/* * Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg. * All rights reserved. This file is part of nusif-solver. * Use of this source code is governed by a MIT style * license that can be found in the LICENSE file. */ #include #include #include #include #include #include "allocate.h" #include "comm.h" #include "parameter.h" #include "solver.h" #include "util.h" #define P(i, j) p[(j) * (imaxLocal + 2) + (i)] #define F(i, j) f[(j) * (imaxLocal + 2) + (i)] #define G(i, j) g[(j) * (imaxLocal + 2) + (i)] #define U(i, j) u[(j) * (imaxLocal + 2) + (i)] #define V(i, j) v[(j) * (imaxLocal + 2) + (i)] #define RHS(i, j) rhs[(j) * (imaxLocal + 2) + (i)] static void printConfig(Solver* s) { if (commIsMaster(&s->comm)) { printf("Parameters for #%s#\n", s->problem); printf("BC Left:%d Right:%d Bottom:%d Top:%d\n", s->bcLeft, s->bcRight, s->bcBottom, s->bcTop); printf("\tReynolds number: %.2f\n", s->re); printf("\tGx Gy: %.2f %.2f\n", s->gx, s->gy); printf("Geometry data:\n"); printf("\tDomain box size (x, y): %.2f, %.2f\n", s->xlength, s->ylength); printf("\tCells (x, y): %d, %d\n", s->imax, s->jmax); printf("\tCell size (dx, dy): %f, %f\n", s->dx, s->dy); printf("Timestep parameters:\n"); printf("\tDefault stepsize: %.2f, Final time %.2f\n", s->dt, s->te); printf("\tdt bound: %.6f\n", s->dtBound); printf("\tTau factor: %.2f\n", s->tau); printf("Iterative s parameters:\n"); printf("\tMax iterations: %d\n", s->itermax); printf("\tepsilon (stopping tolerance) : %f\n", s->eps); printf("\tgamma factor: %f\n", s->gamma); printf("\tomega (SOR relaxation): %f\n", s->omega); } commPrintConfig(&s->comm); } void initSolver(Solver* s, Parameter* params) { s->problem = params->name; s->bcLeft = params->bcLeft; s->bcRight = params->bcRight; s->bcBottom = params->bcBottom; s->bcTop = params->bcTop; s->imax = params->imax; s->jmax = params->jmax; s->xlength = params->xlength; s->ylength = params->ylength; s->dx = params->xlength / params->imax; s->dy = params->ylength / params->jmax; s->eps = params->eps; s->omega = params->omg; s->itermax = params->itermax; s->re = params->re; s->gx = params->gx; s->gy = params->gy; s->dt = params->dt; s->te = params->te; s->tau = params->tau; s->gamma = params->gamma; commInit(&s->comm, s->jmax, s->imax); /* allocate arrays */ int imaxLocal = s->comm.imaxLocal; int jmaxLocal = s->comm.jmaxLocal; size_t size = (imaxLocal + 2) * (jmaxLocal + 2); s->u = allocate(64, size * sizeof(double)); s->v = allocate(64, size * sizeof(double)); s->p = allocate(64, size * sizeof(double)); s->rhs = allocate(64, size * sizeof(double)); s->f = allocate(64, size * sizeof(double)); s->g = allocate(64, size * sizeof(double)); for (int i = 0; i < size; i++) { s->u[i] = params->u_init; s->v[i] = params->v_init; s->p[i] = params->p_init; s->rhs[i] = 0.0; s->f[i] = 0.0; s->g[i] = 0.0; } double dx = s->dx; double dy = s->dy; double invSqrSum = 1.0 / (dx * dx) + 1.0 / (dy * dy); s->dtBound = 0.5 * s->re * 1.0 / invSqrSum; #ifdef VERBOSE printConfig(s); #endif } void computeRHS(Solver* s) { int imaxLocal = s->comm.imaxLocal; int jmaxLocal = s->comm.jmaxLocal; double idx = 1.0 / s->dx; double idy = 1.0 / s->dy; double idt = 1.0 / s->dt; double* rhs = s->rhs; double* f = s->f; double* g = s->g; commShift(&s->comm, f, g); for (int j = 1; j < jmaxLocal + 1; j++) { for (int i = 1; i < imaxLocal + 1; i++) { RHS(i, j) = ((F(i, j) - F(i - 1, j)) * idx + (G(i, j) - G(i, j - 1)) * idy) * idt; } } } int solve(Solver* s) { int imax = s->imax; int jmax = s->jmax; int imaxLocal = s->comm.imaxLocal; int jmaxLocal = s->comm.jmaxLocal; double eps = s->eps; int itermax = s->itermax; double dx2 = s->dx * s->dx; double dy2 = s->dy * s->dy; double idx2 = 1.0 / dx2; double idy2 = 1.0 / dy2; double factor = s->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2); double* p = s->p; double* rhs = s->rhs; double epssq = eps * eps; int it = 0; double res = 1.0; commExchange(&s->comm, p); while ((res >= epssq) && (it < itermax)) { res = 0.0; for (int j = 1; j < jmaxLocal + 1; j++) { for (int i = 1; i < imaxLocal + 1; i++) { double r = RHS(i, j) - ((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 + (P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2); P(i, j) -= (factor * r); res += (r * r); } } if (commIsBoundary(&s->comm, BOTTOM)) { // set bottom bc for (int i = 1; i < imaxLocal + 1; i++) { P(i, 0) = P(i, 1); } } if (commIsBoundary(&s->comm, TOP)) { // set top bc for (int i = 1; i < imaxLocal + 1; i++) { P(i, jmaxLocal + 1) = P(i, jmaxLocal); } } if (commIsBoundary(&s->comm, LEFT)) { // set left bc for (int j = 1; j < jmaxLocal + 1; j++) { P(0, j) = P(1, j); } } if (commIsBoundary(&s->comm, RIGHT)) { // set right bc for (int j = 1; j < jmaxLocal + 1; j++) { P(imaxLocal + 1, j) = P(imaxLocal, j); } } commReduction(&res, SUM); res = res / (double)(imax * jmax); #ifdef DEBUG if (commIsMaster(&s->comm)) { printf("%d Residuum: %e\n", it, res); } #endif it++; } #ifdef VERBOSE if (commIsMaster(&s->comm)) { printf("Solver took %d iterations to reach %f\n", it, sqrt(res)); } #endif if (res < eps) { return 0; } else { return 1; } } static double maxElement(Solver* s, double* m) { int imaxLocal = s->comm.imaxLocal; int jmaxLocal = s->comm.jmaxLocal; int size = (imaxLocal + 2) * (jmaxLocal + 2); double maxval = DBL_MIN; for (int i = 0; i < size; i++) { maxval = MAX(maxval, fabs(m[i])); } commReduction(&maxval, MAX); return maxval; } void computeTimestep(Solver* s) { double dt = s->dtBound; double dx = s->dx; double dy = s->dy; double umax = maxElement(s, s->u); double vmax = maxElement(s, s->v); if (umax > 0) { dt = (dt > dx / umax) ? dx / umax : dt; } if (vmax > 0) { dt = (dt > dy / vmax) ? dy / vmax : dt; } s->dt = dt * s->tau; } int solveRB(Solver* s) { int imax = s->imax; int jmax = s->jmax; int imaxLocal = s->comm.imaxLocal; int jmaxLocal = s->comm.jmaxLocal; double eps = s->eps; int itermax = s->itermax; double dx2 = s->dx * s->dx; double dy2 = s->dy * s->dy; double idx2 = 1.0 / dx2; double idy2 = 1.0 / dy2; double factor = s->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2); double* p = s->p; double* rhs = s->rhs; double epssq = eps * eps; int it = 0; double res = 1.0; commExchange(&s->comm, p); while ((res >= epssq) && (it < itermax)) { res = 0.0; for (int j = 1; j < jmaxLocal + 1; j++) { for (int i = 1; i < imaxLocal + 1; i++) { double r = RHS(i, j) - ((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 + (P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2); P(i, j) -= (factor * r); res += (r * r); } } if (commIsBoundary(&s->comm, BOTTOM)) { // set bottom bc for (int i = 1; i < imaxLocal + 1; i++) { P(i, 0) = P(i, 1); } } if (commIsBoundary(&s->comm, TOP)) { // set top bc for (int i = 1; i < imaxLocal + 1; i++) { P(i, jmaxLocal + 1) = P(i, jmaxLocal); } } if (commIsBoundary(&s->comm, LEFT)) { // set left bc for (int j = 1; j < jmaxLocal + 1; j++) { P(0, j) = P(1, j); } } if (commIsBoundary(&s->comm, RIGHT)) { // set right bc for (int j = 1; j < jmaxLocal + 1; j++) { P(imaxLocal + 1, j) = P(imaxLocal, j); } } commReduction(&res, SUM); res = res / (double)(imax * jmax); #ifdef DEBUG if (commIsMaster(&s->comm)) { printf("%d Residuum: %e\n", it, res); } #endif it++; } } int solveRBA(Solver* s) { int imax = s->imax; int jmax = s->jmax; int imaxLocal = s->comm.imaxLocal; int jmaxLocal = s->comm.jmaxLocal; double eps = s->eps; int itermax = s->itermax; double dx2 = s->dx * s->dx; double dy2 = s->dy * s->dy; double idx2 = 1.0 / dx2; double idy2 = 1.0 / dy2; double factor = s->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2); double* p = s->p; double* rhs = s->rhs; double epssq = eps * eps; int it = 0; double res = 1.0; commExchange(&s->comm, p); while ((res >= epssq) && (it < itermax)) { res = 0.0; for (int j = 1; j < jmaxLocal + 1; j++) { for (int i = 1; i < imaxLocal + 1; i++) { double r = RHS(i, j) - ((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 + (P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2); P(i, j) -= (factor * r); res += (r * r); } } if (commIsBoundary(&s->comm, BOTTOM)) { // set bottom bc for (int i = 1; i < imaxLocal + 1; i++) { P(i, 0) = P(i, 1); } } if (commIsBoundary(&s->comm, TOP)) { // set top bc for (int i = 1; i < imaxLocal + 1; i++) { P(i, jmaxLocal + 1) = P(i, jmaxLocal); } } if (commIsBoundary(&s->comm, LEFT)) { // set left bc for (int j = 1; j < jmaxLocal + 1; j++) { P(0, j) = P(1, j); } } if (commIsBoundary(&s->comm, RIGHT)) { // set right bc for (int j = 1; j < jmaxLocal + 1; j++) { P(imaxLocal + 1, j) = P(imaxLocal, j); } } commReduction(&res, SUM); res = res / (double)(imax * jmax); #ifdef DEBUG if (commIsMaster(&s->comm)) { printf("%d Residuum: %e\n", it, res); } #endif it++; } #ifdef VERBOSE if (commIsMaster(&s->comm)) { printf("Solver took %d iterations to reach %f\n", it, sqrt(res)); } #endif if (res < eps) { return 0; } else { return 1; } } void setBoundaryConditions(Solver* s) { int imaxLocal = s->comm.imaxLocal; int jmaxLocal = s->comm.jmaxLocal; double* u = s->u; double* v = s->v; if (commIsBoundary(&s->comm, TOP)) { switch (s->bcTop) { case NOSLIP: for (int i = 1; i < imaxLocal + 1; i++) { V(i, jmaxLocal) = 0.0; U(i, jmaxLocal + 1) = -U(i, jmaxLocal); } break; case SLIP: for (int i = 1; i < imaxLocal + 1; i++) { V(i, jmaxLocal) = 0.0; U(i, jmaxLocal + 1) = U(i, jmaxLocal); } break; case OUTFLOW: for (int i = 1; i < imaxLocal + 1; i++) { U(i, jmaxLocal + 1) = U(i, jmaxLocal); V(i, jmaxLocal) = V(i, jmaxLocal - 1); } break; case PERIODIC: break; } } if (commIsBoundary(&s->comm, BOTTOM)) { switch (s->bcBottom) { case NOSLIP: for (int i = 1; i < imaxLocal + 1; i++) { V(i, 0) = 0.0; U(i, 0) = -U(i, 1); } break; case SLIP: for (int i = 1; i < imaxLocal + 1; i++) { V(i, 0) = 0.0; U(i, 0) = U(i, 1); } break; case OUTFLOW: for (int i = 1; i < imaxLocal + 1; i++) { U(i, 0) = U(i, 1); V(i, 0) = V(i, 1); } break; case PERIODIC: break; } } if (commIsBoundary(&s->comm, RIGHT)) { switch (s->bcRight) { case NOSLIP: for (int j = 1; j < jmaxLocal + 1; j++) { U(imaxLocal, j) = 0.0; V(imaxLocal + 1, j) = -V(imaxLocal, j); } break; case SLIP: for (int j = 1; j < jmaxLocal + 1; j++) { U(imaxLocal, j) = 0.0; V(imaxLocal + 1, j) = V(imaxLocal, j); } break; case OUTFLOW: for (int j = 1; j < jmaxLocal + 1; j++) { U(imaxLocal, j) = U(imaxLocal - 1, j); V(imaxLocal + 1, j) = V(imaxLocal, j); } break; case PERIODIC: break; } } if (commIsBoundary(&s->comm, LEFT)) { switch (s->bcLeft) { case NOSLIP: for (int j = 1; j < jmaxLocal + 1; j++) { U(0, j) = 0.0; V(0, j) = -V(1, j); } break; case SLIP: for (int j = 1; j < jmaxLocal + 1; j++) { U(0, j) = 0.0; V(0, j) = V(1, j); } break; case OUTFLOW: for (int j = 1; j < jmaxLocal + 1; j++) { U(0, j) = U(1, j); V(0, j) = V(1, j); } break; case PERIODIC: break; } } } void setSpecialBoundaryCondition(Solver* s) { int imaxLocal = s->comm.imaxLocal; int jmaxLocal = s->comm.jmaxLocal; double* u = s->u; if (strcmp(s->problem, "dcavity") == 0) { if (commIsBoundary(&s->comm, TOP)) { for (int i = 1; i < imaxLocal + 1; i++) { U(i, jmaxLocal + 1) = 2.0 - U(i, jmaxLocal); } } } else if (strcmp(s->problem, "canal") == 0) { if (commIsBoundary(&s->comm, LEFT)) { double ylength = s->ylength; double dy = s->dy; int rest = s->jmax % s->comm.size; int yc = s->comm.rank * (s->jmax / s->comm.size) + MIN(rest, s->comm.rank); double ys = dy * (yc + 0.5); double y; /* printf("RANK %d yc: %d ys: %f\n", solver->rank, yc, ys); */ for (int j = 1; j < jmaxLocal + 1; j++) { y = ys + dy * (j - 0.5); U(0, j) = y * (ylength - y) * 4.0 / (ylength * ylength); } } } /* print(solver, solver->u); */ } void computeFG(Solver* s) { double* u = s->u; double* v = s->v; double* f = s->f; double* g = s->g; int imaxLocal = s->comm.imaxLocal; int jmaxLocal = s->comm.jmaxLocal; double gx = s->gx; double gy = s->gy; double gamma = s->gamma; double dt = s->dt; double inverseRe = 1.0 / s->re; double inverseDx = 1.0 / s->dx; double inverseDy = 1.0 / s->dy; double du2dx, dv2dy, duvdx, duvdy; double du2dx2, du2dy2, dv2dx2, dv2dy2; commExchange(&s->comm, u); commExchange(&s->comm, v); for (int j = 1; j < jmaxLocal + 1; j++) { for (int i = 1; i < imaxLocal + 1; i++) { du2dx = inverseDx * 0.25 * ((U(i, j) + U(i + 1, j)) * (U(i, j) + U(i + 1, j)) - (U(i, j) + U(i - 1, j)) * (U(i, j) + U(i - 1, j))) + gamma * inverseDx * 0.25 * (fabs(U(i, j) + U(i + 1, j)) * (U(i, j) - U(i + 1, j)) + fabs(U(i, j) + U(i - 1, j)) * (U(i, j) - U(i - 1, j))); duvdy = inverseDy * 0.25 * ((V(i, j) + V(i + 1, j)) * (U(i, j) + U(i, j + 1)) - (V(i, j - 1) + V(i + 1, j - 1)) * (U(i, j) + U(i, j - 1))) + gamma * inverseDy * 0.25 * (fabs(V(i, j) + V(i + 1, j)) * (U(i, j) - U(i, j + 1)) + fabs(V(i, j - 1) + V(i + 1, j - 1)) * (U(i, j) - U(i, j - 1))); du2dx2 = inverseDx * inverseDx * (U(i + 1, j) - 2.0 * U(i, j) + U(i - 1, j)); du2dy2 = inverseDy * inverseDy * (U(i, j + 1) - 2.0 * U(i, j) + U(i, j - 1)); F(i, j) = U(i, j) + dt * (inverseRe * (du2dx2 + du2dy2) - du2dx - duvdy + gx); duvdx = inverseDx * 0.25 * ((U(i, j) + U(i, j + 1)) * (V(i, j) + V(i + 1, j)) - (U(i - 1, j) + U(i - 1, j + 1)) * (V(i, j) + V(i - 1, j))) + gamma * inverseDx * 0.25 * (fabs(U(i, j) + U(i, j + 1)) * (V(i, j) - V(i + 1, j)) + fabs(U(i - 1, j) + U(i - 1, j + 1)) * (V(i, j) - V(i - 1, j))); dv2dy = inverseDy * 0.25 * ((V(i, j) + V(i, j + 1)) * (V(i, j) + V(i, j + 1)) - (V(i, j) + V(i, j - 1)) * (V(i, j) + V(i, j - 1))) + gamma * inverseDy * 0.25 * (fabs(V(i, j) + V(i, j + 1)) * (V(i, j) - V(i, j + 1)) + fabs(V(i, j) + V(i, j - 1)) * (V(i, j) - V(i, j - 1))); dv2dx2 = inverseDx * inverseDx * (V(i + 1, j) - 2.0 * V(i, j) + V(i - 1, j)); dv2dy2 = inverseDy * inverseDy * (V(i, j + 1) - 2.0 * V(i, j) + V(i, j - 1)); G(i, j) = V(i, j) + dt * (inverseRe * (dv2dx2 + dv2dy2) - duvdx - dv2dy + gy); } } /* ----------------------------- boundary of F --------------------------- */ if (commIsBoundary(&s->comm, LEFT)) { for (int j = 1; j < jmaxLocal + 1; j++) { F(0, j) = U(0, j); } } if (commIsBoundary(&s->comm, RIGHT)) { for (int j = 1; j < jmaxLocal + 1; j++) { F(imaxLocal, j) = U(imaxLocal, j); } } /* ----------------------------- boundary of G --------------------------- */ if (commIsBoundary(&s->comm, BOTTOM)) { for (int i = 1; i < imaxLocal + 1; i++) { G(i, 0) = V(i, 0); } } if (commIsBoundary(&s->comm, TOP)) { for (int i = 1; i < imaxLocal + 1; i++) { G(i, jmaxLocal) = V(i, jmaxLocal); } } } void adaptUV(Solver* s) { int imaxLocal = s->comm.imaxLocal; int jmaxLocal = s->comm.jmaxLocal; double* p = s->p; double* u = s->u; double* v = s->v; double* f = s->f; double* g = s->g; double factorX = s->dt / s->dx; double factorY = s->dt / s->dy; for (int j = 1; j < jmaxLocal + 1; j++) { for (int i = 1; i < imaxLocal + 1; i++) { U(i, j) = F(i, j) - (P(i + 1, j) - P(i, j)) * factorX; V(i, j) = G(i, j) - (P(i, j + 1) - P(i, j)) * factorY; } } } void writeResult(Solver* s, double* u, double* v, double* p) { int imax = s->imax; int jmax = s->jmax; double dx = s->dx; double dy = s->dy; double x = 0.0, y = 0.0; FILE* fp; fp = fopen("pressure.dat", "w"); if (fp == NULL) { printf("Error!\n"); exit(EXIT_FAILURE); } for (int j = 1; j < jmax; j++) { y = (double)(j - 0.5) * dy; for (int i = 1; i < imax; i++) { x = (double)(i - 0.5) * dx; fprintf(fp, "%.2f %.2f %f\n", x, y, p[j * (imax) + i]); } fprintf(fp, "\n"); } fclose(fp); fp = fopen("velocity.dat", "w"); if (fp == NULL) { printf("Error!\n"); exit(EXIT_FAILURE); } for (int j = 1; j < jmax; j++) { y = dy * (j - 0.5); for (int i = 1; i < imax; i++) { x = dx * (i - 0.5); double vel_u = (u[j * (imax) + i] + u[j * (imax) + (i - 1)]) / 2.0; double vel_v = (v[j * (imax) + i] + v[(j - 1) * (imax) + i]) / 2.0; double len = sqrt((vel_u * vel_u) + (vel_v * vel_v)); fprintf(fp, "%.2f %.2f %f %f %f\n", x, y, vel_u, vel_v, len); } } fclose(fp); }