Files
cc-backend/internal/metricdispatcher/dataLoader.go

491 lines
15 KiB
Go

// Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
// All rights reserved. This file is part of cc-backend.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
// Package metricdispatcher provides a unified interface for loading and caching job metric data.
//
// This package serves as a central dispatcher that routes metric data requests to the appropriate
// backend based on job state. For running jobs, data is fetched from the metric store (e.g., cc-metric-store).
// For completed jobs, data is retrieved from the file-based job archive.
//
// # Key Features
//
// - Automatic backend selection based on job state (running vs. archived)
// - LRU cache for performance optimization (128 MB default cache size)
// - Data resampling using Largest Triangle Three Bucket algorithm for archived data
// - Automatic statistics series generation for jobs with many nodes
// - Support for scoped metrics (node, socket, accelerator, core)
//
// # Cache Behavior
//
// Cached data has different TTL (time-to-live) values depending on job state:
// - Running jobs: 2 minutes (data changes frequently)
// - Completed jobs: 5 hours (data is static)
//
// The cache key is based on job ID, state, requested metrics, scopes, and resolution.
//
// # Usage
//
// The primary entry point is LoadData, which automatically handles both running and archived jobs:
//
// jobData, err := metricdispatcher.LoadData(job, metrics, scopes, ctx, resolution)
// if err != nil {
// // Handle error
// }
//
// For statistics only, use LoadJobStats, LoadScopedJobStats, or LoadAverages depending on the required format.
package metricdispatcher
import (
"context"
"fmt"
"math"
"time"
"github.com/ClusterCockpit/cc-backend/internal/config"
"github.com/ClusterCockpit/cc-backend/internal/memorystore"
"github.com/ClusterCockpit/cc-backend/pkg/archive"
cclog "github.com/ClusterCockpit/cc-lib/ccLogger"
"github.com/ClusterCockpit/cc-lib/lrucache"
"github.com/ClusterCockpit/cc-lib/resampler"
"github.com/ClusterCockpit/cc-lib/schema"
)
// cache is an LRU cache with 128 MB capacity for storing loaded job metric data.
// The cache reduces load on both the metric store and archive backends.
var cache *lrucache.Cache = lrucache.New(128 * 1024 * 1024)
// cacheKey generates a unique cache key for a job's metric data based on job ID, state,
// requested metrics, scopes, and resolution. Duration and StartTime are intentionally excluded
// because job.ID is more unique and the cache TTL ensures entries don't persist indefinitely.
func cacheKey(
job *schema.Job,
metrics []string,
scopes []schema.MetricScope,
resolution int,
) string {
return fmt.Sprintf("%d(%s):[%v],[%v]-%d",
job.ID, job.State, metrics, scopes, resolution)
}
// LoadData retrieves metric data for a job from the appropriate backend (memory store for running jobs,
// archive for completed jobs) and applies caching, resampling, and statistics generation as needed.
//
// For running jobs or when archive is disabled, data is fetched from the metric store.
// For completed archived jobs, data is loaded from the job archive and resampled if needed.
//
// Parameters:
// - job: The job for which to load metric data
// - metrics: List of metric names to load (nil loads all metrics for the cluster)
// - scopes: Metric scopes to include (nil defaults to node scope)
// - ctx: Context for cancellation and timeouts
// - resolution: Target number of data points for resampling (only applies to archived data)
//
// Returns the loaded job data and any error encountered. For partial errors (some metrics failed),
// the function returns the successfully loaded data with a warning logged.
func LoadData(job *schema.Job,
metrics []string,
scopes []schema.MetricScope,
ctx context.Context,
resolution int,
) (schema.JobData, error) {
data := cache.Get(cacheKey(job, metrics, scopes, resolution), func() (_ any, ttl time.Duration, size int) {
var jd schema.JobData
var err error
if job.State == schema.JobStateRunning ||
job.MonitoringStatus == schema.MonitoringStatusRunningOrArchiving ||
config.Keys.DisableArchive {
if scopes == nil {
scopes = append(scopes, schema.MetricScopeNode)
}
if metrics == nil {
cluster := archive.GetCluster(job.Cluster)
for _, mc := range cluster.MetricConfig {
metrics = append(metrics, mc.Name)
}
}
jd, err = memorystore.LoadData(job, metrics, scopes, ctx, resolution)
if err != nil {
if len(jd) != 0 {
cclog.Warnf("partial error loading metrics from store for job %d (user: %s, project: %s): %s",
job.JobID, job.User, job.Project, err.Error())
} else {
cclog.Errorf("failed to load job data from metric store for job %d (user: %s, project: %s): %s",
job.JobID, job.User, job.Project, err.Error())
return err, 0, 0
}
}
size = jd.Size()
} else {
var jdTemp schema.JobData
jdTemp, err = archive.GetHandle().LoadJobData(job)
if err != nil {
cclog.Errorf("failed to load job data from archive for job %d (user: %s, project: %s): %s",
job.JobID, job.User, job.Project, err.Error())
return err, 0, 0
}
jd = deepCopy(jdTemp)
// Resample archived data using Largest Triangle Three Bucket algorithm to reduce data points
// to the requested resolution, improving transfer performance and client-side rendering.
for _, v := range jd {
for _, v_ := range v {
timestep := int64(0)
for i := 0; i < len(v_.Series); i += 1 {
v_.Series[i].Data, timestep, err = resampler.LargestTriangleThreeBucket(v_.Series[i].Data, int64(v_.Timestep), int64(resolution))
if err != nil {
return err, 0, 0
}
}
v_.Timestep = int(timestep)
}
}
// Filter job data to only include requested metrics and scopes, avoiding unnecessary data transfer.
if metrics != nil || scopes != nil {
if metrics == nil {
metrics = make([]string, 0, len(jd))
for k := range jd {
metrics = append(metrics, k)
}
}
res := schema.JobData{}
for _, metric := range metrics {
if perscope, ok := jd[metric]; ok {
if len(perscope) > 1 {
subset := make(map[schema.MetricScope]*schema.JobMetric)
for _, scope := range scopes {
if jm, ok := perscope[scope]; ok {
subset[scope] = jm
}
}
if len(subset) > 0 {
perscope = subset
}
}
res[metric] = perscope
}
}
jd = res
}
size = jd.Size()
}
ttl = 5 * time.Hour
if job.State == schema.JobStateRunning {
ttl = 2 * time.Minute
}
// Generate statistics series for jobs with many nodes to enable min/median/max graphs
// instead of overwhelming the UI with individual node lines. Note that newly calculated
// statistics use min/median/max, while archived statistics may use min/mean/max.
const maxSeriesSize int = 15
for _, scopes := range jd {
for _, jm := range scopes {
if jm.StatisticsSeries != nil || len(jm.Series) <= maxSeriesSize {
continue
}
jm.AddStatisticsSeries()
}
}
nodeScopeRequested := false
for _, scope := range scopes {
if scope == schema.MetricScopeNode {
nodeScopeRequested = true
}
}
if nodeScopeRequested {
jd.AddNodeScope("flops_any")
jd.AddNodeScope("mem_bw")
}
// Round Resulting Stat Values
jd.RoundMetricStats()
return jd, ttl, size
})
if err, ok := data.(error); ok {
cclog.Errorf("error in cached dataset for job %d: %s", job.JobID, err.Error())
return nil, err
}
return data.(schema.JobData), nil
}
// LoadAverages computes average values for the specified metrics across all nodes of a job.
// For running jobs, it loads statistics from the metric store. For completed jobs, it uses
// the pre-calculated averages from the job archive. The results are appended to the data slice.
func LoadAverages(
job *schema.Job,
metrics []string,
data [][]schema.Float,
ctx context.Context,
) error {
if job.State != schema.JobStateRunning && !config.Keys.DisableArchive {
return archive.LoadAveragesFromArchive(job, metrics, data) // #166 change also here?
}
stats, err := memorystore.LoadStats(job, metrics, ctx)
if err != nil {
cclog.Errorf("failed to load statistics from metric store for job %d (user: %s, project: %s): %s",
job.JobID, job.User, job.Project, err.Error())
return err
}
for i, m := range metrics {
nodes, ok := stats[m]
if !ok {
data[i] = append(data[i], schema.NaN)
continue
}
sum := 0.0
for _, node := range nodes {
sum += node.Avg
}
data[i] = append(data[i], schema.Float(sum))
}
return nil
}
// LoadScopedJobStats retrieves job statistics organized by metric scope (node, socket, core, accelerator).
// For running jobs, statistics are computed from the metric store. For completed jobs, pre-calculated
// statistics are loaded from the job archive.
func LoadScopedJobStats(
job *schema.Job,
metrics []string,
scopes []schema.MetricScope,
ctx context.Context,
) (schema.ScopedJobStats, error) {
if job.State != schema.JobStateRunning && !config.Keys.DisableArchive {
return archive.LoadScopedStatsFromArchive(job, metrics, scopes)
}
scopedStats, err := memorystore.LoadScopedStats(job, metrics, scopes, ctx)
if err != nil {
cclog.Errorf("failed to load scoped statistics from metric store for job %d (user: %s, project: %s): %s",
job.JobID, job.User, job.Project, err.Error())
return nil, err
}
return scopedStats, nil
}
// LoadJobStats retrieves aggregated statistics (min/avg/max) for each requested metric across all job nodes.
// For running jobs, statistics are computed from the metric store. For completed jobs, pre-calculated
// statistics are loaded from the job archive.
func LoadJobStats(
job *schema.Job,
metrics []string,
ctx context.Context,
) (map[string]schema.MetricStatistics, error) {
if job.State != schema.JobStateRunning && !config.Keys.DisableArchive {
return archive.LoadStatsFromArchive(job, metrics)
}
data := make(map[string]schema.MetricStatistics, len(metrics))
stats, err := memorystore.LoadStats(job, metrics, ctx)
if err != nil {
cclog.Errorf("failed to load statistics from metric store for job %d (user: %s, project: %s): %s",
job.JobID, job.User, job.Project, err.Error())
return data, err
}
for _, m := range metrics {
sum, avg, min, max := 0.0, 0.0, 0.0, 0.0
nodes, ok := stats[m]
if !ok {
data[m] = schema.MetricStatistics{Min: min, Avg: avg, Max: max}
continue
}
for _, node := range nodes {
sum += node.Avg
min = math.Min(min, node.Min)
max = math.Max(max, node.Max)
}
data[m] = schema.MetricStatistics{
Avg: (math.Round((sum/float64(job.NumNodes))*100) / 100),
Min: (math.Round(min*100) / 100),
Max: (math.Round(max*100) / 100),
}
}
return data, nil
}
// LoadNodeData retrieves metric data for specific nodes in a cluster within a time range.
// This is used for node monitoring views and system status pages. Data is always fetched from
// the metric store (not the archive) since it's for current/recent node status monitoring.
//
// Returns a nested map structure: node -> metric -> scoped data.
func LoadNodeData(
cluster string,
metrics, nodes []string,
scopes []schema.MetricScope,
from, to time.Time,
ctx context.Context,
) (map[string]map[string][]*schema.JobMetric, error) {
if metrics == nil {
for _, m := range archive.GetCluster(cluster).MetricConfig {
metrics = append(metrics, m.Name)
}
}
data, err := memorystore.LoadNodeData(cluster, metrics, nodes, scopes, from, to, ctx)
if err != nil {
if len(data) != 0 {
cclog.Warnf("partial error loading node data from metric store for cluster %s: %s", cluster, err.Error())
} else {
cclog.Errorf("failed to load node data from metric store for cluster %s: %s", cluster, err.Error())
return nil, err
}
}
if data == nil {
return nil, fmt.Errorf("metric store for cluster '%s' does not support node data queries", cluster)
}
return data, nil
}
// LoadNodeListData retrieves time-series metric data for multiple nodes within a time range,
// with optional resampling and automatic statistics generation for large datasets.
// This is used for comparing multiple nodes or displaying node status over time.
//
// Returns a map of node names to their job-like metric data structures.
func LoadNodeListData(
cluster, subCluster string,
nodes []string,
metrics []string,
scopes []schema.MetricScope,
resolution int,
from, to time.Time,
ctx context.Context,
) (map[string]schema.JobData, error) {
if metrics == nil {
for _, m := range archive.GetCluster(cluster).MetricConfig {
metrics = append(metrics, m.Name)
}
}
data, err := memorystore.LoadNodeListData(cluster, subCluster, nodes, metrics, scopes, resolution, from, to, ctx)
if err != nil {
if len(data) != 0 {
cclog.Warnf("partial error loading node list data from metric store for cluster %s, subcluster %s: %s",
cluster, subCluster, err.Error())
} else {
cclog.Errorf("failed to load node list data from metric store for cluster %s, subcluster %s: %s",
cluster, subCluster, err.Error())
return nil, err
}
}
// Generate statistics series for datasets with many series to improve visualization performance.
// Statistics are calculated as min/median/max.
const maxSeriesSize int = 8
for _, jd := range data {
for _, scopes := range jd {
for _, jm := range scopes {
if jm.StatisticsSeries != nil || len(jm.Series) < maxSeriesSize {
continue
}
jm.AddStatisticsSeries()
}
}
}
if data == nil {
return nil, fmt.Errorf("metric store for cluster '%s' does not support node list queries", cluster)
}
return data, nil
}
// deepCopy creates a deep copy of JobData to prevent cache corruption when modifying
// archived data (e.g., during resampling). This ensures the cached archive data remains
// immutable while allowing per-request transformations.
func deepCopy(source schema.JobData) schema.JobData {
result := make(schema.JobData, len(source))
for metricName, scopeMap := range source {
result[metricName] = make(map[schema.MetricScope]*schema.JobMetric, len(scopeMap))
for scope, jobMetric := range scopeMap {
result[metricName][scope] = copyJobMetric(jobMetric)
}
}
return result
}
func copyJobMetric(src *schema.JobMetric) *schema.JobMetric {
dst := &schema.JobMetric{
Timestep: src.Timestep,
Unit: src.Unit,
Series: make([]schema.Series, len(src.Series)),
}
for i := range src.Series {
dst.Series[i] = copySeries(&src.Series[i])
}
if src.StatisticsSeries != nil {
dst.StatisticsSeries = copyStatisticsSeries(src.StatisticsSeries)
}
return dst
}
func copySeries(src *schema.Series) schema.Series {
dst := schema.Series{
Hostname: src.Hostname,
Id: src.Id,
Statistics: src.Statistics,
Data: make([]schema.Float, len(src.Data)),
}
copy(dst.Data, src.Data)
return dst
}
func copyStatisticsSeries(src *schema.StatsSeries) *schema.StatsSeries {
dst := &schema.StatsSeries{
Min: make([]schema.Float, len(src.Min)),
Mean: make([]schema.Float, len(src.Mean)),
Median: make([]schema.Float, len(src.Median)),
Max: make([]schema.Float, len(src.Max)),
}
copy(dst.Min, src.Min)
copy(dst.Mean, src.Mean)
copy(dst.Median, src.Median)
copy(dst.Max, src.Max)
if len(src.Percentiles) > 0 {
dst.Percentiles = make(map[int][]schema.Float, len(src.Percentiles))
for percentile, values := range src.Percentiles {
dst.Percentiles[percentile] = make([]schema.Float, len(values))
copy(dst.Percentiles[percentile], values)
}
}
return dst
}