* Update configuration.md Add an additional receiver to have better alignment of components * Change default GpfsCollector command to `mmpmon` (#53) * Set default cmd to 'mmpmon' * Reuse looked up path * Cast const to string * Just download LIKWID to get the headers (#54) * Just download LIKWID to get the headers * Remove perl-Data-Dumper from BuildRequires, only required by LIKWID build * Add HttpReceiver as counterpart to the HttpSink (#49) * Use GBytes as unit for large memory numbers * Make maxForward configurable, save old name in meta in rename metrics and make the hostname tag key configurable * Single release action (#55) Building all RPMs and releasing in a single workflow * Makefile target to build binary-only Debian packages (#61) * Add 'install' and 'DEB' make targets to build binary-only Debian packages * Add control file for DEB builds * Use a single line for bash loop in make clean * Add config options for retry intervals of InfluxDB clients (#59) * Refactoring of LikwidCollector and metric units (#62) * Reduce complexity of LikwidCollector and allow metric units * Add unit to LikwidCollector docu and fix some typos * Make library path configurable * Use old metric name in Ganglia if rename has happened in the router (#60) * Use old metric name if rename has happened in the router * Also check for Ganglia renames for the oldname * Derived metrics (#57) * Add time-based derivatived (e.g. bandwidth) to some collectors * Add documentation * Add comments * Fix: Only compute rates with a valid previous state * Only compute rates with a valid previous state * Define const values for net/dev fields * Set default config values * Add comments * Refactor: Consolidate data structures * Refactor: Consolidate data structures * Refactor: Avoid struct deep copy * Refactor: Avoid redundant tag maps * Refactor: Use int64 type for absolut values Co-authored-by: Holger Obermaier <40787752+ho-ob@users.noreply.github.com> * Simplified iota usage * Move unit tag to meta data tags * Derived metrics (#65) * Add time-based derivatived (e.g. bandwidth) to some collectors * Add documentation * Add comments * Fix: Only compute rates with a valid previous state * Only compute rates with a valid previous state * Define const values for net/dev fields * Set default config values * Add comments * Refactor: Consolidate data structures * Refactor: Consolidate data structures * Refactor: Avoid struct deep copy * Refactor: Avoid redundant tag maps * Refactor: Use int64 type for absolut values * Update LustreCollector Co-authored-by: Holger Obermaier <40787752+ho-ob@users.noreply.github.com> * Meta to tags list and map for sinks (#63) * Change ccMetric->Influx functions * Use a meta_as_tags string list in config but create a lookup map afterwards * Add meta as tag logic to sampleSink * Fix staticcheck warnings (#66) Co-authored-by: Holger Obermaier <40787752+ho-ob@users.noreply.github.com>
9.7 KiB
likwid
collector
The likwid
collector is probably the most complicated collector. The LIKWID library is included as static library with direct access mode. The direct access mode is suitable if the daemon is executed by a root user. The static library does not contain the performance groups, so all information needs to be provided in the configuration.
The likwid
configuration consists of two parts, the "eventsets" and "globalmetrics":
- An event set list itself has two parts, the "events" and a set of derivable "metrics". Each of the "events" is a counter:event pair in LIKWID's syntax. The "metrics" are a list of formulas to derive the metric value from the measurements of the "events". Each metric has a name, the formula, a scope and a publish flag. Counter names can be used like variables in the formulas, so
PMC0+PMC1
sums the measurements for the both events configured in the countersPMC0
andPMC1
. The scope tells the Collector whether it is a metric for each hardware thread (cpu
) or each CPU socket (socket
). You may specify a unit for the metric withunit
. The last one is the publishing flag. It tells the collector whether a metric should be sent to the router. - The global metrics are metrics which require data from all event set measurements to be derived. The inputs are the metrics in the event sets. Similar to the metrics in the event sets, the global metrics are defined by a name, a formula, a scope and a publish flag. See event set metrics for details. The only difference is that there is no access to the raw event measurements anymore but only to the metrics. So, the idea is to derive a metric in the "eventsets" section and reuse it in the "globalmetrics" part. If you need a metric only for deriving the global metrics, disable forwarding of the event set metrics (
publish=false
). Be aware that the combination might be misleading because the "behavior" of a metric changes over time and the multiple measurements might count different computing phases. Similar to the metrics in the eventset, you can specify a metric unit with theunit
field.
Additional options:
access_mode
: Method to use for hardware performance monitoring (direct
access as root user,accessdaemon
for the daemon mode)accessdaemon_path
: Folder with the access daemonlikwid-accessD
, commonly$LIKWID_INSTALL_LOC/sbin
force_overwrite
: Same as settingLIKWID_FORCE=1
. In case counters are already in-use, LIKWID overwrites their configuration to do its measurementsinvalid_to_zero
: In some cases, the calculations result inNaN
orInf
. With this option, allNaN
andInf
values are replaces with0.0
.access_mode
: Specify LIKWID access mode:direct
for direct register access as root user oraccessdaemon
accessdaemon_path
: Folder of the accessDaemonlikwid-accessD
liblikwid_path
: Location ofliblikwid.so
Available metric scopes
Hardware performance counters are scattered all over the system nowadays. A counter coveres a specific part of the system. While there are hardware thread specific counter for CPU cycles, instructions and so on, some others are specific for a whole CPU socket/package. To address that, the collector provides the specification of a 'scope' for each metric.
cpu
: One metric per CPU hardware thread with the tags"type" : "cpu"
and"type-id" : "$cpu_id"
socket
: One metric per CPU socket/package with the tags"type" : "socket"
and"type-id" : "$socket_id"
Note: You cannot specify socket
scope for a metric that is measured at cpu
scope, so some kind of expert knowledge or lookup work in the Likwid Wiki is required. Get the scope of each counter from the Architecture pages and as soon as one counter in a metric is socket-specific, the whole metric is socket-specific.
As a guideline:
- All counters
FIXCx
,PMCy
andTMAz
have the scopecpu
- All counters names containing
BOX
have the scopesocket
- All
PWRx
counters have scopesocket
, except"PWR1" : "RAPL_CORE_ENERGY"
hascpu
scope - All
DFCx
counters have scopesocket
Help with the configuration
The configuration for the likwid
collector is quite complicated. Most users don't use LIKWID with the event:counter notation but rely on the performance groups defined by the LIKWID team for each architecture. In order to help with the likwid
collector configuration, we included a script scripts/likwid_perfgroup_to_cc_config.py
that creates the configuration of an eventset
from a performance group (using a LIKWID installation in $PATH
):
$ likwid-perfctr -i
[...]
short name: ICX
[...]
$ likwid-perfctr -a
[...]
MEM_DP
MEM
FLOPS_SP
CLOCK
[...]
$ scripts/likwid_perfgroup_to_cc_config.py ICX MEM_DP
{
"events": {
"FIXC0": "INSTR_RETIRED_ANY",
"..." : "..."
},
"metrics" : [
{
"calc": "time",
"name": "Runtime (RDTSC) [s]",
"publish": true,
"unit": "seconds"
"scope": "cpu"
},
{
"..." : "..."
}
]
}
You can copy this JSON and add it to the eventsets
list. If you specify multiple event sets, you can add globally derived metrics in the extra global_metrics
section with the metric names as variables.
Mixed usage between daemon and users
LIKWID checks the file /var/run/likwid.lock
before performing any interfering operations. Who is allowed to access the counters is determined by the owner of the file. If it does not exist, it is created for the current user. So, if you want to temporarly allow counter access to a user (e.g. in a job):
Before (SLURM prolog, ...)
$ chwon $JOBUSER /var/run/likwid.lock
After (SLURM epilog, ...)
$ chwon $CCUSER /var/run/likwid.lock
Example configuration
"likwid": {
"force_overwrite" : false,
"nan_to_zero" : false,
"eventsets": [
{
"events": {
"FIXC1": "ACTUAL_CPU_CLOCK",
"FIXC2": "MAX_CPU_CLOCK",
"PMC0": "RETIRED_INSTRUCTIONS",
"PMC1": "CPU_CLOCKS_UNHALTED",
"PMC2": "RETIRED_SSE_AVX_FLOPS_ALL",
"PMC3": "MERGE",
"DFC0": "DRAM_CHANNEL_0",
"DFC1": "DRAM_CHANNEL_1",
"DFC2": "DRAM_CHANNEL_2",
"DFC3": "DRAM_CHANNEL_3"
},
"metrics": [
{
"name": "ipc",
"calc": "PMC0/PMC1",
"type": "cpu",
"publish": true
},
{
"name": "flops_any",
"calc": "0.000001*PMC2/time",
"unit": "MFlops/s",
"type": "cpu",
"publish": true
},
{
"name": "clock",
"calc": "0.000001*(FIXC1/FIXC2)/inverseClock",
"type": "cpu",
"unit": "MHz",
"publish": true
},
{
"name": "mem1",
"calc": "0.000001*(DFC0+DFC1+DFC2+DFC3)*64.0/time",
"unit": "Mbyte/s",
"type": "socket",
"publish": false
}
]
},
{
"events": {
"DFC0": "DRAM_CHANNEL_4",
"DFC1": "DRAM_CHANNEL_5",
"DFC2": "DRAM_CHANNEL_6",
"DFC3": "DRAM_CHANNEL_7",
"PWR0": "RAPL_CORE_ENERGY",
"PWR1": "RAPL_PKG_ENERGY"
},
"metrics": [
{
"name": "pwr_core",
"calc": "PWR0/time",
"unit": "Watt"
"type": "socket",
"publish": true
},
{
"name": "pwr_pkg",
"calc": "PWR1/time",
"type": "socket",
"unit": "Watt"
"publish": true
},
{
"name": "mem2",
"calc": "0.000001*(DFC0+DFC1+DFC2+DFC3)*64.0/time",
"unit": "Mbyte/s",
"type": "socket",
"publish": false
}
]
}
],
"globalmetrics": [
{
"name": "mem_bw",
"calc": "mem1+mem2",
"type": "socket",
"unit": "Mbyte/s",
"publish": true
}
]
}
How to get the eventsets and metrics from LIKWID
The likwid
collector reads hardware performance counters at a cpu and socket level. The configuration looks quite complicated but it is basically copy&paste from LIKWID's performance groups. The collector made multiple iterations and tried to use the performance groups but it lacked flexibility. The current way of configuration provides most flexibility.
The logic is as following: There are multiple eventsets, each consisting of a list of counters+events and a list of metrics. If you compare a common performance group with the example setting above, there is not much difference:
EVENTSET -> "events": {
FIXC1 ACTUAL_CPU_CLOCK -> "FIXC1": "ACTUAL_CPU_CLOCK",
FIXC2 MAX_CPU_CLOCK -> "FIXC2": "MAX_CPU_CLOCK",
PMC0 RETIRED_INSTRUCTIONS -> "PMC0" : "RETIRED_INSTRUCTIONS",
PMC1 CPU_CLOCKS_UNHALTED -> "PMC1" : "CPU_CLOCKS_UNHALTED",
PMC2 RETIRED_SSE_AVX_FLOPS_ALL -> "PMC2": "RETIRED_SSE_AVX_FLOPS_ALL",
PMC3 MERGE -> "PMC3": "MERGE",
-> }
The metrics are following the same procedure:
METRICS -> "metrics": [
IPC PMC0/PMC1 -> {
-> "name" : "IPC",
-> "calc" : "PMC0/PMC1",
-> "scope": "cpu",
-> "publish": true
-> }
-> ]
The script scripts/likwid_perfgroup_to_cc_config.py
might help you.