Compare commits
5 Commits
0f7db21d6f
...
alg_suppor
| Author | SHA1 | Date | |
|---|---|---|---|
| d494228d77 | |||
|
|
79bc443bcb | ||
|
|
da15851c5c | ||
| 80e0419083 | |||
| c3a1bef8b0 |
11
.gitignore
vendored
@@ -0,0 +1,11 @@
|
|||||||
|
# Ignore everything
|
||||||
|
*
|
||||||
|
|
||||||
|
# But not these!
|
||||||
|
!.gitignore
|
||||||
|
!README.md
|
||||||
|
!*.py
|
||||||
|
!*.template
|
||||||
|
# Optional: Keep subdirectories and their Python files
|
||||||
|
|
||||||
|
!*/
|
||||||
|
|||||||
203
launch_alg_bench.py
Executable file
@@ -0,0 +1,203 @@
|
|||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
################ HELPER FUNCTIONS ################
|
||||||
|
def load_template(template_path: str):
|
||||||
|
output_template = ""
|
||||||
|
with open(template_path, "r") as handle:
|
||||||
|
output_template = handle.read()
|
||||||
|
return output_template
|
||||||
|
|
||||||
|
|
||||||
|
def write_batch(batch_fpath: str, batch_content: str):
|
||||||
|
with open(batch_fpath, "w") as handle:
|
||||||
|
_ = handle.write(batch_content)
|
||||||
|
|
||||||
|
################### SETUP DIRS ###################
|
||||||
|
output_dir = os.getcwd()+"/output/"
|
||||||
|
err_dir = os.getcwd()+"/error/"
|
||||||
|
batch_files_dir = os.getcwd()+"/batchs/"
|
||||||
|
data_dir = os.getcwd()+"/data/"
|
||||||
|
|
||||||
|
if os.path.isdir(output_dir) == False:
|
||||||
|
os.mkdir(output_dir)
|
||||||
|
if os.path.isdir(err_dir) == False:
|
||||||
|
os.mkdir(err_dir)
|
||||||
|
if os.path.isdir(data_dir) == False:
|
||||||
|
os.mkdir(data_dir)
|
||||||
|
if os.path.isdir(batch_files_dir) == False:
|
||||||
|
os.mkdir(batch_files_dir)
|
||||||
|
|
||||||
|
################ GLOBAL DEFAULTS #################
|
||||||
|
mpi1_bin = "/home/hpc/ihpc/ihpc136h/workspace/mpi-benchmark-tool/bin/IMB-MPI1"
|
||||||
|
default_parameter = {
|
||||||
|
"time_stamp": datetime.now().strftime("%y_%m_%d_%H-%M-%S"),
|
||||||
|
"job_name": "",
|
||||||
|
"output_dir": os.getcwd()+"/output/",
|
||||||
|
"err_dir": os.getcwd()+"/error/",
|
||||||
|
"data_dir": os.getcwd()+"/data/",
|
||||||
|
"n_procs": 18,
|
||||||
|
"off_cache_flag": "",
|
||||||
|
"bin": mpi1_bin,
|
||||||
|
"n_nodes": 1
|
||||||
|
}
|
||||||
|
|
||||||
|
algs_dic = [{'name': "Allgather",
|
||||||
|
'flag': "I_MPI_ADJUST_ALLGATHER",
|
||||||
|
'algs': [
|
||||||
|
"Recursive doubling ",
|
||||||
|
"Bruck`s ",
|
||||||
|
"Ring ",
|
||||||
|
"Topology aware Gatherv + Bcast ",
|
||||||
|
"Knomial ",
|
||||||
|
]},
|
||||||
|
{'name': "Allreduce",
|
||||||
|
'flag': "I_MPI_ADJUST_ALLREDUCE",
|
||||||
|
'algs': [
|
||||||
|
"Recursive doubling ",
|
||||||
|
"Rabenseifner`s ",
|
||||||
|
"Reduce + Bcast ",
|
||||||
|
"Topology aware Reduce + Bcast ",
|
||||||
|
"Binomial gather + scatter ",
|
||||||
|
"Topology aware binominal gather + scatter ",
|
||||||
|
"Shumilin`s ring ",
|
||||||
|
"Ring ",
|
||||||
|
"Knomial ",
|
||||||
|
"Topology aware SHM-based flat ",
|
||||||
|
"Topology aware SHM-based Knomial ",
|
||||||
|
"Topology aware SHM-based Knary ",
|
||||||
|
]},
|
||||||
|
|
||||||
|
{'name': "Alltoall",
|
||||||
|
'flag': "I_MPI_ADJUST_ALLTOALL",
|
||||||
|
'algs': [
|
||||||
|
"Bruck`s ",
|
||||||
|
"Isend/Irecv + waitall ",
|
||||||
|
"Pair wise exchange ",
|
||||||
|
"Plum`s ",
|
||||||
|
]},
|
||||||
|
{'name': "Barrier",
|
||||||
|
'flag': "I_MPI_ADJUST_BARRIER",
|
||||||
|
'algs': [
|
||||||
|
"Dissemination ",
|
||||||
|
"Recursive doubling ",
|
||||||
|
"Topology aware dissemination ",
|
||||||
|
"Topology aware recursive doubling ",
|
||||||
|
"Binominal gather + scatter ",
|
||||||
|
"Topology aware binominal gather + scatter ",
|
||||||
|
"Topology aware SHM-based flat ",
|
||||||
|
"Topology aware SHM-based Knomial ",
|
||||||
|
"Topology aware SHM-based Knary ",
|
||||||
|
]},
|
||||||
|
{'name': "Bcast",
|
||||||
|
'flag': "I_MPI_ADJUST_BCAST",
|
||||||
|
'algs': [
|
||||||
|
"Binomial ",
|
||||||
|
"Recursive doubling ",
|
||||||
|
"Ring ",
|
||||||
|
"Topology aware binomial ",
|
||||||
|
"Topology aware recursive doubling ",
|
||||||
|
"Topology aware ring ",
|
||||||
|
"Shumilin`s ",
|
||||||
|
"Knomial ",
|
||||||
|
"Topology aware SHM-based flat ",
|
||||||
|
"Topology aware SHM-based Knomial ",
|
||||||
|
"Topology aware SHM-based Knary ",
|
||||||
|
"NUMA aware SHM-based (SSE4.2) ",
|
||||||
|
"NUMA aware SHM-based (AVX2) ",
|
||||||
|
"NUMA aware SHM-based (AVX512) ",
|
||||||
|
]},
|
||||||
|
|
||||||
|
{'name': "Gather",
|
||||||
|
'flag': "I_MPI_ADJUST_GATHER",
|
||||||
|
'algs': [
|
||||||
|
"Binomial ",
|
||||||
|
"Topology aware binomial ",
|
||||||
|
"Shumilin`s ",
|
||||||
|
"Binomial with segmentation ",
|
||||||
|
]},
|
||||||
|
|
||||||
|
{'name': "Reduce_scatter",
|
||||||
|
'flag': "I_MPI_ADJUST_REDUCE_SCATTER",
|
||||||
|
'algs': [
|
||||||
|
"Recursive halving ",
|
||||||
|
"Pair wise exchange ",
|
||||||
|
"Recursive doubling ",
|
||||||
|
"Reduce + Scatterv ",
|
||||||
|
"Topology aware Reduce + Scatterv ",
|
||||||
|
]},
|
||||||
|
|
||||||
|
{'name': "Reduce",
|
||||||
|
'flag': "I_MPI_ADJUST_REDUCE",
|
||||||
|
'algs': [
|
||||||
|
"Shumilin`s ",
|
||||||
|
"Binomial ",
|
||||||
|
"Topology aware Shumilin`s ",
|
||||||
|
"Topology aware binomial ",
|
||||||
|
"Rabenseifner`s ",
|
||||||
|
"Topology aware Rabenseifner`s ",
|
||||||
|
"Knomial ",
|
||||||
|
"Topology aware SHM-based flat ",
|
||||||
|
"Topology aware SHM-based Knomial ",
|
||||||
|
"Topology aware SHM-based Knary ",
|
||||||
|
"Topology aware SHM-based binomial ",
|
||||||
|
]},
|
||||||
|
|
||||||
|
{'name': "Scatter",
|
||||||
|
'flag': "I_MPI_ADJUST_SCATTER",
|
||||||
|
'algs': [
|
||||||
|
"Binomial ",
|
||||||
|
"Topology aware binomial ",
|
||||||
|
"Shumilin`s ",
|
||||||
|
]},
|
||||||
|
]
|
||||||
|
log = ""
|
||||||
|
|
||||||
|
############## MULTIPLE-NODE LAUNCH ##############
|
||||||
|
off_cache_flags = [
|
||||||
|
"-off_cache -1",
|
||||||
|
"-off_cache 50",
|
||||||
|
""
|
||||||
|
]
|
||||||
|
|
||||||
|
ndcnt = [
|
||||||
|
2,
|
||||||
|
3,
|
||||||
|
4,
|
||||||
|
5,
|
||||||
|
6,
|
||||||
|
7,
|
||||||
|
8,
|
||||||
|
9,
|
||||||
|
10
|
||||||
|
]
|
||||||
|
|
||||||
|
proc_per_node = 72
|
||||||
|
multiple_node_parameter = dict(default_parameter)
|
||||||
|
multiple_node_template = load_template("./templates/multinode_algs.template")
|
||||||
|
|
||||||
|
for flag in off_cache_flags:
|
||||||
|
multiple_node_parameter["off_cache_flag"] = flag
|
||||||
|
for n_nodes in ndcnt:
|
||||||
|
n_procs = n_nodes*proc_per_node
|
||||||
|
multiple_node_parameter["n_procs"] = int(n_procs)
|
||||||
|
multiple_node_parameter["n_nodes"] = n_nodes
|
||||||
|
for alg_conf in algs_dic:
|
||||||
|
collective = alg_conf['name']
|
||||||
|
multiple_node_parameter["job_name"] = collective
|
||||||
|
multiple_node_parameter["alg_flag"] = alg_conf['flag']
|
||||||
|
algs = alg_conf["algs"]
|
||||||
|
for idx, alg in enumerate(algs):
|
||||||
|
multiple_node_parameter["alg_name"] = alg
|
||||||
|
multiple_node_parameter["alg_idx"] = idx
|
||||||
|
batch_file = os.path.join(batch_files_dir,
|
||||||
|
f"{collective}_{alg.strip().replace('`','').replace(' ','_').replace('/','_')}.sh")
|
||||||
|
write_batch(batch_file,
|
||||||
|
multiple_node_template.format(**multiple_node_parameter))
|
||||||
|
result = subprocess.run(["sbatch", batch_file],
|
||||||
|
capture_output=True, text=True)
|
||||||
|
log += f"#{collective} {n_procs}" + "\n"
|
||||||
|
log += "\tSTDOUT:" + result.stdout + "\n"
|
||||||
|
log += "\tSTDERR:" + result.stderr + "\n"
|
||||||
|
print(log)
|
||||||
112
postprocess_data_algs.py
Executable file
@@ -0,0 +1,112 @@
|
|||||||
|
from venv import create
|
||||||
|
import pandas as pd
|
||||||
|
import os
|
||||||
|
|
||||||
|
data_markers = {
|
||||||
|
"block_separator": "#----------------------------------------------------------------",
|
||||||
|
"benchmark_type": "# Benchmarking",
|
||||||
|
"processes_num": "# #processes = ",
|
||||||
|
"min_bytelen": "# Minimum message length in bytes",
|
||||||
|
"max_bytelen": "# Maximum message length in bytes",
|
||||||
|
"mpi_datatype": "# MPI_Datatype :",
|
||||||
|
"mpi_red_datatype": "# MPI_Datatype for reductions :",
|
||||||
|
"mpi_red_op": "# MPI_Op",
|
||||||
|
"end_of_table": "# All processes entering MPI_Finalize",
|
||||||
|
"creation_time": "# CREATION_TIME :",
|
||||||
|
"n_nodes": "# N_NODES :",
|
||||||
|
"off_cache_flag": "# OFF_CACHE_FLAG :",
|
||||||
|
"algorithm":"# ALGORITHM :"
|
||||||
|
}
|
||||||
|
|
||||||
|
column_names = [
|
||||||
|
"benchmark_type",
|
||||||
|
"proc_num",
|
||||||
|
"msg_size_bytes",
|
||||||
|
"repetitions",
|
||||||
|
"t_min_usec",
|
||||||
|
"t_max_usec",
|
||||||
|
"t_avg_usec",
|
||||||
|
"mpi_datatype",
|
||||||
|
"mpi_red_datatype",
|
||||||
|
"mpi_red_op",
|
||||||
|
"creation_time",
|
||||||
|
"n_nodes",
|
||||||
|
"off_cache_flag",
|
||||||
|
"algorithm"
|
||||||
|
]
|
||||||
|
|
||||||
|
data = list()
|
||||||
|
|
||||||
|
for file in os.listdir("data/"):
|
||||||
|
with open("data/"+file, 'r') as f:
|
||||||
|
lines = f.readlines()
|
||||||
|
|
||||||
|
past_preheader = False
|
||||||
|
in_header = False
|
||||||
|
in_body = False
|
||||||
|
|
||||||
|
btype = "NA"
|
||||||
|
proc_num = "NA"
|
||||||
|
mpi_datatype = "NA"
|
||||||
|
mpi_red_datatype = "NA"
|
||||||
|
mpi_red_op = "NA"
|
||||||
|
creation_time = "NA"
|
||||||
|
n_nodes = "NA"
|
||||||
|
off_cache_flag = "NA"
|
||||||
|
algorithm = "NA"
|
||||||
|
|
||||||
|
for line in lines:
|
||||||
|
if data_markers["block_separator"] in line:
|
||||||
|
if in_header and not past_preheader:
|
||||||
|
past_preheader = True
|
||||||
|
elif in_header and past_preheader:
|
||||||
|
in_body = True
|
||||||
|
in_header = not in_header
|
||||||
|
continue
|
||||||
|
if not in_header and not in_body and past_preheader:
|
||||||
|
if data_markers["mpi_datatype"] in line:
|
||||||
|
mpi_datatype = line.split()[-1]
|
||||||
|
elif data_markers["mpi_red_datatype"] in line:
|
||||||
|
mpi_red_datatype = line.split()[-1]
|
||||||
|
elif data_markers["mpi_red_op"] in line:
|
||||||
|
mpi_red_op = line.split()[-1]
|
||||||
|
|
||||||
|
if not in_header and not in_body and not past_preheader:
|
||||||
|
if data_markers["n_nodes"] in line:
|
||||||
|
n_nodes = line.split()[-1]
|
||||||
|
if data_markers["creation_time"] in line:
|
||||||
|
creation_time = line.split()[-1]
|
||||||
|
if data_markers["off_cache_flag"] in line:
|
||||||
|
off_cache_flag = line.split(":")[-1].strip()
|
||||||
|
if off_cache_flag == "": off_cache_flag = "NA"
|
||||||
|
else: off_cache_flag = off_cache_flag.replace("-off_cache","")
|
||||||
|
if data_markers["algorithm"] in line:
|
||||||
|
algorithm = line.split(":")[-1].strip()
|
||||||
|
|
||||||
|
if past_preheader and in_header:
|
||||||
|
if data_markers["benchmark_type"] in line:
|
||||||
|
btype = line.split()[2]
|
||||||
|
if data_markers["processes_num"] in line:
|
||||||
|
proc_num = int(line.split()[3])
|
||||||
|
|
||||||
|
if in_body:
|
||||||
|
if "#" in line or "".join(line.split()) == "":
|
||||||
|
continue
|
||||||
|
if data_markers["end_of_table"] in line:
|
||||||
|
break
|
||||||
|
if("int-overflow" in line) : continue
|
||||||
|
if("out-of-mem" in line) : continue
|
||||||
|
data.append([btype, proc_num]+[int(s) if s.isdigit()
|
||||||
|
else float(s) for s in line.split()] +
|
||||||
|
[
|
||||||
|
mpi_datatype,
|
||||||
|
mpi_red_datatype,
|
||||||
|
mpi_red_op,
|
||||||
|
creation_time,
|
||||||
|
n_nodes,
|
||||||
|
off_cache_flag,
|
||||||
|
algorithm
|
||||||
|
])
|
||||||
|
|
||||||
|
df = pd.DataFrame(data, columns=column_names)
|
||||||
|
df.to_csv("data.csv", index=False)
|
||||||
|
Before Width: | Height: | Size: 645 KiB |
|
Before Width: | Height: | Size: 696 KiB |
|
Before Width: | Height: | Size: 683 KiB |
|
Before Width: | Height: | Size: 1.1 MiB |
|
Before Width: | Height: | Size: 1.1 MiB |
|
Before Width: | Height: | Size: 1.2 MiB |
|
Before Width: | Height: | Size: 376 KiB |
|
Before Width: | Height: | Size: 389 KiB |
|
Before Width: | Height: | Size: 243 KiB |
|
Before Width: | Height: | Size: 266 KiB |
|
Before Width: | Height: | Size: 232 KiB |
|
Before Width: | Height: | Size: 581 KiB |
|
Before Width: | Height: | Size: 203 KiB |
|
Before Width: | Height: | Size: 197 KiB |
|
Before Width: | Height: | Size: 657 KiB |
|
Before Width: | Height: | Size: 637 KiB |
|
Before Width: | Height: | Size: 580 KiB |
|
Before Width: | Height: | Size: 623 KiB |
|
Before Width: | Height: | Size: 586 KiB |
|
Before Width: | Height: | Size: 588 KiB |
|
Before Width: | Height: | Size: 644 KiB |
|
Before Width: | Height: | Size: 527 KiB |
|
Before Width: | Height: | Size: 572 KiB |
|
Before Width: | Height: | Size: 662 KiB |
|
Before Width: | Height: | Size: 648 KiB |
@@ -1,175 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 1,
|
|
||||||
"id": "da7c16b4",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import pandas as pd\n",
|
|
||||||
"import numpy as np\n",
|
|
||||||
"import matplotlib.pyplot as plt\n",
|
|
||||||
"import seaborn as sns\n",
|
|
||||||
"from scipy.optimize import curve_fit\n",
|
|
||||||
"from matplotlib.cm import get_cmap"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "47341b1d",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"# Alltoall "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "1cc39aab",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"ename": "",
|
|
||||||
"evalue": "",
|
|
||||||
"output_type": "error",
|
|
||||||
"traceback": [
|
|
||||||
"\u001b[1;31mnotebook controller is DISPOSED. \n",
|
|
||||||
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"df_multinode = pd.read_csv(\"../data/data-multi-defand100cflag.csv\",delimiter = \",\")\n",
|
|
||||||
"df_multinode['benchmark_type'].unique()\n",
|
|
||||||
"df_gather = df_multinode[df_multinode[\"benchmark_type\"]==\"Bcast\"][df_multinode['msg_size_bytes']>1024][df_multinode['off_cache_flag']==-1]\n",
|
|
||||||
"df_gather.columns.tolist()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "4336d3c6",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"ename": "",
|
|
||||||
"evalue": "",
|
|
||||||
"output_type": "error",
|
|
||||||
"traceback": [
|
|
||||||
"\u001b[1;31mnotebook controller is DISPOSED. \n",
|
|
||||||
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"def model(proc_num, alpha, beta, msg_size):\n",
|
|
||||||
" return (alpha * msg_size * (proc_num - 72) * 72) / (12.5 * 1e3) + 1e6*beta\n",
|
|
||||||
"\n",
|
|
||||||
"results = []\n",
|
|
||||||
"msg_sizes = sorted(df_gather['msg_size_bytes'].unique())\n",
|
|
||||||
"n_rows = int(np.ceil(len(msg_sizes) / 3))\n",
|
|
||||||
"n_cols = min(len(msg_sizes), 3)\n",
|
|
||||||
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(5*n_cols, 4*n_rows), squeeze=False)\n",
|
|
||||||
"cmap = get_cmap('tab10')\n",
|
|
||||||
"\n",
|
|
||||||
"for idx, (msg_size, group) in enumerate(df_gather.groupby('msg_size_bytes')):\n",
|
|
||||||
" x = group['proc_num'].values.copy()\n",
|
|
||||||
" y = group['t_avg_usec'].values.copy()\n",
|
|
||||||
" sorted_indices = np.argsort(x)\n",
|
|
||||||
" x = x[sorted_indices]\n",
|
|
||||||
" y = y[sorted_indices]\n",
|
|
||||||
" fit_func = lambda proc_num, alpha, beta: model(proc_num, alpha, beta, msg_size)\n",
|
|
||||||
" popt, _ = curve_fit(fit_func, x, y, bounds=([1, 0], [np.inf, np.inf]))\n",
|
|
||||||
" alpha, beta = popt\n",
|
|
||||||
" results.append({'msg_size_bytes': msg_size, 'alpha': alpha, 'beta': beta})\n",
|
|
||||||
"\n",
|
|
||||||
" x_fit = np.linspace(min(x), max(x), 100)\n",
|
|
||||||
" y_fit = fit_func(x_fit, alpha, beta)\n",
|
|
||||||
" y_speed = model(x_fit,1,0,msg_size)\n",
|
|
||||||
" row, col = divmod(idx, n_cols)\n",
|
|
||||||
" ax = axes[row][col]\n",
|
|
||||||
"\n",
|
|
||||||
" color = cmap(idx % 10)\n",
|
|
||||||
" # ax.scatter(x, y/1e6, label='Data', color=color)\n",
|
|
||||||
" ax.plot(x, y/1e6, label='Data', color=color)\n",
|
|
||||||
" # ax.plot(x_fit, y_fit/1e6, linestyle='--', color=color, alpha=0.5, label='Fit')\n",
|
|
||||||
" # ax.plot(x_fit, y_speed/1e6, linestyle='--', color='red', alpha=0.1, label='Fit')\n",
|
|
||||||
" ax.set_title(f'msg_size: {msg_size} bytes')\n",
|
|
||||||
" ax.set_xlabel('num. proc.')\n",
|
|
||||||
" ax.set_ylabel('Average Time [s]')\n",
|
|
||||||
" ax.set_xticks(x)\n",
|
|
||||||
" ax.grid(True)\n",
|
|
||||||
" max_data =(x[-1]-72)*72*msg_size\n",
|
|
||||||
" min_data =(x[0]-72)*72*msg_size\n",
|
|
||||||
"\n",
|
|
||||||
" textstr = \"\"\n",
|
|
||||||
" # if(max_data > 1e9):\n",
|
|
||||||
" # textstr+=f\"max data = {max_data/1e9:0.2f}GB\\n\" \n",
|
|
||||||
" # else:\n",
|
|
||||||
" # textstr+=f\"max data = {max_data/1e6:0.2f}MB\\n\" \n",
|
|
||||||
"\n",
|
|
||||||
" # if(min_data > 1e9):\n",
|
|
||||||
" # textstr+=f\"min data = {min_data/1e9:0.2f}GB\\n\" \n",
|
|
||||||
" # else:\n",
|
|
||||||
" # textstr+=f\"min data = {min_data/1e6:0.2f}MB\\n\" \n",
|
|
||||||
" # textstr += r\"$\\alpha$\" +f\"= {alpha:.3e}\\n\"+r\"$b_{eff}=$\"+f\"{12.5/alpha:0.3f}Gbps\\n\"+\\\n",
|
|
||||||
" # r\"$\\beta$\"+f\"= {beta:.3e} s\"\n",
|
|
||||||
" # ax.text(0.95, 0.05, textstr, transform=ax.transAxes,\n",
|
|
||||||
" # fontsize=10, verticalalignment='bottom',\n",
|
|
||||||
" # horizontalalignment='right',\n",
|
|
||||||
" # bbox=dict(boxstyle='round', facecolor='white', alpha=0.8))\n",
|
|
||||||
"\n",
|
|
||||||
"fig.suptitle('Alltoall Time Fit per Message Size\\nDots = Data Points | Dashed Lines = Fits\\n off_mem=-1', fontsize=14)\n",
|
|
||||||
"fig.tight_layout(rect=[0, 0.03, 1, 0.95])\n",
|
|
||||||
"# plt.savefig(\"plots/alltoall_analysis.png\",dpi=300)\n",
|
|
||||||
"plt.show()\n",
|
|
||||||
"\n",
|
|
||||||
"fit_results = pd.DataFrame(results)\n",
|
|
||||||
"fit_results['inv_alpha'] = 1 / fit_results['alpha']\n",
|
|
||||||
"print(fit_results)\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "ce632d6f",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"ename": "",
|
|
||||||
"evalue": "",
|
|
||||||
"output_type": "error",
|
|
||||||
"traceback": [
|
|
||||||
"\u001b[1;31mnotebook controller is DISPOSED. \n",
|
|
||||||
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"df_gather[df_gather['msg_size_bytes']==1048576]"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "data",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.13.2"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 5
|
|
||||||
}
|
|
||||||
@@ -1,69 +0,0 @@
|
|||||||
import pandas as pd
|
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import seaborn as sns
|
|
||||||
from scipy.optimize import curve_fit
|
|
||||||
import matplotlib.cm as cm
|
|
||||||
|
|
||||||
|
|
||||||
def max_transfer_size(msg_size, np_procs, benchmark_type):
|
|
||||||
if benchmark_type == 'Allgather':
|
|
||||||
return (np_procs-72)*msg_size
|
|
||||||
elif benchmark_type == 'Scatter':
|
|
||||||
return (np_procs-72)*msg_size # ?
|
|
||||||
elif benchmark_type == 'Alltoall':
|
|
||||||
return 72*(np_procs-72)*msg_size
|
|
||||||
elif benchmark_type == 'Bcast':
|
|
||||||
return msg_size
|
|
||||||
elif benchmark_type == 'Gather':
|
|
||||||
return (np_procs)*msg_size # ?
|
|
||||||
elif benchmark_type == 'Reduce_scatter':
|
|
||||||
return 0.25*(np_procs-72)*(1/72)*msg_size # ?
|
|
||||||
elif benchmark_type == 'Allreduce':
|
|
||||||
return 0.25*(np_procs-72)*(1/72)*msg_size
|
|
||||||
elif benchmark_type == 'Reduce':
|
|
||||||
return 0.25*(np_procs-72)*(1/72)*msg_size
|
|
||||||
|
|
||||||
|
|
||||||
data_file = "data/data-multi-defand100cflag.csv"
|
|
||||||
df_multinode = pd.read_csv(data_file, delimiter=',')
|
|
||||||
df_multinode_offdef = df_multinode[df_multinode['off_cache_flag'] == 100]
|
|
||||||
benchmarks = df_multinode_offdef['benchmark_type'].unique().tolist()
|
|
||||||
benchmarks = [x for x in benchmarks if x[-1] != 'v']
|
|
||||||
print(benchmarks)
|
|
||||||
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type'].isin(
|
|
||||||
benchmarks)][df_multinode_offdef['msg_size_bytes'] > 1000]
|
|
||||||
|
|
||||||
df_multinode_offdef["max_transfer"] = df_multinode_offdef.apply(
|
|
||||||
lambda row: max_transfer_size(
|
|
||||||
msg_size=row["msg_size_bytes"],
|
|
||||||
np_procs=row["proc_num"],
|
|
||||||
benchmark_type=row["benchmark_type"]
|
|
||||||
),
|
|
||||||
axis=1
|
|
||||||
)
|
|
||||||
|
|
||||||
df_multinode_offdef["bytes/usec"] = df_multinode_offdef["max_transfer"] / \
|
|
||||||
df_multinode_offdef["t_avg_usec"]
|
|
||||||
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type']!='Allgather'][df_multinode_offdef['benchmark_type']!='Alltoall']
|
|
||||||
df_multinode_offdef = df_multinode_offdef[['benchmark_type','msg_size_bytes','t_avg_usec','proc_num']]
|
|
||||||
|
|
||||||
plt.figure(figsize=(16, 9))
|
|
||||||
sns.barplot(
|
|
||||||
data=df_multinode_offdef,
|
|
||||||
x="benchmark_type",
|
|
||||||
y="t_avg_usec",
|
|
||||||
dodge=True,
|
|
||||||
hue=df_multinode_offdef["msg_size_bytes"].astype(str),
|
|
||||||
)
|
|
||||||
# plt.yscale("log")
|
|
||||||
plt.title("Average Time (usec) per Benchmark Type and Message Size")
|
|
||||||
plt.ylabel("Average Time (usec)")
|
|
||||||
plt.xlabel("Benchmark Type")
|
|
||||||
plt.xticks(rotation=45)
|
|
||||||
plt.legend(title="Message Size (bytes)")
|
|
||||||
plt.tight_layout()
|
|
||||||
# plt.show()
|
|
||||||
plt.savefig("./plots/benchmark_avg_time_barplot.png", dpi=300)
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
@@ -1,64 +0,0 @@
|
|||||||
import pandas as pd
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import seaborn as sns
|
|
||||||
import numpy as np
|
|
||||||
from mpl_toolkits.mplot3d import Axes3D
|
|
||||||
|
|
||||||
data_file = "data/data-multi-defand100cflag.csv"
|
|
||||||
df_multinode = pd.read_csv(data_file, delimiter=',')
|
|
||||||
df_multinode_offdef = df_multinode[df_multinode['off_cache_flag'] == 100]
|
|
||||||
df_multinode_offdef = df_multinode_offdef[['benchmark_type','msg_size_bytes','t_avg_usec','proc_num']]
|
|
||||||
|
|
||||||
benchmarks = df_multinode_offdef['benchmark_type'].unique().tolist()
|
|
||||||
benchmarks = [x for x in benchmarks if x[-1] != 'v']
|
|
||||||
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type'].isin(
|
|
||||||
benchmarks)][df_multinode_offdef['msg_size_bytes'] > 1000]
|
|
||||||
fast_benchmarks = ["Allreduce","Bcast","Reduce","Reduce_scatter"]
|
|
||||||
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef["benchmark_type"].isin(fast_benchmarks)]
|
|
||||||
|
|
||||||
plt.figure(figsize=(16, 9))
|
|
||||||
sns.barplot(
|
|
||||||
data=df_multinode_offdef,
|
|
||||||
x="benchmark_type",
|
|
||||||
y="t_avg_usec",
|
|
||||||
dodge=True,
|
|
||||||
hue=df_multinode_offdef["msg_size_bytes"].astype(str),
|
|
||||||
)
|
|
||||||
|
|
||||||
plt.ylim(0)
|
|
||||||
plt.title("Average Time (usec) per Benchmark Type and Message Size")
|
|
||||||
plt.ylabel("Average Time (usec)")
|
|
||||||
plt.xlabel("Benchmark Type")
|
|
||||||
plt.xticks(rotation=45)
|
|
||||||
plt.legend(title="Message Size (bytes)")
|
|
||||||
plt.tight_layout()
|
|
||||||
plt.savefig("./plots/fbenchmarks_avg_time_barplot.png", dpi=300)
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
df_allreduce= df_multinode_offdef[df_multinode_offdef["benchmark_type"]=="Allreduce"]
|
|
||||||
df_allreduce = df_allreduce[['msg_size_bytes','t_avg_usec','proc_num']]
|
|
||||||
df_allreduce = df_allreduce[df_allreduce['msg_size_bytes']>2**17]
|
|
||||||
pivot = df_allreduce.pivot(index="msg_size_bytes", columns="proc_num", values="t_avg_usec")
|
|
||||||
X = pivot.columns.values # proc_num
|
|
||||||
Y = pivot.index.values # msg_size_bytes
|
|
||||||
X, Y = np.meshgrid(X, Y)
|
|
||||||
Z = pivot.values
|
|
||||||
|
|
||||||
fig = plt.figure(figsize=(16, 9))
|
|
||||||
ax = fig.add_subplot(111, projection='3d')
|
|
||||||
surf = ax.plot_surface(X, Y, Z, cmap="viridis", edgecolor='k')
|
|
||||||
cbar = fig.colorbar(surf, ax=ax, shrink=0.6, pad=0.01, location='left')
|
|
||||||
cbar.set_label("Average Time (μs)")
|
|
||||||
ax.set_xlabel("Process Count")
|
|
||||||
ax.set_ylabel("Message Size (B)")
|
|
||||||
ax.set_zlabel("Average Time (μs)")
|
|
||||||
ax.set_title("Allreduce")
|
|
||||||
ax.set_xticks(pivot.columns.values) # use the actual process count values
|
|
||||||
ax.set_xticklabels(pivot.columns.values)
|
|
||||||
ax.set_yticks(Y[:, 0])
|
|
||||||
ymin, ymax = ax.get_ylim()
|
|
||||||
ax.set_ylim(ymin*0.8, ymax) # 30% more space at top
|
|
||||||
ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]])
|
|
||||||
plt.tight_layout()
|
|
||||||
plt.savefig("./plots/allreduce_surface.png", dpi=300)
|
|
||||||
plt.close()
|
|
||||||
@@ -1,66 +0,0 @@
|
|||||||
import pandas as pd
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import seaborn as sns
|
|
||||||
import numpy as np
|
|
||||||
from mpl_toolkits.mplot3d import Axes3D
|
|
||||||
|
|
||||||
data_file = "data/data-multi-defand100cflag.csv"
|
|
||||||
df_multinode = pd.read_csv(data_file, delimiter=',')
|
|
||||||
df_multinode_offdef = df_multinode[df_multinode['off_cache_flag'] == 100]
|
|
||||||
df_multinode_offdef = df_multinode_offdef[['benchmark_type','msg_size_bytes','t_avg_usec','proc_num']]
|
|
||||||
|
|
||||||
benchmarks = df_multinode_offdef['benchmark_type'].unique().tolist()
|
|
||||||
benchmarks = [x for x in benchmarks if x[-1] != 'v']
|
|
||||||
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type'].isin(
|
|
||||||
benchmarks)][df_multinode_offdef['msg_size_bytes'] > 1000]
|
|
||||||
# fast_benchmarks = ["Allreduce","Bcast","Reduce","Reduce_scatter"]
|
|
||||||
|
|
||||||
medium_benchmarks = ["Gather","Scatter"]
|
|
||||||
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef["benchmark_type"].isin(medium_benchmarks)]
|
|
||||||
|
|
||||||
plt.figure(figsize=(16, 9))
|
|
||||||
sns.barplot(
|
|
||||||
data=df_multinode_offdef,
|
|
||||||
x="benchmark_type",
|
|
||||||
y="t_avg_usec",
|
|
||||||
dodge=True,
|
|
||||||
hue=df_multinode_offdef["msg_size_bytes"].astype(str),
|
|
||||||
)
|
|
||||||
|
|
||||||
plt.ylim(0)
|
|
||||||
plt.title("Average Time (usec) per Benchmark Type and Message Size")
|
|
||||||
plt.ylabel("Average Time (usec)")
|
|
||||||
plt.xlabel("Benchmark Type")
|
|
||||||
plt.xticks(rotation=45)
|
|
||||||
plt.legend(title="Message Size (bytes)")
|
|
||||||
plt.tight_layout()
|
|
||||||
plt.savefig("./plots/mbenchmarks_avg_time_barplot.png", dpi=300)
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
df_gather = df_multinode_offdef[df_multinode_offdef['benchmark_type']=='Gather']
|
|
||||||
df_gather = df_gather[['msg_size_bytes','t_avg_usec','proc_num']]
|
|
||||||
df_gather = df_gather[df_gather['msg_size_bytes']>2**17]
|
|
||||||
pivot = df_gather.pivot(index="msg_size_bytes", columns="proc_num", values="t_avg_usec")
|
|
||||||
X = pivot.columns.values # proc_num
|
|
||||||
Y = pivot.index.values # msg_size_bytes
|
|
||||||
X, Y = np.meshgrid(X, Y)
|
|
||||||
Z = pivot.values
|
|
||||||
|
|
||||||
fig = plt.figure(figsize=(16, 9))
|
|
||||||
ax = fig.add_subplot(111, projection='3d')
|
|
||||||
surf = ax.plot_surface(X, Y, Z, cmap="viridis", edgecolor='k')
|
|
||||||
cbar = fig.colorbar(surf, ax=ax, shrink=0.6, pad=0.01, location='left')
|
|
||||||
cbar.set_label("Average Time (μs)")
|
|
||||||
ax.set_xlabel("Process Count")
|
|
||||||
ax.set_ylabel("Message Size (B)")
|
|
||||||
ax.set_zlabel("Average Time (μs)")
|
|
||||||
ax.set_title("Gather")
|
|
||||||
ax.set_xticks(pivot.columns.values) # use the actual process count values
|
|
||||||
ax.set_xticklabels(pivot.columns.values)
|
|
||||||
ax.set_yticks(Y[:, 0])
|
|
||||||
ymin, ymax = ax.get_ylim()
|
|
||||||
ax.set_ylim(ymin*0.8, ymax) # 30% more space at top
|
|
||||||
ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]])
|
|
||||||
plt.tight_layout()
|
|
||||||
plt.savefig("./plots/gather_surface.png", dpi=300)
|
|
||||||
plt.close()
|
|
||||||
@@ -1,93 +0,0 @@
|
|||||||
import pandas as pd
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import seaborn as sns
|
|
||||||
import numpy as np
|
|
||||||
from mpl_toolkits.mplot3d import Axes3D
|
|
||||||
|
|
||||||
data_file = "data/data-multi-defand100cflag.csv"
|
|
||||||
df_multinode = pd.read_csv(data_file, delimiter=',')
|
|
||||||
df_multinode_offdef = df_multinode[df_multinode['off_cache_flag'] == 100]
|
|
||||||
df_multinode_offdef = df_multinode_offdef[['benchmark_type','msg_size_bytes','t_avg_usec','proc_num']]
|
|
||||||
|
|
||||||
benchmarks = df_multinode_offdef['benchmark_type'].unique().tolist()
|
|
||||||
benchmarks = [x for x in benchmarks if x[-1] != 'v']
|
|
||||||
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type'].isin(
|
|
||||||
benchmarks)][df_multinode_offdef['msg_size_bytes'] > 1000]
|
|
||||||
|
|
||||||
slow_benchmarks = ["Alltoall","Allgather"]
|
|
||||||
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef["benchmark_type"].isin(slow_benchmarks)]
|
|
||||||
|
|
||||||
plt.figure(figsize=(16, 9))
|
|
||||||
sns.barplot(
|
|
||||||
data=df_multinode_offdef,
|
|
||||||
x="benchmark_type",
|
|
||||||
y="t_avg_usec",
|
|
||||||
dodge=True,
|
|
||||||
hue=df_multinode_offdef["msg_size_bytes"].astype(str),
|
|
||||||
)
|
|
||||||
|
|
||||||
plt.ylim(0)
|
|
||||||
plt.title("Average Time (usec) per Benchmark Type and Message Size")
|
|
||||||
plt.ylabel("Average Time (usec)")
|
|
||||||
plt.xlabel("Benchmark Type")
|
|
||||||
plt.xticks(rotation=45)
|
|
||||||
plt.legend(title="Message Size (bytes)")
|
|
||||||
plt.tight_layout()
|
|
||||||
plt.savefig("./plots/sbenchmarks_avg_time_barplot.png", dpi=300)
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
df_alltoall = df_multinode_offdef[df_multinode_offdef['benchmark_type']=='Alltoall']
|
|
||||||
df_alltoall = df_alltoall[['msg_size_bytes','t_avg_usec','proc_num']]
|
|
||||||
df_alltoall = df_alltoall[df_alltoall['msg_size_bytes']>2**17]
|
|
||||||
pivot = df_alltoall.pivot(index="msg_size_bytes", columns="proc_num", values="t_avg_usec")
|
|
||||||
X = pivot.columns.values # proc_num
|
|
||||||
Y = pivot.index.values # msg_size_bytes
|
|
||||||
X, Y = np.meshgrid(X, Y)
|
|
||||||
Z = pivot.values
|
|
||||||
|
|
||||||
fig = plt.figure(figsize=(16, 9))
|
|
||||||
ax = fig.add_subplot(111, projection='3d')
|
|
||||||
surf = ax.plot_surface(X, Y, Z, cmap="viridis", edgecolor='k')
|
|
||||||
cbar = fig.colorbar(surf, ax=ax, shrink=0.6, pad=0.01, location='left')
|
|
||||||
cbar.set_label("Average Time (μs)")
|
|
||||||
ax.set_xlabel("Process Count")
|
|
||||||
ax.set_ylabel("Message Size (B)")
|
|
||||||
ax.set_zlabel("Average Time (μs)")
|
|
||||||
ax.set_title("Alltoall")
|
|
||||||
ax.set_xticks(pivot.columns.values) # use the actual process count values
|
|
||||||
ax.set_xticklabels(pivot.columns.values)
|
|
||||||
ax.set_yticks(Y[:, 0])
|
|
||||||
ymin, ymax = ax.get_ylim()
|
|
||||||
ax.set_ylim(ymin*0.8, ymax) # 30% more space at top
|
|
||||||
ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]])
|
|
||||||
plt.tight_layout()
|
|
||||||
plt.savefig("./plots/alltoall_surface.png", dpi=300)
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
df_allgather = df_multinode_offdef[df_multinode_offdef['benchmark_type']=='Allgather']
|
|
||||||
df_allgather = df_allgather[['msg_size_bytes','t_avg_usec','proc_num']]
|
|
||||||
df_allgather = df_allgather[df_allgather['msg_size_bytes']>2**17]
|
|
||||||
pivot = df_allgather.pivot(index="msg_size_bytes", columns="proc_num", values="t_avg_usec")
|
|
||||||
X = pivot.columns.values # proc_num
|
|
||||||
Y = pivot.index.values # msg_size_bytes
|
|
||||||
X, Y = np.meshgrid(X, Y)
|
|
||||||
Z = pivot.values
|
|
||||||
|
|
||||||
fig = plt.figure(figsize=(16, 9))
|
|
||||||
ax = fig.add_subplot(111, projection='3d')
|
|
||||||
surf = ax.plot_surface(X, Y, Z, cmap="viridis", edgecolor='k')
|
|
||||||
cbar = fig.colorbar(surf, ax=ax, shrink=0.6, pad=0.01, location='left')
|
|
||||||
cbar.set_label("Average Time (μs)")
|
|
||||||
ax.set_xlabel("Process Count")
|
|
||||||
ax.set_ylabel("Message Size (B)")
|
|
||||||
ax.set_zlabel("Average Time (μs)")
|
|
||||||
ax.set_title("Allgather")
|
|
||||||
ax.set_xticks(pivot.columns.values) # use the actual process count values
|
|
||||||
ax.set_xticklabels(pivot.columns.values)
|
|
||||||
ax.set_yticks(Y[:, 0])
|
|
||||||
ymin, ymax = ax.get_ylim()
|
|
||||||
ax.set_ylim(ymin*0.8, ymax) # 30% more space at top
|
|
||||||
ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]])
|
|
||||||
plt.tight_layout()
|
|
||||||
plt.savefig("./plots/allgather_surface.png", dpi=300)
|
|
||||||
plt.close()
|
|
||||||
@@ -3,13 +3,36 @@
|
|||||||
#SBATCH --output={output_dir}{job_name}_{n_procs}.out
|
#SBATCH --output={output_dir}{job_name}_{n_procs}.out
|
||||||
#SBATCH --error={err_dir}{job_name}_{n_procs}.err
|
#SBATCH --error={err_dir}{job_name}_{n_procs}.err
|
||||||
#SBATCH --nodes={n_nodes}
|
#SBATCH --nodes={n_nodes}
|
||||||
#SBATCH --time=00:10:00
|
#SBATCH --nodelist=f01[01-64]
|
||||||
|
#SBATCH --time=00:30:00
|
||||||
#SBATCH --export=NONE
|
#SBATCH --export=NONE
|
||||||
|
|
||||||
|
# Switch Help Table
|
||||||
|
# SwitchName=fswibl01 Level=0 LinkSpeed=1 Nodes=f01[01-64]
|
||||||
|
# SwitchName=fswibl02 Level=0 LinkSpeed=1 Nodes=f02[01-64]
|
||||||
|
# SwitchName=fswibl03 Level=0 LinkSpeed=1 Nodes=f03[01-64]
|
||||||
|
# SwitchName=fswibl04 Level=0 LinkSpeed=1 Nodes=f04[01-64]
|
||||||
|
# SwitchName=fswibl05 Level=0 LinkSpeed=1 Nodes=f05[01-64]
|
||||||
|
# SwitchName=fswibl06 Level=0 LinkSpeed=1 Nodes=f06[01-64]
|
||||||
|
# SwitchName=fswibl07 Level=0 LinkSpeed=1 Nodes=f01[65-88],f02[65-88]
|
||||||
|
# SwitchName=fswibl08 Level=0 LinkSpeed=1 Nodes=f03[65-88],f04[65-88],fritz[1-2]
|
||||||
|
# SwitchName=fswibl09 Level=0 LinkSpeed=1 Nodes=f05[65-88],f06[65-88],fritz[3-4],fviz1
|
||||||
|
# SwitchName=fswibl10 Level=0 LinkSpeed=1 Nodes=f07[01-64]
|
||||||
|
# SwitchName=fswibl11 Level=0 LinkSpeed=1 Nodes=f08[01-64]
|
||||||
|
# SwitchName=fswibl12 Level=0 LinkSpeed=1 Nodes=f09[01-64]
|
||||||
|
# SwitchName=fswibl13 Level=0 LinkSpeed=1 Nodes=f10[01-64]
|
||||||
|
|
||||||
unset SLURM_EXPORT_ENV
|
unset SLURM_EXPORT_ENV
|
||||||
|
|
||||||
module load intel intelmpi
|
module load intel intelmpi
|
||||||
|
|
||||||
|
# Enable tuned collectives
|
||||||
|
export I_MPI_TUNING=on
|
||||||
|
export I_MPI_TUNING_MODE=auto # or 'collectives'
|
||||||
|
|
||||||
|
# Options: 0=auto, 1=recursive doubling, 2=ring, 3=binomial tree, 4=scatter-allgather
|
||||||
|
export I_MPI_COLL_ALLGATHER=2
|
||||||
|
export I_MPI_COLL_GATHER=2
|
||||||
|
|
||||||
OUTPUT_FILENAME="{data_dir}/{job_name}_$SLURM_JOB_ID.dat"
|
OUTPUT_FILENAME="{data_dir}/{job_name}_$SLURM_JOB_ID.dat"
|
||||||
|
|
||||||
@@ -17,6 +40,5 @@ echo "# CREATION_TIME : {time_stamp}" > $OUTPUT_FILENAME
|
|||||||
echo "# N_NODES : {n_nodes}" >> $OUTPUT_FILENAME
|
echo "# N_NODES : {n_nodes}" >> $OUTPUT_FILENAME
|
||||||
echo "# OFF_CACHE_FLAG : {off_cache_flag}">> $OUTPUT_FILENAME
|
echo "# OFF_CACHE_FLAG : {off_cache_flag}">> $OUTPUT_FILENAME
|
||||||
|
|
||||||
srun --cpu-freq=2000000-2000000:performance -N {n_nodes} -n{n_procs} {bin} {job_name} -npmin {n_procs} {off_cache_flag} >> $OUTPUT_FILENAME
|
srun --cpu-freq=2000000-2000000:performance -N {n_nodes} -n{n_procs} {bin} {job_name} -npmin {n_procs} {off_cache_flag} -mem 2 -time 60 >> $OUTPUT_FILENAME
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
38
templates/multinode_algs.template
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
#!/bin/bash -l
|
||||||
|
#SBATCH --job-name={job_name}_{n_procs}_{alg_idx}
|
||||||
|
#SBATCH --output={output_dir}{job_name}_{n_procs}.out
|
||||||
|
#SBATCH --error={err_dir}{job_name}_{n_procs}.err
|
||||||
|
#SBATCH --nodes={n_nodes}
|
||||||
|
#SBATCH --nodelist=f01[01-64]
|
||||||
|
#SBATCH --time=00:30:00
|
||||||
|
#SBATCH --export=NONE
|
||||||
|
|
||||||
|
# SwitchName=fswibl01 Level=0 LinkSpeed=1 Nodes=f01[01-64]
|
||||||
|
# SwitchName=fswibl02 Level=0 LinkSpeed=1 Nodes=f02[01-64]
|
||||||
|
# SwitchName=fswibl03 Level=0 LinkSpeed=1 Nodes=f03[01-64]
|
||||||
|
# SwitchName=fswibl04 Level=0 LinkSpeed=1 Nodes=f04[01-64]
|
||||||
|
# SwitchName=fswibl05 Level=0 LinkSpeed=1 Nodes=f05[01-64]
|
||||||
|
# SwitchName=fswibl06 Level=0 LinkSpeed=1 Nodes=f06[01-64]
|
||||||
|
# SwitchName=fswibl07 Level=0 LinkSpeed=1 Nodes=f01[65-88],f02[65-88]
|
||||||
|
# SwitchName=fswibl08 Level=0 LinkSpeed=1 Nodes=f03[65-88],f04[65-88],fritz[1-2]
|
||||||
|
# SwitchName=fswibl09 Level=0 LinkSpeed=1 Nodes=f05[65-88],f06[65-88],fritz[3-4],fviz1
|
||||||
|
# SwitchName=fswibl10 Level=0 LinkSpeed=1 Nodes=f07[01-64]
|
||||||
|
# SwitchName=fswibl11 Level=0 LinkSpeed=1 Nodes=f08[01-64]
|
||||||
|
# SwitchName=fswibl12 Level=0 LinkSpeed=1 Nodes=f09[01-64]
|
||||||
|
# SwitchName=fswibl13 Level=0 LinkSpeed=1 Nodes=f10[01-64]
|
||||||
|
|
||||||
|
unset SLURM_EXPORT_ENV
|
||||||
|
|
||||||
|
module load intel intelmpi
|
||||||
|
|
||||||
|
export {alg_flag}={alg_idx}
|
||||||
|
|
||||||
|
OUTPUT_FILENAME="{data_dir}/{job_name}_$SLURM_JOB_ID.dat"
|
||||||
|
|
||||||
|
echo "# CREATION_TIME : {time_stamp}" > $OUTPUT_FILENAME
|
||||||
|
echo "# N_NODES : {n_nodes}" >> $OUTPUT_FILENAME
|
||||||
|
echo "# OFF_CACHE_FLAG : {off_cache_flag}">> $OUTPUT_FILENAME
|
||||||
|
echo "# ALGORITHM : {alg_name}">> $OUTPUT_FILENAME
|
||||||
|
|
||||||
|
srun --cpu-freq=2000000-2000000:performance -N {n_nodes} -n{n_procs} {bin} {job_name} -npmin {n_procs} {off_cache_flag} -mem 2 -time 60 >> $OUTPUT_FILENAME
|
||||||
|
|
||||||