proc_num, alpha, beta, msg_size)\n",
" popt, _ = curve_fit(fit_func, x, y, bounds=([1, 0], [np.inf, np.inf]))\n",
" alpha, beta = popt\n",
" results.append({'msg_size_bytes': msg_size, 'alpha': alpha, 'beta': beta})\n",
"\n",
" x_fit = np.linspace(min(x), max(x), 100)\n",
" y_fit = fit_func(x_fit, alpha, beta)\n",
" y_speed = model(x_fit,1,0,msg_size)\n",
" row, col = divmod(idx, n_cols)\n",
" ax = axes[row][col]\n",
"\n",
" color = cmap(idx % 10)\n",
" # ax.scatter(x, y/1e6, label='Data', color=color)\n",
" ax.plot(x, y/1e6, label='Data', color=color)\n",
" # ax.plot(x_fit, y_fit/1e6, linestyle='--', color=color, alpha=0.5, label='Fit')\n",
" # ax.plot(x_fit, y_speed/1e6, linestyle='--', color='red', alpha=0.1, label='Fit')\n",
" ax.set_title(f'msg_size: {msg_size} bytes')\n",
" ax.set_xlabel('num. proc.')\n",
" ax.set_ylabel('Average Time [s]')\n",
" ax.set_xticks(x)\n",
" ax.grid(True)\n",
" max_data =(x[-1]-72)*72*msg_size\n",
" min_data =(x[0]-72)*72*msg_size\n",
"\n",
" textstr = \"\"\n",
" # if(max_data > 1e9):\n",
" # textstr+=f\"max data = {max_data/1e9:0.2f}GB\\n\" \n",
" # else:\n",
" # textstr+=f\"max data = {max_data/1e6:0.2f}MB\\n\" \n",
"\n",
" # if(min_data > 1e9):\n",
" # textstr+=f\"min data = {min_data/1e9:0.2f}GB\\n\" \n",
" # else:\n",
" # textstr+=f\"min data = {min_data/1e6:0.2f}MB\\n\" \n",
" # textstr += r\"$\\alpha$\" +f\"= {alpha:.3e}\\n\"+r\"$b_{eff}=$\"+f\"{12.5/alpha:0.3f}Gbps\\n\"+\\\n",
" # r\"$\\beta$\"+f\"= {beta:.3e} s\"\n",
" # ax.text(0.95, 0.05, textstr, transform=ax.transAxes,\n",
" # fontsize=10, verticalalignment='bottom',\n",
" # horizontalalignment='right',\n",
" # bbox=dict(boxstyle='round', facecolor='white', alpha=0.8))\n",
"\n",
"fig.suptitle('Alltoall Time Fit per Message Size\\nDots = Data Points | Dashed Lines = Fits\\n off_mem=-1', fontsize=14)\n",
"fig.tight_layout(rect=[0, 0.03, 1, 0.95])\n",
"# plt.savefig(\"plots/alltoall_analysis.png\",dpi=300)\n",
"plt.show()\n",
"\n",
"fit_results = pd.DataFrame(results)\n",
"fit_results['inv_alpha'] = 1 / fit_results['alpha']\n",
"print(fit_results)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce632d6f",
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mnotebook controller is DISPOSED. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"df_gather[df_gather['msg_size_bytes']==1048576]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "data",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long