Improved handling of metadata, extended benchmark launch and templates to multinode benchmarks

This commit is contained in:
Erik Fabrizzi 2025-06-01 21:11:58 +02:00
parent ba8cb1ae01
commit a25f8ffec6
6 changed files with 159 additions and 172 deletions

127
launch_bench.py Executable file
View File

@ -0,0 +1,127 @@
import os
import subprocess
from datetime import datetime
################ HELPER FUNCTIONS ################
def load_template(template_path: str):
output_template = ""
with open(template_path, "r") as handle:
output_template = handle.read()
return output_template
def write_batch(batch_fpath: str, batch_content: str):
with open(batch_fpath, "w") as handle:
_ = handle.write(batch_content)
################### SETUP DIRS ###################
output_dir = os.getcwd()+"/output/"
err_dir = os.getcwd()+"/error/"
batch_files_dir = os.getcwd()+"/batchs/"
data_dir = os.getcwd()+"/data/"
if os.path.isdir(output_dir) == False:
os.mkdir(output_dir)
if os.path.isdir(err_dir) == False:
os.mkdir(err_dir)
if os.path.isdir(data_dir) == False:
os.mkdir(data_dir)
if os.path.isdir(batch_files_dir) == False:
os.mkdir(batch_files_dir)
################ GLOBAL DEFAULTS #################
mpi1_bin = "/home/hpc/ihpc/ihpc136h/workspace/prototyping/bin/IMB-MPI1"
default_parameter = {
"time_stamp": datetime.now().strftime("%y_%m_%d_%H-%M-%S"),
"job_name": "",
"output_dir": os.getcwd()+"/output/",
"err_dir": os.getcwd()+"/error/",
"data_dir": os.getcwd()+"/data/",
"n_procs": 18,
"off_cache_flag": "",
"bin": mpi1_bin,
"n_nodes": 1
}
collectives = [
"Reduce",
"Reduce_scatter",
"Allreduce",
"Allgather",
"Allgatherv",
"Scatter",
"Scatterv",
"Gather",
"Gatherv",
"Alltoall",
"Bcast",
]
log = ""
############### SINGLE-NODE LAUNCH ###############
procnt = [
18,
36,
54,
72
]
off_cache_flags = [
"-off_cache -1",
"-off_cache 50",
""
]
single_node_parameter = dict(default_parameter)
single_node_template = load_template("templates/singlenode.template")
for flag in off_cache_flags:
single_node_parameter["off_cache_flag"] = flag
for n_procs in procnt:
single_node_parameter["n_procs"] = n_procs
for collective in collectives:
single_node_parameter["job_name"] = collective
write_batch(batch_files_dir+collective+".sh",
single_node_template.format(**single_node_parameter))
result = subprocess.run(["sbatch", batch_files_dir+collective+".sh"],
capture_output=True, text=True)
log += f"#{collective} {n_procs}" + "\n"
log += "\tSTDOUT:" + result.stdout + "\n"
log += "\tSTDERR:" + result.stderr + "\n"
############## MULTIPLE-NODE LAUNCH ##############
off_cache_flags = [
"-off_cache -1",
"-off_cache 50",
""
]
ndcnt = [
2,
3,
4
]
proc_per_node = 72
multiple_node_parameter = dict(default_parameter)
multiple_node_template = load_template("templates/multinode.template")
for flag in off_cache_flags:
multiple_node_parameter["off_cache_flag"] = flag
for n_nodes in ndcnt:
n_procs = n_nodes*proc_per_node
multiple_node_parameter["n_procs"] = int(n_procs)
multiple_node_parameter["n_nodes"] = n_nodes
for collective in collectives:
multiple_node_parameter["job_name"] = collective
write_batch(batch_files_dir+collective+".sh",
multiple_node_template.format(**multiple_node_parameter))
result = subprocess.run(["sbatch", batch_files_dir+collective+".sh"],
capture_output=True, text=True)
log += f"#{collective} {n_procs}" + "\n"
log += "\tSTDOUT:" + result.stdout + "\n"
log += "\tSTDERR:" + result.stderr + "\n"
print(log)

View File

@ -1,79 +0,0 @@
import os
import subprocess
from datetime import datetime
def load_template(template_path: str):
output_template = ""
with open(template_path, "r") as handle:
output_template = handle.read()
return output_template
def write_batch(batch_fpath: str, batch_content: str):
with open(batch_fpath, "w") as handle:
_ = handle.write(batch_content)
collectives = ["Reduce",
# "Reduce_scatter",
# "Reduce_scatter_block",
# "Allreduce",
# "Allgather",
# "Allgatherv",
# "Scatter",
# "Scatterv",
# "Gather",
# "Gatherv",
# "Alltoall",
# "Bcast",
# "Barrier"
]
procnt = [
18,
# 36,
# 54,
# 72
]
mpi1_bin = "/home/hpc/ihpc/ihpc136h/workspace/prototyping/bin"
slurm_template = load_template("templates/bench.template")
template_parameter = {"time_stamp": datetime.now().strftime("%y_%m_%d_%H-%M-%S"),
"job_name": "",
"output_dir": os.getcwd()+"/output/",
"err_dir": os.getcwd()+"/error/",
"data_dir": os.getcwd()+"/data/",
"n_procs": 18,
"off_mem_flag": "",
"bin": mpi1_bin
}
output_dir = os.getcwd()+"/output/"
err_dir = os.getcwd()+"/error/"
batch_files_dir = os.getcwd()+"/batchs/"
data_dir = os.getcwd()+"/data/"
if os.path.isdir(output_dir) == False:
os.mkdir(output_dir)
if os.path.isdir(err_dir) == False:
os.mkdir(err_dir)
if os.path.isdir(data_dir) == False:
os.mkdir(data_dir)
if os.path.isdir(batch_files_dir) == False:
os.mkdir(batch_files_dir)
log = ""
for n_procs in procnt:
template_parameter["n_procs"] = n_procs
for collective in collectives:
template_parameter["job_name"] = collective
write_batch(batch_files_dir+collective+".sh",
slurm_template.format(**template_parameter))
result = subprocess.run(["sbatch", batch_files_dir+collective+".sh"],
capture_output=True, text=True)
log += f"#{collective} {n_procs}" + "\n"
log += "\tSTDOUT:" + result.stdout + "\n"
log += "\tSTDERR:" + result.stderr + "\n"
print(log)

View File

@ -1,83 +0,0 @@
import os
import subprocess
from datetime import datetime
def load_template(template_path: str):
output_template = ""
with open(template_path, "r") as handle:
output_template = handle.read()
return output_template
def write_batch(batch_fpath: str, batch_content: str):
with open(batch_fpath, "w") as handle:
_ = handle.write(batch_content)
collectives = [
"Reduce",
"Reduce_scatter",
"Allreduce",
"Allgather",
"Allgatherv",
"Scatter",
"Scatterv",
"Gather",
"Gatherv",
"Alltoall",
"Bcast",
# "Barrier"
]
procnt = [
18,
36,
54,
72
]
mpi1_bin = "/home/hpc/ihpc/ihpc136h/workspace/prototyping/bin/IMB-MPI1"
slurm_template = load_template("templates/bench.template")
template_parameter = {
"time_stamp": datetime.now().strftime("%y_%m_%d_%H-%M-%S"),
"job_name": "",
"output_dir": os.getcwd()+"/output/",
"err_dir": os.getcwd()+"/error/",
"data_dir": os.getcwd()+"/data/",
"n_procs": 18,
"off_mem_flag": "-off_cache 50",
"bin": mpi1_bin,
"n_nodes": 1
}
output_dir = os.getcwd()+"/output/"
err_dir = os.getcwd()+"/error/"
batch_files_dir = os.getcwd()+"/batchs/"
data_dir = os.getcwd()+"/data/"
if os.path.isdir(output_dir) == False:
os.mkdir(output_dir)
if os.path.isdir(err_dir) == False:
os.mkdir(err_dir)
if os.path.isdir(data_dir) == False:
os.mkdir(data_dir)
if os.path.isdir(batch_files_dir) == False:
os.mkdir(batch_files_dir)
log = ""
for n_procs in procnt:
template_parameter["n_procs"] = n_procs
for collective in collectives:
template_parameter["job_name"] = collective
write_batch(batch_files_dir+collective+".sh",
slurm_template.format(**template_parameter))
result = subprocess.run(["sbatch", batch_files_dir+collective+".sh"],
capture_output=True, text=True)
log += f"#{collective} {n_procs}" + "\n"
log += "\tSTDOUT:" + result.stdout + "\n"
log += "\tSTDERR:" + result.stderr + "\n"
print(log)
# _ = subprocess.run(["./clean.sh"])

View File

@ -14,7 +14,7 @@ data_markers = {
"end_of_table": "# All processes entering MPI_Finalize",
"creation_time": "# CREATION_TIME :",
"n_nodes": "# N_NODES :",
"off_mem_flag": "# OFF_MEM_FLAG :"
"off_cache_flag": "# OFF_CACHE_FLAG :"
}
column_names = [
@ -30,7 +30,7 @@ column_names = [
"mpi_red_op",
"creation_time",
"n_nodes",
"off_mem_flag",
"off_cache_flag",
]
data = list()
@ -50,7 +50,7 @@ for file in os.listdir("data/"):
mpi_red_op = "NA"
creation_time = "NA"
n_nodes = "NA"
off_mem_flag = "NA"
off_cache_flag = "NA"
for line in lines:
if data_markers["block_separator"] in line:
@ -73,10 +73,10 @@ for file in os.listdir("data/"):
n_nodes = line.split()[-1]
if data_markers["creation_time"] in line:
creation_time = line.split()[-1]
if data_markers["off_mem_flag"] in line:
off_mem_flag = line.split(":")[-1].strip()
if off_mem_flag == "": off_mem_flag = "NA"
else: off_mem_flag = off_mem_flag.replace("-off_cache","")
if data_markers["off_cache_flag"] in line:
off_cache_flag = line.split(":")[-1].strip()
if off_cache_flag == "": off_cache_flag = "NA"
else: off_cache_flag = off_cache_flag.replace("-off_cache","")
if past_preheader and in_header:
if data_markers["benchmark_type"] in line:
@ -96,7 +96,7 @@ for file in os.listdir("data/"):
mpi_red_op,
creation_time,
n_nodes,
off_mem_flag,
off_cache_flag,
])
df = pd.DataFrame(data, columns=column_names)

View File

@ -0,0 +1,22 @@
#!/bin/bash -l
#SBATCH --job-name={job_name}_{n_procs}
#SBATCH --output={output_dir}{job_name}_{n_procs}.out
#SBATCH --error={err_dir}{job_name}_{n_procs}.err
#SBATCH --nodes={n_nodes}
#SBATCH --time=00:10:00
#SBATCH --export=NONE
unset SLURM_EXPORT_ENV
module load intel intelmpi
OUTPUT_FILENAME="{data_dir}/{job_name}_$SLURM_JOB_ID.dat"
echo "# CREATION_TIME : {time_stamp}" > $OUTPUT_FILENAME
echo "# N_NODES : {n_nodes}" >> $OUTPUT_FILENAME
echo "# OFF_CACHE_FLAG : {off_cache_flag}">> $OUTPUT_FILENAME
srun --cpu-freq=2000000-2000000:performance -N {n_nodes} -n{n_procs} {bin} {job_name} -npmin {n_procs} {off_cache_flag} >> $OUTPUT_FILENAME

View File

@ -17,8 +17,8 @@ OUTPUT_FILENAME="{data_dir}/{job_name}_$SLURM_JOB_ID.dat"
echo "# CREATION_TIME : {time_stamp}" > $OUTPUT_FILENAME
echo "# N_NODES : {n_nodes}" >> $OUTPUT_FILENAME
echo "# OFF_MEM_FLAG : {off_mem_flag}">> $OUTPUT_FILENAME
echo "# OFF_CACHE_FLAG : {off_cache_flag}">> $OUTPUT_FILENAME
srun --cpu-freq=2000000-2000000:performance ./likwid-mpirun -np {n_procs} -mpi intelmpi -omp intel -nperdomain M:18 {bin} {job_name} -npmin {n_procs} {off_mem_flag} >> $OUTPUT_FILENAME
srun --cpu-freq=2000000-2000000:performance ./likwid-mpirun -np {n_procs} -mpi intelmpi -omp intel -nperdomain M:18 {bin} {job_name} -npmin {n_procs} {off_cache_flag} >> $OUTPUT_FILENAME