/* * Copyright (C) NHR@FAU, University Erlangen-Nuremberg. * All rights reserved. This file is part of nusif-solver. * Use of this source code is governed by a MIT style * license that can be found in the LICENSE file. */ #include #include #include #include #include "allocate.h" #include "discretization.h" #include "parameter.h" #include "util.h" static void printConfig(Discretization* d) { printf("Parameters for #%s#\n", d->problem); printf("BC Left:%d Right:%d Bottom:%d Top:%d Front:%d Back:%d\n", d->bcLeft, d->bcRight, d->bcBottom, d->bcTop, d->bcFront, d->bcBack); printf("\tReynolds number: %.2f\n", d->re); printf("\tGx Gy: %.2f %.2f %.2f\n", d->gx, d->gy, d->gz); printf("Geometry data:\n"); printf("\tDomain box size (x, y, z): %.2f, %.2f, %.2f\n", d->grid.xlength, d->grid.ylength, d->grid.zlength); printf("\tCells (x, y, z): %d, %d, %d\n", d->grid.imax, d->grid.jmax, d->grid.kmax); printf("\tCell size (dx, dy, dz): %f, %f, %f\n", d->grid.dx, d->grid.dy, d->grid.dz); printf("Timestep parameters:\n"); printf("\tDefault stepsize: %.2f, Final time %.2f\n", d->dt, d->te); printf("\tdt bound: %.6f\n", d->dtBound); printf("\tTau factor: %.2f\n", d->tau); printf("Iterative parameters:\n"); printf("\tepsilon (stopping tolerance) : %f\n", d->eps); printf("\tgamma factor: %f\n", d->gamma); printf("\tomega (SOR relaxation): %f\n", d->omega); } void initDiscretization(Discretization* d, Parameter* p) { d->problem = p->name; d->bcLeft = p->bcLeft; d->bcRight = p->bcRight; d->bcBottom = p->bcBottom; d->bcTop = p->bcTop; d->bcFront = p->bcFront; d->bcBack = p->bcBack; d->grid.imax = p->imax; d->grid.jmax = p->jmax; d->grid.kmax = p->kmax; d->grid.xlength = p->xlength; d->grid.ylength = p->ylength; d->grid.zlength = p->zlength; d->grid.dx = p->xlength / p->imax; d->grid.dy = p->ylength / p->jmax; d->grid.dz = p->zlength / p->kmax; d->eps = p->eps; d->omega = p->omg; d->re = p->re; d->gx = p->gx; d->gy = p->gy; d->gz = p->gz; d->dt = p->dt; d->te = p->te; d->tau = p->tau; d->gamma = p->gamma; int imax = d->grid.imax; int jmax = d->grid.jmax; int kmax = d->grid.kmax; size_t bytesize = (imax + 2) * (jmax + 2) * (kmax + 2) * sizeof(double); d->u = allocate(64, bytesize); d->v = allocate(64, bytesize); d->w = allocate(64, bytesize); d->p = allocate(64, bytesize); d->rhs = allocate(64, bytesize); d->f = allocate(64, bytesize); d->g = allocate(64, bytesize); d->h = allocate(64, bytesize); for (int i = 0; i < (imax + 2) * (jmax + 2) * (kmax + 2); i++) { d->u[i] = p->u_init; d->v[i] = p->v_init; d->w[i] = p->w_init; d->p[i] = p->p_init; d->rhs[i] = 0.0; d->f[i] = 0.0; d->g[i] = 0.0; d->h[i] = 0.0; } double dx = d->grid.dx; double dy = d->grid.dy; double dz = d->grid.dz; double invSqrSum = 1.0 / (dx * dx) + 1.0 / (dy * dy) + 1.0 / (dz * dz); d->dtBound = 0.5 * d->re * 1.0 / invSqrSum; #ifdef VERBOSE printConfig(d); #endif /* VERBOSE */ } void computeRHS(Discretization* d) { int imax = d->grid.imax; int jmax = d->grid.jmax; int kmax = d->grid.kmax; double idx = 1.0 / d->grid.dx; double idy = 1.0 / d->grid.dy; double idz = 1.0 / d->grid.dz; double idt = 1.0 / d->dt; double* rhs = d->rhs; double* f = d->f; double* g = d->g; double* h = d->h; for (int k = 1; k < kmax + 1; k++) { for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { RHS(i, j, k) = ((F(i, j, k) - F(i - 1, j, k)) * idx + (G(i, j, k) - G(i, j - 1, k)) * idy + (H(i, j, k) - H(i, j, k - 1)) * idz) * idt; } } } } static double maxElement(Discretization* d, double* m) { int size = (d->grid.imax + 2) * (d->grid.jmax + 2) * (d->grid.kmax + 2); double maxval = DBL_MIN; for (int i = 0; i < size; i++) { maxval = MAX(maxval, fabs(m[i])); } return maxval; } void normalizePressure(Discretization* d) { int size = (d->grid.imax + 2) * (d->grid.jmax + 2) * (d->grid.kmax + 2); double* p = d->p; double avgP = 0.0; for (int i = 0; i < size; i++) { avgP += p[i]; } avgP /= size; for (int i = 0; i < size; i++) { p[i] = p[i] - avgP; } } void computeTimestep(Discretization* d) { double dt = d->dtBound; double dx = d->grid.dx; double dy = d->grid.dy; double dz = d->grid.dz; double umax = maxElement(d, d->u); double vmax = maxElement(d, d->v); double wmax = maxElement(d, d->w); if (umax > 0) { dt = (dt > dx / umax) ? dx / umax : dt; } if (vmax > 0) { dt = (dt > dy / vmax) ? dy / vmax : dt; } if (wmax > 0) { dt = (dt > dz / wmax) ? dz / wmax : dt; } d->dt = dt * d->tau; } void setBoundaryConditions(Discretization* d) { int imax = d->grid.imax; int jmax = d->grid.jmax; int kmax = d->grid.kmax; double* u = d->u; double* v = d->v; double* w = d->w; switch (d->bcTop) { case NOSLIP: for (int k = 1; k < kmax + 1; k++) { for (int i = 1; i < imax + 1; i++) { V(i, jmax, k) = 0.0; U(i, jmax + 1, k) = -U(i, jmax, k); W(i, jmax + 1, k) = -W(i, jmax, k); } } break; case SLIP: for (int k = 1; k < kmax + 1; k++) { for (int i = 1; i < imax + 1; i++) { V(i, jmax, k) = 0.0; U(i, jmax + 1, k) = U(i, jmax, k); W(i, jmax + 1, k) = W(i, jmax, k); } } break; case OUTFLOW: for (int k = 1; k < kmax + 1; k++) { for (int i = 1; i < imax + 1; i++) { U(i, jmax + 1, k) = U(i, jmax, k); V(i, jmax, k) = V(i, jmax - 1, k); W(i, jmax + 1, k) = W(i, jmax, k); } } break; case PERIODIC: break; } switch (d->bcBottom) { case NOSLIP: for (int k = 1; k < kmax + 1; k++) { for (int i = 1; i < imax + 1; i++) { V(i, 0, k) = 0.0; U(i, 0, k) = -U(i, 1, k); W(i, 0, k) = -W(i, 1, k); } } break; case SLIP: for (int k = 1; k < kmax + 1; k++) { for (int i = 1; i < imax + 1; i++) { V(i, 0, k) = 0.0; U(i, 0, k) = U(i, 1, k); W(i, 0, k) = W(i, 1, k); } } break; case OUTFLOW: for (int k = 1; k < kmax + 1; k++) { for (int i = 1; i < imax + 1; i++) { U(i, 0, k) = U(i, 1, k); V(i, 0, k) = V(i, 1, k); W(i, 0, k) = W(i, 1, k); } } break; case PERIODIC: break; } switch (d->bcLeft) { case NOSLIP: for (int k = 1; k < kmax + 1; k++) { for (int j = 1; j < jmax + 1; j++) { U(0, j, k) = 0.0; V(0, j, k) = -V(1, j, k); W(0, j, k) = -W(1, j, k); } } break; case SLIP: for (int k = 1; k < kmax + 1; k++) { for (int j = 1; j < jmax + 1; j++) { U(0, j, k) = 0.0; V(0, j, k) = V(1, j, k); W(0, j, k) = W(1, j, k); } } break; case OUTFLOW: for (int k = 1; k < kmax + 1; k++) { for (int j = 1; j < jmax + 1; j++) { U(0, j, k) = U(1, j, k); V(0, j, k) = V(1, j, k); W(0, j, k) = W(1, j, k); } } break; case PERIODIC: break; } switch (d->bcRight) { case NOSLIP: for (int k = 1; k < kmax + 1; k++) { for (int j = 1; j < jmax + 1; j++) { U(imax, j, k) = 0.0; V(imax + 1, j, k) = -V(imax, j, k); W(imax + 1, j, k) = -W(imax, j, k); } } break; case SLIP: for (int k = 1; k < kmax + 1; k++) { for (int j = 1; j < jmax + 1; j++) { U(imax, j, k) = 0.0; V(imax + 1, j, k) = V(imax, j, k); W(imax + 1, j, k) = W(imax, j, k); } } break; case OUTFLOW: for (int k = 1; k < kmax + 1; k++) { for (int j = 1; j < jmax + 1; j++) { U(imax, j, k) = U(imax - 1, j, k); V(imax + 1, j, k) = V(imax, j, k); W(imax + 1, j, k) = W(imax, j, k); } } break; case PERIODIC: break; } switch (d->bcFront) { case NOSLIP: for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { U(i, j, 0) = -U(i, j, 1); V(i, j, 0) = -V(i, j, 1); W(i, j, 0) = 0.0; } } break; case SLIP: for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { U(i, j, 0) = U(i, j, 1); V(i, j, 0) = V(i, j, 1); W(i, j, 0) = 0.0; } } break; case OUTFLOW: for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { U(i, j, 0) = U(i, j, 1); V(i, j, 0) = V(i, j, 1); W(i, j, 0) = W(i, j, 1); } } break; case PERIODIC: break; } switch (d->bcBack) { case NOSLIP: for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { U(i, j, kmax + 1) = -U(i, j, kmax); V(i, j, kmax + 1) = -V(i, j, kmax); W(i, j, kmax + 1) = 0.0; } } break; case SLIP: for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { U(i, j, kmax + 1) = U(i, j, kmax); V(i, j, kmax + 1) = V(i, j, kmax); W(i, j, kmax + 1) = 0.0; } } break; case OUTFLOW: for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { U(i, j, kmax + 1) = U(i, j, kmax); V(i, j, kmax + 1) = V(i, j, kmax); W(i, j, kmax) = W(i, j, kmax - 1); } } break; case PERIODIC: break; } } void setSpecialBoundaryCondition(Discretization* d) { int imax = d->grid.imax; int jmax = d->grid.jmax; int kmax = d->grid.kmax; double mDy = d->grid.dy; double* u = d->u; if (strcmp(d->problem, "dcavity") == 0) { for (int k = 1; k < kmax; k++) { for (int i = 1; i < imax; i++) { U(i, jmax + 1, k) = 2.0 - U(i, jmax, k); } } } else if (strcmp(d->problem, "canal") == 0) { double ylength = d->grid.ylength; double y; for (int k = 1; k < kmax + 1; k++) { for (int j = 1; j < jmax + 1; j++) { y = mDy * (j - 0.5); U(0, j, k) = y * (ylength - y) * 4.0 / (ylength * ylength); } } } } void computeFG(Discretization* d) { int imax = d->grid.imax; int jmax = d->grid.jmax; int kmax = d->grid.kmax; double* u = d->u; double* v = d->v; double* w = d->w; double* f = d->f; double* g = d->g; double* h = d->h; double gx = d->gx; double gy = d->gy; double gz = d->gz; double dt = d->dt; double gamma = d->gamma; double inverseRe = 1.0 / d->re; double inverseDx = 1.0 / d->grid.dx; double inverseDy = 1.0 / d->grid.dy; double inverseDz = 1.0 / d->grid.dz; double du2dx, dv2dy, dw2dz; double duvdx, duwdx, duvdy, dvwdy, duwdz, dvwdz; double du2dx2, du2dy2, du2dz2; double dv2dx2, dv2dy2, dv2dz2; double dw2dx2, dw2dy2, dw2dz2; for (int k = 1; k < kmax + 1; k++) { for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { du2dx = inverseDx * 0.25 * ((U(i, j, k) + U(i + 1, j, k)) * (U(i, j, k) + U(i + 1, j, k)) - (U(i, j, k) + U(i - 1, j, k)) * (U(i, j, k) + U(i - 1, j, k))) + gamma * inverseDx * 0.25 * (fabs(U(i, j, k) + U(i + 1, j, k)) * (U(i, j, k) - U(i + 1, j, k)) + fabs(U(i, j, k) + U(i - 1, j, k)) * (U(i, j, k) - U(i - 1, j, k))); duvdy = inverseDy * 0.25 * ((V(i, j, k) + V(i + 1, j, k)) * (U(i, j, k) + U(i, j + 1, k)) - (V(i, j - 1, k) + V(i + 1, j - 1, k)) * (U(i, j, k) + U(i, j - 1, k))) + gamma * inverseDy * 0.25 * (fabs(V(i, j, k) + V(i + 1, j, k)) * (U(i, j, k) - U(i, j + 1, k)) + fabs(V(i, j - 1, k) + V(i + 1, j - 1, k)) * (U(i, j, k) - U(i, j - 1, k))); duwdz = inverseDz * 0.25 * ((W(i, j, k) + W(i + 1, j, k)) * (U(i, j, k) + U(i, j, k + 1)) - (W(i, j, k - 1) + W(i + 1, j, k - 1)) * (U(i, j, k) + U(i, j, k - 1))) + gamma * inverseDz * 0.25 * (fabs(W(i, j, k) + W(i + 1, j, k)) * (U(i, j, k) - U(i, j, k + 1)) + fabs(W(i, j, k - 1) + W(i + 1, j, k - 1)) * (U(i, j, k) - U(i, j, k - 1))); du2dx2 = inverseDx * inverseDx * (U(i + 1, j, k) - 2.0 * U(i, j, k) + U(i - 1, j, k)); du2dy2 = inverseDy * inverseDy * (U(i, j + 1, k) - 2.0 * U(i, j, k) + U(i, j - 1, k)); du2dz2 = inverseDz * inverseDz * (U(i, j, k + 1) - 2.0 * U(i, j, k) + U(i, j, k - 1)); F(i, j, k) = U(i, j, k) + dt * (inverseRe * (du2dx2 + du2dy2 + du2dz2) - du2dx - duvdy - duwdz + gx); duvdx = inverseDx * 0.25 * ((U(i, j, k) + U(i, j + 1, k)) * (V(i, j, k) + V(i + 1, j, k)) - (U(i - 1, j, k) + U(i - 1, j + 1, k)) * (V(i, j, k) + V(i - 1, j, k))) + gamma * inverseDx * 0.25 * (fabs(U(i, j, k) + U(i, j + 1, k)) * (V(i, j, k) - V(i + 1, j, k)) + fabs(U(i - 1, j, k) + U(i - 1, j + 1, k)) * (V(i, j, k) - V(i - 1, j, k))); dv2dy = inverseDy * 0.25 * ((V(i, j, k) + V(i, j + 1, k)) * (V(i, j, k) + V(i, j + 1, k)) - (V(i, j, k) + V(i, j - 1, k)) * (V(i, j, k) + V(i, j - 1, k))) + gamma * inverseDy * 0.25 * (fabs(V(i, j, k) + V(i, j + 1, k)) * (V(i, j, k) - V(i, j + 1, k)) + fabs(V(i, j, k) + V(i, j - 1, k)) * (V(i, j, k) - V(i, j - 1, k))); dvwdz = inverseDz * 0.25 * ((W(i, j, k) + W(i, j + 1, k)) * (V(i, j, k) + V(i, j, k + 1)) - (W(i, j, k - 1) + W(i, j + 1, k - 1)) * (V(i, j, k) + V(i, j, k + 1))) + gamma * inverseDz * 0.25 * (fabs(W(i, j, k) + W(i, j + 1, k)) * (V(i, j, k) - V(i, j, k + 1)) + fabs(W(i, j, k - 1) + W(i, j + 1, k - 1)) * (V(i, j, k) - V(i, j, k + 1))); dv2dx2 = inverseDx * inverseDx * (V(i + 1, j, k) - 2.0 * V(i, j, k) + V(i - 1, j, k)); dv2dy2 = inverseDy * inverseDy * (V(i, j + 1, k) - 2.0 * V(i, j, k) + V(i, j - 1, k)); dv2dz2 = inverseDz * inverseDz * (V(i, j, k + 1) - 2.0 * V(i, j, k) + V(i, j, k - 1)); G(i, j, k) = V(i, j, k) + dt * (inverseRe * (dv2dx2 + dv2dy2 + dv2dz2) - duvdx - dv2dy - dvwdz + gy); duwdx = inverseDx * 0.25 * ((U(i, j, k) + U(i, j, k + 1)) * (W(i, j, k) + W(i + 1, j, k)) - (U(i - 1, j, k) + U(i - 1, j, k + 1)) * (W(i, j, k) + W(i - 1, j, k))) + gamma * inverseDx * 0.25 * (fabs(U(i, j, k) + U(i, j, k + 1)) * (W(i, j, k) - W(i + 1, j, k)) + fabs(U(i - 1, j, k) + U(i - 1, j, k + 1)) * (W(i, j, k) - W(i - 1, j, k))); dvwdy = inverseDy * 0.25 * ((V(i, j, k) + V(i, j, k + 1)) * (W(i, j, k) + W(i, j + 1, k)) - (V(i, j - 1, k + 1) + V(i, j - 1, k)) * (W(i, j, k) + W(i, j - 1, k))) + gamma * inverseDy * 0.25 * (fabs(V(i, j, k) + V(i, j, k + 1)) * (W(i, j, k) - W(i, j + 1, k)) + fabs(V(i, j - 1, k + 1) + V(i, j - 1, k)) * (W(i, j, k) - W(i, j - 1, k))); dw2dz = inverseDz * 0.25 * ((W(i, j, k) + W(i, j, k + 1)) * (W(i, j, k) + W(i, j, k + 1)) - (W(i, j, k) + W(i, j, k - 1)) * (W(i, j, k) + W(i, j, k - 1))) + gamma * inverseDz * 0.25 * (fabs(W(i, j, k) + W(i, j, k + 1)) * (W(i, j, k) - W(i, j, k + 1)) + fabs(W(i, j, k) + W(i, j, k - 1)) * (W(i, j, k) - W(i, j, k - 1))); dw2dx2 = inverseDx * inverseDx * (W(i + 1, j, k) - 2.0 * W(i, j, k) + W(i - 1, j, k)); dw2dy2 = inverseDy * inverseDy * (W(i, j + 1, k) - 2.0 * W(i, j, k) + W(i, j - 1, k)); dw2dz2 = inverseDz * inverseDz * (W(i, j, k + 1) - 2.0 * W(i, j, k) + W(i, j, k - 1)); H(i, j, k) = W(i, j, k) + dt * (inverseRe * (dw2dx2 + dw2dy2 + dw2dz2) - duwdx - dvwdy - dw2dz + gz); } } } /* ----------------------------- boundary of F --------------------------- */ for (int k = 1; k < kmax + 1; k++) { for (int j = 1; j < jmax + 1; j++) { F(0, j, k) = U(0, j, k); F(imax, j, k) = U(imax, j, k); } } /* ----------------------------- boundary of G --------------------------- */ for (int k = 1; k < kmax + 1; k++) { for (int i = 1; i < imax + 1; i++) { G(i, 0, k) = V(i, 0, k); G(i, jmax, k) = V(i, jmax, k); } } /* ----------------------------- boundary of G --------------------------- */ for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { H(i, j, 0) = W(i, j, 0); H(i, j, kmax) = W(i, j, kmax); } } } void adaptUV(Discretization* d) { int imax = d->grid.imax; int jmax = d->grid.jmax; int kmax = d->grid.kmax; double* p = d->p; double* u = d->u; double* v = d->v; double* w = d->w; double* f = d->f; double* g = d->g; double* h = d->h; double factorX = d->dt / d->grid.dx; double factorY = d->dt / d->grid.dy; double factorZ = d->dt / d->grid.dz; for (int k = 1; k < kmax + 1; k++) { for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { U(i, j, k) = F(i, j, k) - (P(i + 1, j, k) - P(i, j, k)) * factorX; V(i, j, k) = G(i, j, k) - (P(i, j + 1, k) - P(i, j, k)) * factorY; W(i, j, k) = H(i, j, k) - (P(i, j, k + 1) - P(i, j, k)) * factorZ; } } } }