mirror of
https://github.com/ClusterCockpit/cc-backend
synced 2025-01-26 03:19:06 +01:00
parent
597bccc080
commit
684cb5a376
@ -150,9 +150,10 @@ type MetricStatistics {
|
||||
}
|
||||
|
||||
type StatsSeries {
|
||||
mean: [NullableFloat!]!
|
||||
min: [NullableFloat!]!
|
||||
max: [NullableFloat!]!
|
||||
mean: [NullableFloat!]!
|
||||
median: [NullableFloat!]!
|
||||
min: [NullableFloat!]!
|
||||
max: [NullableFloat!]!
|
||||
}
|
||||
|
||||
type MetricFootprints {
|
||||
|
@ -251,9 +251,10 @@ type ComplexityRoot struct {
|
||||
}
|
||||
|
||||
StatsSeries struct {
|
||||
Max func(childComplexity int) int
|
||||
Mean func(childComplexity int) int
|
||||
Min func(childComplexity int) int
|
||||
Max func(childComplexity int) int
|
||||
Mean func(childComplexity int) int
|
||||
Median func(childComplexity int) int
|
||||
Min func(childComplexity int) int
|
||||
}
|
||||
|
||||
SubCluster struct {
|
||||
@ -1344,6 +1345,13 @@ func (e *executableSchema) Complexity(typeName, field string, childComplexity in
|
||||
|
||||
return e.complexity.StatsSeries.Mean(childComplexity), true
|
||||
|
||||
case "StatsSeries.median":
|
||||
if e.complexity.StatsSeries.Median == nil {
|
||||
break
|
||||
}
|
||||
|
||||
return e.complexity.StatsSeries.Median(childComplexity), true
|
||||
|
||||
case "StatsSeries.min":
|
||||
if e.complexity.StatsSeries.Min == nil {
|
||||
break
|
||||
@ -1867,9 +1875,10 @@ type MetricStatistics {
|
||||
}
|
||||
|
||||
type StatsSeries {
|
||||
mean: [NullableFloat!]!
|
||||
min: [NullableFloat!]!
|
||||
max: [NullableFloat!]!
|
||||
mean: [NullableFloat!]!
|
||||
median: [NullableFloat!]!
|
||||
min: [NullableFloat!]!
|
||||
max: [NullableFloat!]!
|
||||
}
|
||||
|
||||
type MetricFootprints {
|
||||
@ -4854,6 +4863,8 @@ func (ec *executionContext) fieldContext_JobMetric_statisticsSeries(ctx context.
|
||||
switch field.Name {
|
||||
case "mean":
|
||||
return ec.fieldContext_StatsSeries_mean(ctx, field)
|
||||
case "median":
|
||||
return ec.fieldContext_StatsSeries_median(ctx, field)
|
||||
case "min":
|
||||
return ec.fieldContext_StatsSeries_min(ctx, field)
|
||||
case "max":
|
||||
@ -8814,6 +8825,50 @@ func (ec *executionContext) fieldContext_StatsSeries_mean(ctx context.Context, f
|
||||
return fc, nil
|
||||
}
|
||||
|
||||
func (ec *executionContext) _StatsSeries_median(ctx context.Context, field graphql.CollectedField, obj *schema.StatsSeries) (ret graphql.Marshaler) {
|
||||
fc, err := ec.fieldContext_StatsSeries_median(ctx, field)
|
||||
if err != nil {
|
||||
return graphql.Null
|
||||
}
|
||||
ctx = graphql.WithFieldContext(ctx, fc)
|
||||
defer func() {
|
||||
if r := recover(); r != nil {
|
||||
ec.Error(ctx, ec.Recover(ctx, r))
|
||||
ret = graphql.Null
|
||||
}
|
||||
}()
|
||||
resTmp, err := ec.ResolverMiddleware(ctx, func(rctx context.Context) (interface{}, error) {
|
||||
ctx = rctx // use context from middleware stack in children
|
||||
return obj.Median, nil
|
||||
})
|
||||
if err != nil {
|
||||
ec.Error(ctx, err)
|
||||
return graphql.Null
|
||||
}
|
||||
if resTmp == nil {
|
||||
if !graphql.HasFieldError(ctx, fc) {
|
||||
ec.Errorf(ctx, "must not be null")
|
||||
}
|
||||
return graphql.Null
|
||||
}
|
||||
res := resTmp.([]schema.Float)
|
||||
fc.Result = res
|
||||
return ec.marshalNNullableFloat2ᚕgithubᚗcomᚋClusterCockpitᚋccᚑbackendᚋpkgᚋschemaᚐFloatᚄ(ctx, field.Selections, res)
|
||||
}
|
||||
|
||||
func (ec *executionContext) fieldContext_StatsSeries_median(ctx context.Context, field graphql.CollectedField) (fc *graphql.FieldContext, err error) {
|
||||
fc = &graphql.FieldContext{
|
||||
Object: "StatsSeries",
|
||||
Field: field,
|
||||
IsMethod: false,
|
||||
IsResolver: false,
|
||||
Child: func(ctx context.Context, field graphql.CollectedField) (*graphql.FieldContext, error) {
|
||||
return nil, errors.New("field of type NullableFloat does not have child fields")
|
||||
},
|
||||
}
|
||||
return fc, nil
|
||||
}
|
||||
|
||||
func (ec *executionContext) _StatsSeries_min(ctx context.Context, field graphql.CollectedField, obj *schema.StatsSeries) (ret graphql.Marshaler) {
|
||||
fc, err := ec.fieldContext_StatsSeries_min(ctx, field)
|
||||
if err != nil {
|
||||
@ -14427,6 +14482,11 @@ func (ec *executionContext) _StatsSeries(ctx context.Context, sel ast.SelectionS
|
||||
if out.Values[i] == graphql.Null {
|
||||
out.Invalids++
|
||||
}
|
||||
case "median":
|
||||
out.Values[i] = ec._StatsSeries_median(ctx, field, obj)
|
||||
if out.Values[i] == graphql.Null {
|
||||
out.Invalids++
|
||||
}
|
||||
case "min":
|
||||
out.Values[i] = ec._StatsSeries_min(ctx, field, obj)
|
||||
if out.Values[i] == graphql.Null {
|
||||
|
@ -263,7 +263,7 @@ func cacheKey(
|
||||
|
||||
// For /monitoring/job/<job> and some other places, flops_any and mem_bw need
|
||||
// to be available at the scope 'node'. If a job has a lot of nodes,
|
||||
// statisticsSeries should be available so that a min/mean/max Graph can be
|
||||
// statisticsSeries should be available so that a min/median/max Graph can be
|
||||
// used instead of a lot of single lines.
|
||||
func prepareJobData(
|
||||
job *schema.Job,
|
||||
|
@ -4,7 +4,13 @@
|
||||
// license that can be found in the LICENSE file.
|
||||
package util
|
||||
|
||||
import "golang.org/x/exp/constraints"
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"sort"
|
||||
|
||||
"golang.org/x/exp/constraints"
|
||||
)
|
||||
|
||||
func Min[T constraints.Ordered](a, b T) T {
|
||||
if a < b {
|
||||
@ -19,3 +25,36 @@ func Max[T constraints.Ordered](a, b T) T {
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func sortedCopy(input []float64) []float64 {
|
||||
sorted := make([]float64, len(input))
|
||||
copy(sorted, input)
|
||||
sort.Float64s(sorted)
|
||||
return sorted
|
||||
}
|
||||
|
||||
func Mean(input []float64) (float64, error) {
|
||||
if len(input) == 0 {
|
||||
return math.NaN(), fmt.Errorf("input array is empty: %#v", input)
|
||||
}
|
||||
sum := 0.0
|
||||
for _, n := range input {
|
||||
sum += n
|
||||
}
|
||||
return sum / float64(len(input)), nil
|
||||
}
|
||||
|
||||
func Median(input []float64) (median float64, err error) {
|
||||
c := sortedCopy(input)
|
||||
// Even numbers: add the two middle numbers, divide by two (use mean function)
|
||||
// Odd numbers: Use the middle number
|
||||
l := len(c)
|
||||
if l == 0 {
|
||||
return math.NaN(), fmt.Errorf("input array is empty: %#v", input)
|
||||
} else if l%2 == 0 {
|
||||
median, _ = Mean(c[l/2-1 : l/2+1])
|
||||
} else {
|
||||
median = c[l/2]
|
||||
}
|
||||
return median, nil
|
||||
}
|
||||
|
@ -10,6 +10,8 @@ import (
|
||||
"math"
|
||||
"sort"
|
||||
"unsafe"
|
||||
|
||||
"github.com/ClusterCockpit/cc-backend/internal/util"
|
||||
)
|
||||
|
||||
type JobData map[string]map[MetricScope]*JobMetric
|
||||
@ -36,6 +38,7 @@ type MetricStatistics struct {
|
||||
|
||||
type StatsSeries struct {
|
||||
Mean []Float `json:"mean"`
|
||||
Median []Float `json:"median"`
|
||||
Min []Float `json:"min"`
|
||||
Max []Float `json:"max"`
|
||||
Percentiles map[int][]Float `json:"percentiles,omitempty"`
|
||||
@ -120,7 +123,7 @@ func (jd *JobData) Size() int {
|
||||
for _, metric := range scopes {
|
||||
if metric.StatisticsSeries != nil {
|
||||
n += len(metric.StatisticsSeries.Max)
|
||||
n += len(metric.StatisticsSeries.Mean)
|
||||
n += len(metric.StatisticsSeries.Median)
|
||||
n += len(metric.StatisticsSeries.Min)
|
||||
}
|
||||
|
||||
@ -149,53 +152,74 @@ func (jm *JobMetric) AddStatisticsSeries() {
|
||||
}
|
||||
}
|
||||
|
||||
min, mean, max := make([]Float, n), make([]Float, n), make([]Float, n)
|
||||
// mean := make([]Float, n)
|
||||
min, median, max := make([]Float, n), make([]Float, n), make([]Float, n)
|
||||
i := 0
|
||||
for ; i < m; i++ {
|
||||
smin, ssum, smax := math.MaxFloat32, 0.0, -math.MaxFloat32
|
||||
seriesCount := len(jm.Series)
|
||||
// ssum := 0.0
|
||||
smin, smed, smax := math.MaxFloat32, make([]float64, seriesCount), -math.MaxFloat32
|
||||
notnan := 0
|
||||
for j := 0; j < len(jm.Series); j++ {
|
||||
for j := 0; j < seriesCount; j++ {
|
||||
x := float64(jm.Series[j].Data[i])
|
||||
if math.IsNaN(x) {
|
||||
continue
|
||||
}
|
||||
|
||||
notnan += 1
|
||||
ssum += x
|
||||
// ssum += x
|
||||
smed[j] = x
|
||||
smin = math.Min(smin, x)
|
||||
smax = math.Max(smax, x)
|
||||
}
|
||||
|
||||
if notnan < 3 {
|
||||
min[i] = NaN
|
||||
mean[i] = NaN
|
||||
// mean[i] = NaN
|
||||
median[i] = NaN
|
||||
max[i] = NaN
|
||||
} else {
|
||||
min[i] = Float(smin)
|
||||
mean[i] = Float(ssum / float64(notnan))
|
||||
// mean[i] = Float(ssum / float64(notnan))
|
||||
max[i] = Float(smax)
|
||||
|
||||
medianRaw, err := util.Median(smed)
|
||||
if err != nil {
|
||||
median[i] = NaN
|
||||
} else {
|
||||
median[i] = Float(medianRaw)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for ; i < n; i++ {
|
||||
min[i] = NaN
|
||||
mean[i] = NaN
|
||||
// mean[i] = NaN
|
||||
median[i] = NaN
|
||||
max[i] = NaN
|
||||
}
|
||||
|
||||
if smooth {
|
||||
for i := 2; i < len(mean)-2; i++ {
|
||||
for i := 2; i < len(median)-2; i++ {
|
||||
if min[i].IsNaN() {
|
||||
continue
|
||||
}
|
||||
|
||||
min[i] = (min[i-2] + min[i-1] + min[i] + min[i+1] + min[i+2]) / 5
|
||||
max[i] = (max[i-2] + max[i-1] + max[i] + max[i+1] + max[i+2]) / 5
|
||||
mean[i] = (mean[i-2] + mean[i-1] + mean[i] + mean[i+1] + mean[i+2]) / 5
|
||||
// mean[i] = (mean[i-2] + mean[i-1] + mean[i] + mean[i+1] + mean[i+2]) / 5
|
||||
// Reduce Median further
|
||||
smoothRaw := []float64{float64(median[i-2]), float64(median[i-1]), float64(median[i]), float64(median[i+1]), float64(median[i+2])}
|
||||
smoothMedian, err := util.Median(smoothRaw)
|
||||
if err != nil {
|
||||
median[i] = NaN
|
||||
} else {
|
||||
median[i] = Float(smoothMedian)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
jm.StatisticsSeries = &StatsSeries{Mean: mean, Min: min, Max: max}
|
||||
jm.StatisticsSeries = &StatsSeries{Median: median, Min: min, Max: max} // Mean: mean
|
||||
}
|
||||
|
||||
func (jd *JobData) AddNodeScope(metric string) bool {
|
||||
|
@ -101,7 +101,7 @@
|
||||
// Calculate Avg from jobMetrics
|
||||
const jm = jobMetrics.find((jm) => jm.name === fm && jm.scope === "node");
|
||||
if (jm?.metric?.statisticsSeries) {
|
||||
mv = round(mean(jm.metric.statisticsSeries.mean), 2);
|
||||
mv = round(mean(jm.metric.statisticsSeries.median), 2);
|
||||
} else if (jm?.metric?.series?.length > 1) {
|
||||
const avgs = jm.metric.series.map((jms) => jms.statistics.avg);
|
||||
mv = round(mean(avgs), 2);
|
||||
|
@ -33,7 +33,7 @@
|
||||
error = null;
|
||||
let selectedScope = minScope(scopes);
|
||||
|
||||
let statsPattern = /(.*)-stats$/
|
||||
let statsPattern = /(.*)-stat$/
|
||||
let statsSeries = rawData.map((data) => data?.statisticsSeries ? data.statisticsSeries : null)
|
||||
let selectedScopeIndex
|
||||
|
||||
@ -92,7 +92,7 @@
|
||||
{#each availableScopes as scope, index}
|
||||
<option value={scope}>{scope}</option>
|
||||
{#if statsSeries[index]}
|
||||
<option value={scope + '-stats'}>stats series ({scope})</option>
|
||||
<option value={scope + '-stat'}>stats series ({scope})</option>
|
||||
{/if}
|
||||
{/each}
|
||||
{#if availableScopes.length == 1 && metricConfig?.scope != "node"}
|
||||
|
@ -50,7 +50,7 @@
|
||||
timestep
|
||||
statisticsSeries {
|
||||
min
|
||||
mean
|
||||
median
|
||||
max
|
||||
}
|
||||
series {
|
||||
|
@ -216,7 +216,7 @@
|
||||
|
||||
// conditional hide series color markers:
|
||||
if (
|
||||
useStatsSeries === true || // Min/Max/Avg Self-Explanatory
|
||||
useStatsSeries === true || // Min/Max/Median Self-Explanatory
|
||||
dataSize === 1 || // Only one Y-Dataseries
|
||||
dataSize > 6
|
||||
) {
|
||||
@ -296,7 +296,7 @@
|
||||
}
|
||||
|
||||
const longestSeries = useStatsSeries
|
||||
? statisticsSeries.mean.length
|
||||
? statisticsSeries.median.length
|
||||
: series.reduce((n, series) => Math.max(n, series.data.length), 0);
|
||||
const maxX = longestSeries * timestep;
|
||||
let maxY = null;
|
||||
@ -346,13 +346,15 @@
|
||||
if (useStatsSeries) {
|
||||
plotData.push(statisticsSeries.min);
|
||||
plotData.push(statisticsSeries.max);
|
||||
plotData.push(statisticsSeries.mean);
|
||||
plotData.push(statisticsSeries.median);
|
||||
// plotData.push(statisticsSeries.mean);
|
||||
|
||||
if (forNode === true) {
|
||||
// timestamp 0 with null value for reversed time axis
|
||||
if (plotData[1].length != 0) plotData[1].push(null);
|
||||
if (plotData[2].length != 0) plotData[2].push(null);
|
||||
if (plotData[3].length != 0) plotData[3].push(null);
|
||||
// if (plotData[4].length != 0) plotData[4].push(null);
|
||||
}
|
||||
|
||||
plotSeries.push({
|
||||
@ -368,11 +370,17 @@
|
||||
stroke: "green",
|
||||
});
|
||||
plotSeries.push({
|
||||
label: "mean",
|
||||
label: "median",
|
||||
scale: "y",
|
||||
width: lineWidth,
|
||||
stroke: "black",
|
||||
});
|
||||
// plotSeries.push({
|
||||
// label: "mean",
|
||||
// scale: "y",
|
||||
// width: lineWidth,
|
||||
// stroke: "blue",
|
||||
// });
|
||||
|
||||
plotBands = [
|
||||
{ series: [2, 3], fill: "rgba(0,255,0,0.1)" },
|
||||
@ -422,7 +430,7 @@
|
||||
// Draw plot type label:
|
||||
let textl = `${scope}${plotSeries.length > 2 ? "s" : ""}${
|
||||
useStatsSeries
|
||||
? ": min/avg/max"
|
||||
? ": min/median/max"
|
||||
: metricConfig != null && scope != metricConfig.scope
|
||||
? ` (${metricConfig.aggregation})`
|
||||
: ""
|
||||
|
Loading…
Reference in New Issue
Block a user