forgotten due to .gitignore
11
.gitignore
vendored
@@ -1,11 +0,0 @@
|
||||
# Ignore everything
|
||||
*
|
||||
|
||||
# But not these!
|
||||
!.gitignore
|
||||
!README.md
|
||||
!*.py
|
||||
!*.template
|
||||
# Optional: Keep subdirectories and their Python files
|
||||
|
||||
!*/
|
||||
|
||||
BIN
results-and-plotting/archives/data.zip
Normal file
2289
results-and-plotting/data/data-multi-MPIF-100cflag-complete.csv
Normal file
3675
results-and-plotting/data/data-multi-defand100cflag.csv
Normal file
1838
results-and-plotting/data/data-multinode-defcflag-nompiopt.csv
Normal file
5416
results-and-plotting/data/data-single-multi-original.csv
Normal file
BIN
results-and-plotting/docs/MPI1-Benchmark-Analysis.pdf
Normal file
BIN
results-and-plotting/plots/allgather_surface.png
Normal file
|
After Width: | Height: | Size: 645 KiB |
BIN
results-and-plotting/plots/allreduce_surface.png
Normal file
|
After Width: | Height: | Size: 696 KiB |
BIN
results-and-plotting/plots/alltoall_surface.png
Normal file
|
After Width: | Height: | Size: 683 KiB |
BIN
results-and-plotting/plots/analysis_old/allgather2_analysis.png
Normal file
|
After Width: | Height: | Size: 1.1 MiB |
BIN
results-and-plotting/plots/analysis_old/allgather_analysis.png
Normal file
|
After Width: | Height: | Size: 1.1 MiB |
BIN
results-and-plotting/plots/analysis_old/alltoall_analysis.png
Normal file
|
After Width: | Height: | Size: 1.2 MiB |
|
After Width: | Height: | Size: 376 KiB |
|
After Width: | Height: | Size: 389 KiB |
BIN
results-and-plotting/plots/benchmark_avg_time_barplot.png
Normal file
|
After Width: | Height: | Size: 243 KiB |
BIN
results-and-plotting/plots/benchmark_avg_time_barplot_log.png
Normal file
|
After Width: | Height: | Size: 266 KiB |
BIN
results-and-plotting/plots/fbenchmarks_avg_time_barplot.png
Normal file
|
After Width: | Height: | Size: 232 KiB |
BIN
results-and-plotting/plots/gather_surface.png
Normal file
|
After Width: | Height: | Size: 581 KiB |
BIN
results-and-plotting/plots/mbenchmarks_avg_time_barplot.png
Normal file
|
After Width: | Height: | Size: 203 KiB |
BIN
results-and-plotting/plots/sbenchmarks_avg_time_barplot.png
Normal file
|
After Width: | Height: | Size: 197 KiB |
BIN
results-and-plotting/plots/scatter/scatter_plot_Allgather.png
Normal file
|
After Width: | Height: | Size: 657 KiB |
BIN
results-and-plotting/plots/scatter/scatter_plot_Allgatherv.png
Normal file
|
After Width: | Height: | Size: 637 KiB |
BIN
results-and-plotting/plots/scatter/scatter_plot_Allreduce.png
Normal file
|
After Width: | Height: | Size: 580 KiB |
BIN
results-and-plotting/plots/scatter/scatter_plot_Alltoall.png
Normal file
|
After Width: | Height: | Size: 623 KiB |
BIN
results-and-plotting/plots/scatter/scatter_plot_Bcast.png
Normal file
|
After Width: | Height: | Size: 586 KiB |
BIN
results-and-plotting/plots/scatter/scatter_plot_Gather.png
Normal file
|
After Width: | Height: | Size: 588 KiB |
BIN
results-and-plotting/plots/scatter/scatter_plot_Gatherv.png
Normal file
|
After Width: | Height: | Size: 644 KiB |
BIN
results-and-plotting/plots/scatter/scatter_plot_Reduce.png
Normal file
|
After Width: | Height: | Size: 527 KiB |
|
After Width: | Height: | Size: 572 KiB |
BIN
results-and-plotting/plots/scatter/scatter_plot_Scatter.png
Normal file
|
After Width: | Height: | Size: 662 KiB |
BIN
results-and-plotting/plots/scatter/scatter_plot_Scatterv.png
Normal file
|
After Width: | Height: | Size: 648 KiB |
318
results-and-plotting/python/notebooks/allgather_analysis.ipynb
Normal file
593
results-and-plotting/python/notebooks/alltoall_analysis.ipynb
Normal file
175
results-and-plotting/python/notebooks/bcast_analysis.ipynb
Normal file
@@ -0,0 +1,175 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "da7c16b4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import seaborn as sns\n",
|
||||
"from scipy.optimize import curve_fit\n",
|
||||
"from matplotlib.cm import get_cmap"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "47341b1d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Alltoall "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1cc39aab",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "",
|
||||
"evalue": "",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31mnotebook controller is DISPOSED. \n",
|
||||
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df_multinode = pd.read_csv(\"../data/data-multi-defand100cflag.csv\",delimiter = \",\")\n",
|
||||
"df_multinode['benchmark_type'].unique()\n",
|
||||
"df_gather = df_multinode[df_multinode[\"benchmark_type\"]==\"Bcast\"][df_multinode['msg_size_bytes']>1024][df_multinode['off_cache_flag']==-1]\n",
|
||||
"df_gather.columns.tolist()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4336d3c6",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "",
|
||||
"evalue": "",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31mnotebook controller is DISPOSED. \n",
|
||||
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"def model(proc_num, alpha, beta, msg_size):\n",
|
||||
" return (alpha * msg_size * (proc_num - 72) * 72) / (12.5 * 1e3) + 1e6*beta\n",
|
||||
"\n",
|
||||
"results = []\n",
|
||||
"msg_sizes = sorted(df_gather['msg_size_bytes'].unique())\n",
|
||||
"n_rows = int(np.ceil(len(msg_sizes) / 3))\n",
|
||||
"n_cols = min(len(msg_sizes), 3)\n",
|
||||
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(5*n_cols, 4*n_rows), squeeze=False)\n",
|
||||
"cmap = get_cmap('tab10')\n",
|
||||
"\n",
|
||||
"for idx, (msg_size, group) in enumerate(df_gather.groupby('msg_size_bytes')):\n",
|
||||
" x = group['proc_num'].values.copy()\n",
|
||||
" y = group['t_avg_usec'].values.copy()\n",
|
||||
" sorted_indices = np.argsort(x)\n",
|
||||
" x = x[sorted_indices]\n",
|
||||
" y = y[sorted_indices]\n",
|
||||
" fit_func = lambda proc_num, alpha, beta: model(proc_num, alpha, beta, msg_size)\n",
|
||||
" popt, _ = curve_fit(fit_func, x, y, bounds=([1, 0], [np.inf, np.inf]))\n",
|
||||
" alpha, beta = popt\n",
|
||||
" results.append({'msg_size_bytes': msg_size, 'alpha': alpha, 'beta': beta})\n",
|
||||
"\n",
|
||||
" x_fit = np.linspace(min(x), max(x), 100)\n",
|
||||
" y_fit = fit_func(x_fit, alpha, beta)\n",
|
||||
" y_speed = model(x_fit,1,0,msg_size)\n",
|
||||
" row, col = divmod(idx, n_cols)\n",
|
||||
" ax = axes[row][col]\n",
|
||||
"\n",
|
||||
" color = cmap(idx % 10)\n",
|
||||
" # ax.scatter(x, y/1e6, label='Data', color=color)\n",
|
||||
" ax.plot(x, y/1e6, label='Data', color=color)\n",
|
||||
" # ax.plot(x_fit, y_fit/1e6, linestyle='--', color=color, alpha=0.5, label='Fit')\n",
|
||||
" # ax.plot(x_fit, y_speed/1e6, linestyle='--', color='red', alpha=0.1, label='Fit')\n",
|
||||
" ax.set_title(f'msg_size: {msg_size} bytes')\n",
|
||||
" ax.set_xlabel('num. proc.')\n",
|
||||
" ax.set_ylabel('Average Time [s]')\n",
|
||||
" ax.set_xticks(x)\n",
|
||||
" ax.grid(True)\n",
|
||||
" max_data =(x[-1]-72)*72*msg_size\n",
|
||||
" min_data =(x[0]-72)*72*msg_size\n",
|
||||
"\n",
|
||||
" textstr = \"\"\n",
|
||||
" # if(max_data > 1e9):\n",
|
||||
" # textstr+=f\"max data = {max_data/1e9:0.2f}GB\\n\" \n",
|
||||
" # else:\n",
|
||||
" # textstr+=f\"max data = {max_data/1e6:0.2f}MB\\n\" \n",
|
||||
"\n",
|
||||
" # if(min_data > 1e9):\n",
|
||||
" # textstr+=f\"min data = {min_data/1e9:0.2f}GB\\n\" \n",
|
||||
" # else:\n",
|
||||
" # textstr+=f\"min data = {min_data/1e6:0.2f}MB\\n\" \n",
|
||||
" # textstr += r\"$\\alpha$\" +f\"= {alpha:.3e}\\n\"+r\"$b_{eff}=$\"+f\"{12.5/alpha:0.3f}Gbps\\n\"+\\\n",
|
||||
" # r\"$\\beta$\"+f\"= {beta:.3e} s\"\n",
|
||||
" # ax.text(0.95, 0.05, textstr, transform=ax.transAxes,\n",
|
||||
" # fontsize=10, verticalalignment='bottom',\n",
|
||||
" # horizontalalignment='right',\n",
|
||||
" # bbox=dict(boxstyle='round', facecolor='white', alpha=0.8))\n",
|
||||
"\n",
|
||||
"fig.suptitle('Alltoall Time Fit per Message Size\\nDots = Data Points | Dashed Lines = Fits\\n off_mem=-1', fontsize=14)\n",
|
||||
"fig.tight_layout(rect=[0, 0.03, 1, 0.95])\n",
|
||||
"# plt.savefig(\"plots/alltoall_analysis.png\",dpi=300)\n",
|
||||
"plt.show()\n",
|
||||
"\n",
|
||||
"fit_results = pd.DataFrame(results)\n",
|
||||
"fit_results['inv_alpha'] = 1 / fit_results['alpha']\n",
|
||||
"print(fit_results)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ce632d6f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "",
|
||||
"evalue": "",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31mnotebook controller is DISPOSED. \n",
|
||||
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df_gather[df_gather['msg_size_bytes']==1048576]"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "data",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.13.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||