695 lines
21 KiB
C
695 lines
21 KiB
C
/*
|
|
* Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg.
|
|
* All rights reserved. This file is part of nusif-solver.
|
|
* Use of this source code is governed by a MIT style
|
|
* license that can be found in the LICENSE file.
|
|
*/
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <mpi.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "allocate.h"
|
|
#include "parameter.h"
|
|
#include "solver.h"
|
|
#include "util.h"
|
|
|
|
#define P(i, j) p[(j) * (imax + 2) + (i)]
|
|
#define F(i, j) f[(j) * (imax + 2) + (i)]
|
|
#define G(i, j) g[(j) * (imax + 2) + (i)]
|
|
#define U(i, j) u[(j) * (imax + 2) + (i)]
|
|
#define V(i, j) v[(j) * (imax + 2) + (i)]
|
|
#define RHS(i, j) rhs[(j) * (imax + 2) + (i)]
|
|
|
|
static int sizeOfRank(int rank, int size, int N)
|
|
{
|
|
return N / size + ((N % size > rank) ? 1 : 0);
|
|
}
|
|
|
|
static void print(Solver* solver, double* grid)
|
|
{
|
|
int imax = solver->imax;
|
|
|
|
for (int i = 0; i < solver->size; i++) {
|
|
if (i == solver->rank) {
|
|
printf("### RANK %d "
|
|
"#######################################################\n",
|
|
solver->rank);
|
|
for (int j = 0; j < solver->jmaxLocal + 2; j++) {
|
|
printf("%02d: ", j);
|
|
for (int i = 0; i < solver->imax + 2; i++) {
|
|
printf("%12.8f ", grid[j * (imax + 2) + i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
}
|
|
}
|
|
|
|
static void exchange(Solver* solver, double* grid)
|
|
{
|
|
MPI_Request requests[4] = { MPI_REQUEST_NULL,
|
|
MPI_REQUEST_NULL,
|
|
MPI_REQUEST_NULL,
|
|
MPI_REQUEST_NULL };
|
|
|
|
/* exchange ghost cells with top neighbor */
|
|
if (solver->rank + 1 < solver->size) {
|
|
int top = solver->rank + 1;
|
|
double* src = grid + (solver->jmaxLocal) * (solver->imax + 2) + 1;
|
|
double* dst = grid + (solver->jmaxLocal + 1) * (solver->imax + 2) + 1;
|
|
|
|
MPI_Isend(src, solver->imax, MPI_DOUBLE, top, 1, MPI_COMM_WORLD, &requests[0]);
|
|
MPI_Irecv(dst, solver->imax, MPI_DOUBLE, top, 2, MPI_COMM_WORLD, &requests[1]);
|
|
}
|
|
|
|
/* exchange ghost cells with bottom neighbor */
|
|
if (solver->rank > 0) {
|
|
int bottom = solver->rank - 1;
|
|
double* src = grid + (solver->imax + 2) + 1;
|
|
double* dst = grid + 1;
|
|
|
|
MPI_Isend(src, solver->imax, MPI_DOUBLE, bottom, 2, MPI_COMM_WORLD, &requests[2]);
|
|
MPI_Irecv(dst, solver->imax, MPI_DOUBLE, bottom, 1, MPI_COMM_WORLD, &requests[3]);
|
|
}
|
|
|
|
MPI_Waitall(4, requests, MPI_STATUSES_IGNORE);
|
|
}
|
|
|
|
static void shift(Solver* solver)
|
|
{
|
|
MPI_Request requests[2] = { MPI_REQUEST_NULL, MPI_REQUEST_NULL };
|
|
double* g = solver->g;
|
|
|
|
/* shift G */
|
|
/* receive ghost cells from bottom neighbor */
|
|
if (solver->rank > 0) {
|
|
int bottom = solver->rank - 1;
|
|
MPI_Irecv(g + 1,
|
|
solver->imax,
|
|
MPI_DOUBLE,
|
|
bottom,
|
|
0,
|
|
MPI_COMM_WORLD,
|
|
&requests[0]);
|
|
}
|
|
|
|
if (solver->rank + 1 < solver->size) {
|
|
int top = solver->rank + 1;
|
|
double* buf = g + (solver->jmaxLocal) * (solver->imax + 2) + 1;
|
|
/* send ghost cells to top neighbor */
|
|
MPI_Isend(buf, solver->imax, MPI_DOUBLE, top, 0, MPI_COMM_WORLD, &requests[1]);
|
|
}
|
|
|
|
MPI_Waitall(2, requests, MPI_STATUSES_IGNORE);
|
|
}
|
|
|
|
static void gatherArray(
|
|
Solver* solver, int cnt, int* rcvCounts, int* displs, double* src, double* dst)
|
|
{
|
|
double* sendbuffer = src + (solver->imax + 2);
|
|
|
|
if (solver->rank == 0) {
|
|
sendbuffer = src;
|
|
}
|
|
|
|
MPI_Gatherv(sendbuffer,
|
|
cnt,
|
|
MPI_DOUBLE,
|
|
dst,
|
|
rcvCounts,
|
|
displs,
|
|
MPI_DOUBLE,
|
|
0,
|
|
MPI_COMM_WORLD);
|
|
}
|
|
|
|
void collectResult(Solver* solver)
|
|
{
|
|
double* p = NULL;
|
|
double* u = NULL;
|
|
double* v = NULL;
|
|
int *rcvCounts, *displs;
|
|
int cnt = solver->jmaxLocal * (solver->imax + 2);
|
|
|
|
if (solver->rank == 0) {
|
|
p = allocate(64, (solver->imax + 2) * (solver->jmax + 2) * sizeof(double));
|
|
u = allocate(64, (solver->imax + 2) * (solver->jmax + 2) * sizeof(double));
|
|
v = allocate(64, (solver->imax + 2) * (solver->jmax + 2) * sizeof(double));
|
|
rcvCounts = (int*)malloc(solver->size * sizeof(int));
|
|
displs = (int*)malloc(solver->size * sizeof(int));
|
|
}
|
|
|
|
if (solver->rank == 0 && solver->size == 1) {
|
|
cnt = (solver->jmaxLocal + 2) * (solver->imax + 2);
|
|
} else if (solver->rank == 0 || solver->rank == (solver->size - 1)) {
|
|
cnt = (solver->jmaxLocal + 1) * (solver->imax + 2);
|
|
}
|
|
|
|
MPI_Gather(&cnt, 1, MPI_INTEGER, rcvCounts, 1, MPI_INTEGER, 0, MPI_COMM_WORLD);
|
|
|
|
if (solver->rank == 0) {
|
|
displs[0] = 0;
|
|
int cursor = rcvCounts[0];
|
|
|
|
for (int i = 1; i < solver->size; i++) {
|
|
displs[i] = cursor;
|
|
cursor += rcvCounts[i];
|
|
}
|
|
}
|
|
|
|
gatherArray(solver, cnt, rcvCounts, displs, solver->p, p);
|
|
gatherArray(solver, cnt, rcvCounts, displs, solver->u, u);
|
|
gatherArray(solver, cnt, rcvCounts, displs, solver->v, v);
|
|
|
|
if (solver->rank == 0) {
|
|
writeResult(solver, p, u, v);
|
|
free(p);
|
|
free(u);
|
|
free(v);
|
|
}
|
|
}
|
|
|
|
static void printConfig(Solver* solver)
|
|
{
|
|
if (solver->rank == 0) {
|
|
printf("Parameters for #%s#\n", solver->problem);
|
|
printf("Boundary conditions Left:%d Right:%d Bottom:%d Top:%d\n",
|
|
solver->bcLeft,
|
|
solver->bcRight,
|
|
solver->bcBottom,
|
|
solver->bcTop);
|
|
printf("\tReynolds number: %.2f\n", solver->re);
|
|
printf("\tGx Gy: %.2f %.2f\n", solver->gx, solver->gy);
|
|
printf("Geometry data:\n");
|
|
printf("\tDomain box size (x, y): %.2f, %.2f\n",
|
|
solver->xlength,
|
|
solver->ylength);
|
|
printf("\tCells (x, y): %d, %d\n", solver->imax, solver->jmax);
|
|
printf("Timestep parameters:\n");
|
|
printf("\tDefault stepsize: %.2f, Final time %.2f\n", solver->dt, solver->te);
|
|
printf("\tdt bound: %.6f\n", solver->dtBound);
|
|
printf("\tTau factor: %.2f\n", solver->tau);
|
|
printf("Iterative solver parameters:\n");
|
|
printf("\tMax iterations: %d\n", solver->itermax);
|
|
printf("\tepsilon (stopping tolerance) : %f\n", solver->eps);
|
|
printf("\tgamma factor: %f\n", solver->gamma);
|
|
printf("\tomega (SOR relaxation): %f\n", solver->omega);
|
|
printf("Communication parameters:\n");
|
|
}
|
|
for (int i = 0; i < solver->size; i++) {
|
|
if (i == solver->rank) {
|
|
printf("\tRank %d of %d\n", solver->rank, solver->size);
|
|
printf("\tLocal domain size: %dx%d\n", solver->imax, solver->jmaxLocal);
|
|
fflush(stdout);
|
|
}
|
|
}
|
|
}
|
|
|
|
void initSolver(Solver* solver, Parameter* params)
|
|
{
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &(solver->rank));
|
|
MPI_Comm_size(MPI_COMM_WORLD, &(solver->size));
|
|
solver->problem = params->name;
|
|
solver->bcLeft = params->bcLeft;
|
|
solver->bcRight = params->bcRight;
|
|
solver->bcBottom = params->bcBottom;
|
|
solver->bcTop = params->bcTop;
|
|
solver->imax = params->imax;
|
|
solver->jmax = params->jmax;
|
|
solver->jmaxLocal = sizeOfRank(solver->rank, solver->size, solver->jmax);
|
|
solver->xlength = params->xlength;
|
|
solver->ylength = params->ylength;
|
|
solver->dx = params->xlength / params->imax;
|
|
solver->dy = params->ylength / params->jmax;
|
|
solver->eps = params->eps;
|
|
solver->omega = params->omg;
|
|
solver->itermax = params->itermax;
|
|
solver->re = params->re;
|
|
solver->gx = params->gx;
|
|
solver->gy = params->gy;
|
|
solver->dt = params->dt;
|
|
solver->te = params->te;
|
|
solver->tau = params->tau;
|
|
solver->gamma = params->gamma;
|
|
|
|
int imax = solver->imax;
|
|
int jmaxLocal = solver->jmaxLocal;
|
|
size_t bytesize = (imax + 2) * (jmaxLocal + 2) * sizeof(double);
|
|
solver->u = allocate(64, bytesize);
|
|
solver->v = allocate(64, bytesize);
|
|
solver->p = allocate(64, bytesize);
|
|
solver->rhs = allocate(64, bytesize);
|
|
solver->f = allocate(64, bytesize);
|
|
solver->g = allocate(64, bytesize);
|
|
|
|
for (int i = 0; i < (imax + 2) * (jmaxLocal + 2); i++) {
|
|
solver->u[i] = params->u_init;
|
|
solver->v[i] = params->v_init;
|
|
solver->p[i] = params->p_init;
|
|
solver->rhs[i] = 0.0;
|
|
solver->f[i] = 0.0;
|
|
solver->g[i] = 0.0;
|
|
}
|
|
|
|
double dx = solver->dx;
|
|
double dy = solver->dy;
|
|
double invSquareSum = 1.0 / (dx * dx) + 1.0 / (dy * dy);
|
|
solver->dtBound = 0.5 * solver->re * 1.0 / invSquareSum;
|
|
#ifdef VERBOSE
|
|
printConfig(solver);
|
|
#endif
|
|
}
|
|
|
|
void computeRHS(Solver* solver)
|
|
{
|
|
int imax = solver->imax;
|
|
int jmaxLocal = solver->jmaxLocal;
|
|
double idx = 1.0 / solver->dx;
|
|
double idy = 1.0 / solver->dy;
|
|
double idt = 1.0 / solver->dt;
|
|
double* rhs = solver->rhs;
|
|
double* f = solver->f;
|
|
double* g = solver->g;
|
|
|
|
shift(solver);
|
|
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
RHS(i, j) = ((F(i, j) - F(i - 1, j)) * idx + (G(i, j) - G(i, j - 1)) * idy) *
|
|
idt;
|
|
}
|
|
}
|
|
}
|
|
|
|
void solve(Solver* solver)
|
|
{
|
|
int imax = solver->imax;
|
|
int jmax = solver->jmax;
|
|
int jmaxLocal = solver->jmaxLocal;
|
|
double eps = solver->eps;
|
|
int itermax = solver->itermax;
|
|
double dx2 = solver->dx * solver->dx;
|
|
double dy2 = solver->dy * solver->dy;
|
|
double idx2 = 1.0 / dx2;
|
|
double idy2 = 1.0 / dy2;
|
|
double factor = solver->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2);
|
|
double* p = solver->p;
|
|
double* rhs = solver->rhs;
|
|
double epssq = eps * eps;
|
|
int it = 0;
|
|
double res = 1.0;
|
|
|
|
while ((res >= epssq) && (it < itermax)) {
|
|
res = 0.0;
|
|
exchange(solver, p);
|
|
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
|
|
double r = RHS(i, j) -
|
|
((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 +
|
|
(P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2);
|
|
|
|
P(i, j) -= (factor * r);
|
|
res += (r * r);
|
|
}
|
|
}
|
|
|
|
if (solver->rank == 0) {
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
P(i, 0) = P(i, 1);
|
|
}
|
|
}
|
|
|
|
if (solver->rank == (solver->size - 1)) {
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
P(i, jmaxLocal + 1) = P(i, jmaxLocal);
|
|
}
|
|
}
|
|
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
P(0, j) = P(1, j);
|
|
P(imax + 1, j) = P(imax, j);
|
|
}
|
|
|
|
MPI_Allreduce(MPI_IN_PLACE, &res, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
|
|
res = res / (double)(imax * jmax);
|
|
#ifdef DEBUG
|
|
if (solver->rank == 0) {
|
|
printf("%d Residuum: %e\n", it, res);
|
|
}
|
|
#endif
|
|
it++;
|
|
}
|
|
|
|
#ifdef VERBOSE
|
|
if (solver->rank == 0) {
|
|
printf("Solver took %d iterations to reach %f\n", it, sqrt(res));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static double maxElement(Solver* solver, double* m)
|
|
{
|
|
int size = (solver->imax + 2) * (solver->jmaxLocal + 2);
|
|
double maxval = DBL_MIN;
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
maxval = MAX(maxval, fabs(m[i]));
|
|
}
|
|
|
|
MPI_Allreduce(MPI_IN_PLACE, &maxval, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
|
|
return maxval;
|
|
}
|
|
|
|
void normalizePressure(Solver* solver)
|
|
{
|
|
int size = (solver->imax + 2) * (solver->jmaxLocal + 2);
|
|
double* p = solver->p;
|
|
double avgP = 0.0;
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
avgP += p[i];
|
|
}
|
|
MPI_Allreduce(MPI_IN_PLACE, &avgP, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
|
|
avgP /= (solver->imax + 2) * (solver->jmax + 2);
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
p[i] = p[i] - avgP;
|
|
}
|
|
}
|
|
|
|
void computeTimestep(Solver* solver)
|
|
{
|
|
double dt = solver->dtBound;
|
|
double dx = solver->dx;
|
|
double dy = solver->dy;
|
|
double umax = maxElement(solver, solver->u);
|
|
double vmax = maxElement(solver, solver->v);
|
|
|
|
if (umax > 0) {
|
|
dt = (dt > dx / umax) ? dx / umax : dt;
|
|
}
|
|
if (vmax > 0) {
|
|
dt = (dt > dy / vmax) ? dy / vmax : dt;
|
|
}
|
|
|
|
solver->dt = dt * solver->tau;
|
|
}
|
|
|
|
void setBoundaryConditions(Solver* solver)
|
|
{
|
|
int imax = solver->imax;
|
|
int jmaxLocal = solver->jmaxLocal;
|
|
double* u = solver->u;
|
|
double* v = solver->v;
|
|
|
|
// Left boundary
|
|
switch (solver->bcLeft) {
|
|
case NOSLIP:
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
U(0, j) = 0.0;
|
|
V(0, j) = -V(1, j);
|
|
}
|
|
break;
|
|
case SLIP:
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
U(0, j) = 0.0;
|
|
V(0, j) = V(1, j);
|
|
}
|
|
break;
|
|
case OUTFLOW:
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
U(0, j) = U(1, j);
|
|
V(0, j) = V(1, j);
|
|
}
|
|
break;
|
|
case PERIODIC:
|
|
break;
|
|
}
|
|
|
|
// Right boundary
|
|
switch (solver->bcRight) {
|
|
case NOSLIP:
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
U(imax, j) = 0.0;
|
|
V(imax + 1, j) = -V(imax, j);
|
|
}
|
|
break;
|
|
case SLIP:
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
U(imax, j) = 0.0;
|
|
V(imax + 1, j) = V(imax, j);
|
|
}
|
|
break;
|
|
case OUTFLOW:
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
U(imax, j) = U(imax - 1, j);
|
|
V(imax + 1, j) = V(imax, j);
|
|
}
|
|
break;
|
|
case PERIODIC:
|
|
break;
|
|
}
|
|
|
|
// Bottom boundary
|
|
if (solver->rank == 0) {
|
|
switch (solver->bcBottom) {
|
|
case NOSLIP:
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
V(i, 0) = 0.0;
|
|
U(i, 0) = -U(i, 1);
|
|
}
|
|
break;
|
|
case SLIP:
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
V(i, 0) = 0.0;
|
|
U(i, 0) = U(i, 1);
|
|
}
|
|
break;
|
|
case OUTFLOW:
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
U(i, 0) = U(i, 1);
|
|
V(i, 0) = V(i, 1);
|
|
}
|
|
break;
|
|
case PERIODIC:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Top boundary
|
|
if (solver->rank == (solver->size - 1)) {
|
|
switch (solver->bcTop) {
|
|
case NOSLIP:
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
V(i, jmaxLocal) = 0.0;
|
|
U(i, jmaxLocal + 1) = -U(i, jmaxLocal);
|
|
}
|
|
break;
|
|
case SLIP:
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
V(i, jmaxLocal) = 0.0;
|
|
U(i, jmaxLocal + 1) = U(i, jmaxLocal);
|
|
}
|
|
break;
|
|
case OUTFLOW:
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
U(i, jmaxLocal + 1) = U(i, jmaxLocal);
|
|
V(i, jmaxLocal) = V(i, jmaxLocal - 1);
|
|
}
|
|
break;
|
|
case PERIODIC:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void setSpecialBoundaryCondition(Solver* solver)
|
|
{
|
|
int imax = solver->imax;
|
|
int jmaxLocal = solver->jmaxLocal;
|
|
double* u = solver->u;
|
|
|
|
if (strcmp(solver->problem, "dcavity") == 0) {
|
|
if (solver->rank == (solver->size - 1)) {
|
|
for (int i = 1; i < imax; i++) {
|
|
U(i, jmaxLocal + 1) = 2.0 - U(i, jmaxLocal);
|
|
}
|
|
}
|
|
} else if (strcmp(solver->problem, "canal") == 0) {
|
|
double ylength = solver->ylength;
|
|
double dy = solver->dy;
|
|
int rest = solver->jmax % solver->size;
|
|
int yc = solver->rank * (solver->jmax / solver->size) + MIN(rest, solver->rank);
|
|
double ys = dy * (yc + 0.5);
|
|
double y;
|
|
|
|
/* printf("RANK %d yc: %d ys: %f\n", solver->rank, yc, ys); */
|
|
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
y = ys + dy * (j - 0.5);
|
|
U(0, j) = y * (ylength - y) * 4.0 / (ylength * ylength);
|
|
}
|
|
}
|
|
/* print(solver, solver->u); */
|
|
}
|
|
|
|
void computeFG(Solver* solver)
|
|
{
|
|
double* u = solver->u;
|
|
double* v = solver->v;
|
|
double* f = solver->f;
|
|
double* g = solver->g;
|
|
int imax = solver->imax;
|
|
int jmaxLocal = solver->jmaxLocal;
|
|
double gx = solver->gx;
|
|
double gy = solver->gy;
|
|
double gamma = solver->gamma;
|
|
double dt = solver->dt;
|
|
double inverseRe = 1.0 / solver->re;
|
|
double inverseDx = 1.0 / solver->dx;
|
|
double inverseDy = 1.0 / solver->dy;
|
|
double du2dx, dv2dy, duvdx, duvdy;
|
|
double du2dx2, du2dy2, dv2dx2, dv2dy2;
|
|
|
|
exchange(solver, u);
|
|
exchange(solver, v);
|
|
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
du2dx = inverseDx * 0.25 *
|
|
((U(i, j) + U(i + 1, j)) * (U(i, j) + U(i + 1, j)) -
|
|
(U(i, j) + U(i - 1, j)) * (U(i, j) + U(i - 1, j))) +
|
|
gamma * inverseDx * 0.25 *
|
|
(fabs(U(i, j) + U(i + 1, j)) * (U(i, j) - U(i + 1, j)) +
|
|
fabs(U(i, j) + U(i - 1, j)) * (U(i, j) - U(i - 1, j)));
|
|
|
|
duvdy = inverseDy * 0.25 *
|
|
((V(i, j) + V(i + 1, j)) * (U(i, j) + U(i, j + 1)) -
|
|
(V(i, j - 1) + V(i + 1, j - 1)) * (U(i, j) + U(i, j - 1))) +
|
|
gamma * inverseDy * 0.25 *
|
|
(fabs(V(i, j) + V(i + 1, j)) * (U(i, j) - U(i, j + 1)) +
|
|
fabs(V(i, j - 1) + V(i + 1, j - 1)) *
|
|
(U(i, j) - U(i, j - 1)));
|
|
|
|
du2dx2 = inverseDx * inverseDx * (U(i + 1, j) - 2.0 * U(i, j) + U(i - 1, j));
|
|
du2dy2 = inverseDy * inverseDy * (U(i, j + 1) - 2.0 * U(i, j) + U(i, j - 1));
|
|
F(i, j) = U(i, j) + dt * (inverseRe * (du2dx2 + du2dy2) - du2dx - duvdy + gx);
|
|
|
|
duvdx = inverseDx * 0.25 *
|
|
((U(i, j) + U(i, j + 1)) * (V(i, j) + V(i + 1, j)) -
|
|
(U(i - 1, j) + U(i - 1, j + 1)) * (V(i, j) + V(i - 1, j))) +
|
|
gamma * inverseDx * 0.25 *
|
|
(fabs(U(i, j) + U(i, j + 1)) * (V(i, j) - V(i + 1, j)) +
|
|
fabs(U(i - 1, j) + U(i - 1, j + 1)) *
|
|
(V(i, j) - V(i - 1, j)));
|
|
|
|
dv2dy = inverseDy * 0.25 *
|
|
((V(i, j) + V(i, j + 1)) * (V(i, j) + V(i, j + 1)) -
|
|
(V(i, j) + V(i, j - 1)) * (V(i, j) + V(i, j - 1))) +
|
|
gamma * inverseDy * 0.25 *
|
|
(fabs(V(i, j) + V(i, j + 1)) * (V(i, j) - V(i, j + 1)) +
|
|
fabs(V(i, j) + V(i, j - 1)) * (V(i, j) - V(i, j - 1)));
|
|
|
|
dv2dx2 = inverseDx * inverseDx * (V(i + 1, j) - 2.0 * V(i, j) + V(i - 1, j));
|
|
dv2dy2 = inverseDy * inverseDy * (V(i, j + 1) - 2.0 * V(i, j) + V(i, j - 1));
|
|
G(i, j) = V(i, j) + dt * (inverseRe * (dv2dx2 + dv2dy2) - duvdx - dv2dy + gy);
|
|
}
|
|
}
|
|
|
|
/* ----------------------------- boundary of F ---------------------------
|
|
*/
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
F(0, j) = U(0, j);
|
|
F(imax, j) = U(imax, j);
|
|
}
|
|
|
|
/* ----------------------------- boundary of G ---------------------------
|
|
*/
|
|
if (solver->rank == 0) {
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
G(i, 0) = V(i, 0);
|
|
}
|
|
}
|
|
|
|
if (solver->rank == (solver->size - 1)) {
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
G(i, jmaxLocal) = V(i, jmaxLocal);
|
|
}
|
|
}
|
|
}
|
|
|
|
void adaptUV(Solver* solver)
|
|
{
|
|
int imax = solver->imax;
|
|
int jmaxLocal = solver->jmaxLocal;
|
|
double* p = solver->p;
|
|
double* u = solver->u;
|
|
double* v = solver->v;
|
|
double* f = solver->f;
|
|
double* g = solver->g;
|
|
double factorX = solver->dt / solver->dx;
|
|
double factorY = solver->dt / solver->dy;
|
|
|
|
for (int j = 1; j < jmaxLocal + 1; j++) {
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
U(i, j) = F(i, j) - (P(i + 1, j) - P(i, j)) * factorX;
|
|
V(i, j) = G(i, j) - (P(i, j + 1) - P(i, j)) * factorY;
|
|
}
|
|
}
|
|
}
|
|
|
|
void writeResult(Solver* solver, double* p, double* u, double* v)
|
|
{
|
|
int imax = solver->imax;
|
|
int jmax = solver->jmax;
|
|
double dx = solver->dx;
|
|
double dy = solver->dy;
|
|
double x = 0.0, y = 0.0;
|
|
|
|
FILE* fp;
|
|
fp = fopen("pressure.dat", "w");
|
|
|
|
if (fp == NULL) {
|
|
printf("Error!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
y = (double)(j - 0.5) * dy;
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
x = (double)(i - 0.5) * dx;
|
|
fprintf(fp, "%.2f %.2f %f\n", x, y, P(i, j));
|
|
}
|
|
fprintf(fp, "\n");
|
|
}
|
|
|
|
fclose(fp);
|
|
|
|
fp = fopen("velocity.dat", "w");
|
|
|
|
if (fp == NULL) {
|
|
printf("Error!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
y = dy * (j - 0.5);
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
x = dx * (i - 0.5);
|
|
double vu = (U(i, j) + U(i - 1, j)) / 2.0;
|
|
double vv = (V(i, j) + V(i, j - 1)) / 2.0;
|
|
double len = sqrt((vu * vu) + (vv * vv));
|
|
fprintf(fp, "%.2f %.2f %f %f %f\n", x, y, vu, vv, len);
|
|
}
|
|
}
|
|
|
|
fclose(fp);
|
|
}
|