/* * Copyright (C) NHR@FAU, University Erlangen-Nuremberg. * All rights reserved. This file is part of nusif-solver. * Use of this source code is governed by a MIT style * license that can be found in the LICENSE file. */ #include #include #include #include #include #include "allocate.h" #include "discretization.h" #include "grid.h" #include "parameter.h" #include "util.h" #define S(i, j) s[(j) * (imax + 2) + (i)] static double distance(double i, double j, double iCenter, double jCenter) { return sqrt(pow(iCenter - i, 2) + pow(jCenter - j, 2) * 1.0); } void print(Discretization* d, double* grid) { int imax = d->grid.imax; int jmax = d->grid.jmax; for (int j = 0; j < jmax + 2; j++) { printf("%02d: ", j); for (int i = 0; i < imax + 2; i++) { printf("%3.2f ", grid[j * (imax + 2) + i]); } printf("\n"); } fflush(stdout); } void printGrid(Discretization* d, int* grid) { int imax = d->grid.imax; int jmax = d->grid.jmax; for (int j = 0; j < jmax + 2; j++) { printf("%02d: ", j); for (int i = 0; i < imax + 2; i++) { printf("%2d ", grid[j * (imax + 2) + i]); } printf("\n"); } fflush(stdout); } static void printConfig(Discretization* d) { printf("Parameters for #%s#\n", d->problem); printf("Boundary conditions Left:%d Right:%d Bottom:%d Top:%d\n", d->bcLeft, d->bcRight, d->bcBottom, d->bcTop); printf("\tReynolds number: %.2f\n", d->re); printf("\tGx Gy: %.2f %.2f\n", d->gx, d->gy); printf("Geometry data:\n"); printf("\tDomain box size (x, y): %.2f, %.2f\n", d->grid.xlength, d->grid.ylength); printf("\tCells (x, y): %d, %d\n", d->grid.imax, d->grid.jmax); printf("Timestep parameters:\n"); printf("\tDefault stepsize: %.2f, Final time %.2f\n", d->dt, d->te); printf("\tdt bound: %.6f\n", d->dtBound); printf("\tTau factor: %.2f\n", d->tau); printf("Iterative d parameters:\n"); printf("\tgamma factor: %f\n", d->gamma); } void initDiscretization(Discretization* d, Parameter* p) { d->problem = p->name; d->bcLeft = p->bcLeft; d->bcRight = p->bcRight; d->bcBottom = p->bcBottom; d->bcTop = p->bcTop; d->grid.imax = p->imax; d->grid.jmax = p->jmax; d->grid.xlength = p->xlength; d->grid.ylength = p->ylength; d->grid.dx = p->xlength / p->imax; d->grid.dy = p->ylength / p->jmax; d->re = p->re; d->gx = p->gx; d->gy = p->gy; d->dt = p->dt; d->te = p->te; d->tau = p->tau; d->gamma = p->gamma; int imax = d->grid.imax; int jmax = d->grid.jmax; size_t size = (imax + 2) * (jmax + 2) * sizeof(double); d->u = allocate(64, size); d->v = allocate(64, size); d->grid.s = allocate(64, size); d->p = allocate(64, size); d->rhs = allocate(64, size); d->f = allocate(64, size); d->g = allocate(64, size); for (int i = 0; i < (imax + 2) * (jmax + 2); i++) { d->u[i] = p->u_init; d->v[i] = p->v_init; d->p[i] = p->p_init; d->rhs[i] = 0.0; d->f[i] = 0.0; d->g[i] = 0.0; d->grid.s[i] = FLUID; } double dx = d->grid.dx; double dy = d->grid.dy; double invSqrSum = 1.0 / (dx * dx) + 1.0 / (dy * dy); d->dtBound = 0.5 * d->re * 1.0 / invSqrSum; double xCenter = 0, yCenter = 0, radius = 0; double x1 = 0, x2 = 0, y1 = 0, y2 = 0; int* s = d->grid.s; switch (p->shape) { case NOSHAPE: break; case RECT: x1 = p->xCenter - p->xRectLength / 2; x2 = p->xCenter + p->xRectLength / 2; y1 = p->yCenter - p->yRectLength / 2; y2 = p->yCenter + p->yRectLength / 2; for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { if ((x1 <= (i * dx)) && ((i * dx) <= x2) && (y1 <= (j * dy)) && ((j * dy) <= y2)) { S(i, j) = OBSTACLE; } } } break; case CIRCLE: xCenter = p->xCenter; yCenter = p->yCenter; radius = p->circleRadius; for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { if (distance((i * dx), (j * dy), xCenter, yCenter) <= radius) { S(i, j) = OBSTACLE; } } } break; } if (p->shape != NOSHAPE) { for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { if (S(i, j - 1) == FLUID && S(i, j + 1) == OBSTACLE && S(i, j) == OBSTACLE) S(i, j) = BOTTOM; // TOP if (S(i - 1, j) == FLUID && S(i + 1, j) == OBSTACLE && S(i, j) == OBSTACLE) S(i, j) = LEFT; // LEFT if (S(i + 1, j) == FLUID && S(i - 1, j) == OBSTACLE && S(i, j) == OBSTACLE) S(i, j) = RIGHT; // RIGHT if (S(i, j + 1) == FLUID && S(i, j - 1) == OBSTACLE && S(i, j) == OBSTACLE) S(i, j) = TOP; // BOTTOM if (S(i - 1, j - 1) == FLUID && S(i, j - 1) == FLUID && S(i - 1, j) == FLUID && S(i + 1, j + 1) == OBSTACLE && (S(i, j) == OBSTACLE || S(i, j) == LEFT || S(i, j) == BOTTOM)) S(i, j) = BOTTOMLEFT; // TOPLEFT if (S(i + 1, j - 1) == FLUID && S(i, j - 1) == FLUID && S(i + 1, j) == FLUID && S(i - 1, j + 1) == OBSTACLE && (S(i, j) == OBSTACLE || S(i, j) == RIGHT || S(i, j) == BOTTOM)) S(i, j) = BOTTOMRIGHT; // TOPRIGHT if (S(i - 1, j + 1) == FLUID && S(i - 1, j) == FLUID && S(i, j + 1) == FLUID && S(i + 1, j - 1) == OBSTACLE && (S(i, j) == OBSTACLE || S(i, j) == LEFT || S(i, j) == TOP)) S(i, j) = TOPLEFT; // BOTTOMLEFT if (S(i + 1, j + 1) == FLUID && S(i + 1, j) == FLUID && S(i, j + 1) == FLUID && S(i - 1, j - 1) == OBSTACLE && (S(i, j) == OBSTACLE || S(i, j) == RIGHT || S(i, j) == TOP)) S(i, j) = TOPRIGHT; // BOTTOMRIGHT } } } #ifdef VERBOSE printConfig(solver); #endif } static double maxElement(Discretization* d, double* m) { int size = (d->grid.imax + 2) * (d->grid.jmax + 2); double maxval = DBL_MIN; for (int i = 0; i < size; i++) { maxval = MAX(maxval, fabs(m[i])); } return maxval; } void computeRHS(Discretization* d) { int imax = d->grid.imax; int jmax = d->grid.jmax; double idx = 1.0 / d->grid.dx; double idy = 1.0 / d->grid.dy; double idt = 1.0 / d->dt; double* rhs = d->rhs; double* f = d->f; double* g = d->g; int* s = d->grid.s; for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { RHS(i, j) = idt * ((F(i, j) - F(i - 1, j)) * idx + (G(i, j) - G(i, j - 1)) * idy); } } } void normalizePressure(Discretization* d) { int size = (d->grid.imax + 2) * (d->grid.jmax + 2); double* p = d->p; double avgP = 0.0; for (int i = 0; i < size; i++) { avgP += p[i]; } avgP /= size; for (int i = 0; i < size; i++) { p[i] = p[i] - avgP; } } void computeTimestep(Discretization* d) { double dt = d->dtBound; double dx = d->grid.dx; double dy = d->grid.dy; double umax = maxElement(d, d->u); double vmax = maxElement(d, d->v); if (umax > 0) { dt = (dt > dx / umax) ? dx / umax : dt; } if (vmax > 0) { dt = (dt > dy / vmax) ? dy / vmax : dt; } d->dt = dt * d->tau; } void setBoundaryConditions(Discretization* d) { int imax = d->grid.imax; int jmax = d->grid.jmax; double* u = d->u; double* v = d->v; // Left boundary switch (d->bcLeft) { case NOSLIP: for (int j = 1; j < jmax + 1; j++) { U(0, j) = 0.0; V(0, j) = -V(1, j); } break; case SLIP: for (int j = 1; j < jmax + 1; j++) { U(0, j) = 0.0; V(0, j) = V(1, j); } break; case OUTFLOW: for (int j = 1; j < jmax + 1; j++) { U(0, j) = U(1, j); V(0, j) = V(1, j); } break; case PERIODIC: break; } // Right boundary switch (d->bcRight) { case NOSLIP: for (int j = 1; j < jmax + 1; j++) { U(imax, j) = 0.0; V(imax + 1, j) = -V(imax, j); } break; case SLIP: for (int j = 1; j < jmax + 1; j++) { U(imax, j) = 0.0; V(imax + 1, j) = V(imax, j); } break; case OUTFLOW: for (int j = 1; j < jmax + 1; j++) { U(imax, j) = U(imax - 1, j); V(imax + 1, j) = V(imax, j); } break; case PERIODIC: break; } // Bottom boundary switch (d->bcBottom) { case NOSLIP: for (int i = 1; i < imax + 1; i++) { V(i, 0) = 0.0; U(i, 0) = -U(i, 1); } break; case SLIP: for (int i = 1; i < imax + 1; i++) { V(i, 0) = 0.0; U(i, 0) = U(i, 1); } break; case OUTFLOW: for (int i = 1; i < imax + 1; i++) { U(i, 0) = U(i, 1); V(i, 0) = V(i, 1); } break; case PERIODIC: break; } // Top boundary switch (d->bcTop) { case NOSLIP: for (int i = 1; i < imax + 1; i++) { V(i, jmax) = 0.0; U(i, jmax + 1) = -U(i, jmax); } break; case SLIP: for (int i = 1; i < imax + 1; i++) { V(i, jmax) = 0.0; U(i, jmax + 1) = U(i, jmax); } break; case OUTFLOW: for (int i = 1; i < imax + 1; i++) { U(i, jmax + 1) = U(i, jmax); V(i, jmax) = V(i, jmax - 1); } break; case PERIODIC: break; } } void setSpecialBoundaryCondition(Discretization* d) { int imax = d->grid.imax; int jmax = d->grid.jmax; double mDy = d->grid.dy; double* u = d->u; int* s = d->grid.s; if (strcmp(d->problem, "dcavity") == 0) { for (int i = 1; i < imax; i++) { U(i, jmax + 1) = 2.0 - U(i, jmax); } } else if (strcmp(d->problem, "canal") == 0) { double ylength = d->grid.ylength; double y; for (int j = 1; j < jmax + 1; j++) { y = mDy * (j - 0.5); U(0, j) = y * (ylength - y) * 4.0 / (ylength * ylength); } } else if (strcmp(d->problem, "backstep") == 0) { for (int j = 1; j < jmax + 1; j++) { if (S(0, j) == FLUID) U(0, j) = 1.0; } } else if (strcmp(d->problem, "karman") == 0) { for (int j = 1; j < jmax + 1; j++) { U(0, j) = 1.0; } } } void setObjectBoundaryCondition(Discretization* d) { int imax = d->grid.imax; int jmax = d->grid.jmax; double* u = d->u; double* v = d->v; int* s = d->grid.s; for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { switch (S(i, j)) { case TOP: U(i, j) = -U(i, j + 1); U(i - 1, j) = -U(i - 1, j + 1); V(i, j) = 0.0; break; case BOTTOM: U(i, j) = -U(i, j - 1); U(i - 1, j) = -U(i - 1, j - 1); V(i, j) = 0.0; break; case LEFT: U(i - 1, j) = 0.0; V(i, j) = -V(i - 1, j); V(i, j - 1) = -V(i - 1, j - 1); break; case RIGHT: U(i, j) = 0.0; V(i, j) = -V(i + 1, j); V(i, j - 1) = -V(i + 1, j - 1); break; case TOPLEFT: U(i, j) = -U(i, j + 1); U(i - 1, j) = 0.0; V(i, j) = 0.0; V(i, j - 1) = -V(i - 1, j - 1); break; case TOPRIGHT: U(i, j) = 0.0; U(i - 1, j) = -U(i - 1, j + 1); V(i, j) = 0.0; V(i, j - 1) = -V(i + 1, j - 1); break; case BOTTOMLEFT: U(i, j) = -U(i, j - 1); U(i - 1, j) = 0.0; V(i, j) = -V(i - 1, j); V(i, j - 1) = 0.0; break; case BOTTOMRIGHT: U(i, j) = 0.0; U(i - 1, j) = -U(i - 1, j - 1); V(i, j) = -V(i, j + 1); V(i, j - 1) = 0.0; break; } } } } void computeFG(Discretization* d) { double* u = d->u; double* v = d->v; double* f = d->f; double* g = d->g; int* s = d->grid.s; int imax = d->grid.imax; int jmax = d->grid.jmax; double gx = d->gx; double gy = d->gy; double gamma = d->gamma; double dt = d->dt; double inverseRe = 1.0 / d->re; double inverseDx = 1.0 / d->grid.dx; double inverseDy = 1.0 / d->grid.dy; double du2dx, dv2dy, duvdx, duvdy; double du2dx2, du2dy2, dv2dx2, dv2dy2; for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { if (S(i, j) == FLUID) { du2dx = inverseDx * 0.25 * ((U(i, j) + U(i + 1, j)) * (U(i, j) + U(i + 1, j)) - (U(i, j) + U(i - 1, j)) * (U(i, j) + U(i - 1, j))) + gamma * inverseDx * 0.25 * (fabs(U(i, j) + U(i + 1, j)) * (U(i, j) - U(i + 1, j)) + fabs(U(i, j) + U(i - 1, j)) * (U(i, j) - U(i - 1, j))); duvdy = inverseDy * 0.25 * ((V(i, j) + V(i + 1, j)) * (U(i, j) + U(i, j + 1)) - (V(i, j - 1) + V(i + 1, j - 1)) * (U(i, j) + U(i, j - 1))) + gamma * inverseDy * 0.25 * (fabs(V(i, j) + V(i + 1, j)) * (U(i, j) - U(i, j + 1)) + fabs(V(i, j - 1) + V(i + 1, j - 1)) * (U(i, j) - U(i, j - 1))); du2dx2 = inverseDx * inverseDx * (U(i + 1, j) - 2.0 * U(i, j) + U(i - 1, j)); du2dy2 = inverseDy * inverseDy * (U(i, j + 1) - 2.0 * U(i, j) + U(i, j - 1)); F(i, j) = U(i, j) + dt * (inverseRe * (du2dx2 + du2dy2) - du2dx - duvdy + gx); duvdx = inverseDx * 0.25 * ((U(i, j) + U(i, j + 1)) * (V(i, j) + V(i + 1, j)) - (U(i - 1, j) + U(i - 1, j + 1)) * (V(i, j) + V(i - 1, j))) + gamma * inverseDx * 0.25 * (fabs(U(i, j) + U(i, j + 1)) * (V(i, j) - V(i + 1, j)) + fabs(U(i - 1, j) + U(i - 1, j + 1)) * (V(i, j) - V(i - 1, j))); dv2dy = inverseDy * 0.25 * ((V(i, j) + V(i, j + 1)) * (V(i, j) + V(i, j + 1)) - (V(i, j) + V(i, j - 1)) * (V(i, j) + V(i, j - 1))) + gamma * inverseDy * 0.25 * (fabs(V(i, j) + V(i, j + 1)) * (V(i, j) - V(i, j + 1)) + fabs(V(i, j) + V(i, j - 1)) * (V(i, j) - V(i, j - 1))); dv2dx2 = inverseDx * inverseDx * (V(i + 1, j) - 2.0 * V(i, j) + V(i - 1, j)); dv2dy2 = inverseDy * inverseDy * (V(i, j + 1) - 2.0 * V(i, j) + V(i, j - 1)); G(i, j) = V(i, j) + dt * (inverseRe * (dv2dx2 + dv2dy2) - duvdx - dv2dy + gy); } else { switch (S(i, j)) { case TOP: G(i, j) = V(i, j); break; case BOTTOM: G(i, j - 1) = V(i, j - 1); break; case LEFT: F(i - 1, j) = U(i - 1, j); break; case RIGHT: F(i, j) = U(i, j); break; case TOPLEFT: F(i - 1, j) = U(i - 1, j); G(i, j) = V(i, j); break; case TOPRIGHT: F(i, j) = U(i, j); G(i, j) = V(i, j); break; case BOTTOMLEFT: F(i - 1, j) = U(i - 1, j); G(i, j - 1) = V(i, j - 1); break; case BOTTOMRIGHT: F(i, j) = U(i, j); G(i, j - 1) = V(i, j - 1); break; } } } } /* ---------------------- boundary of F --------------------------- */ for (int j = 1; j < jmax + 1; j++) { F(0, j) = U(0, j); F(imax, j) = U(imax, j); } /* ---------------------- boundary of G --------------------------- */ for (int i = 1; i < imax + 1; i++) { G(i, 0) = V(i, 0); G(i, jmax) = V(i, jmax); } } void adaptUV(Discretization* d) { int imax = d->grid.imax; int jmax = d->grid.jmax; double* p = d->p; double* u = d->u; double* v = d->v; double* f = d->f; double* g = d->g; double factorX = d->dt / d->grid.dx; double factorY = d->dt / d->grid.dy; for (int j = 1; j < jmax + 1; j++) { for (int i = 1; i < imax + 1; i++) { U(i, j) = F(i, j) - (P(i + 1, j) - P(i, j)) * factorX; V(i, j) = G(i, j) - (P(i, j + 1) - P(i, j)) * factorY; } } } void writeResult(Discretization* d) { int imax = d->grid.imax; int jmax = d->grid.jmax; double dx = d->grid.dx; double dy = d->grid.dy; double* p = d->p; double* u = d->u; double* v = d->v; double x = 0.0, y = 0.0; FILE* fp; fp = fopen("pressure.dat", "w"); if (fp == NULL) { printf("Error!\n"); exit(EXIT_FAILURE); } for (int j = 1; j < jmax + 1; j++) { y = (double)(j - 0.5) * dy; for (int i = 1; i < imax + 1; i++) { x = (double)(i - 0.5) * dx; fprintf(fp, "%.2f %.2f %f\n", x, y, P(i, j)); } fprintf(fp, "\n"); } fclose(fp); fp = fopen("velocity.dat", "w"); if (fp == NULL) { printf("Error!\n"); exit(EXIT_FAILURE); } for (int j = 1; j < jmax + 1; j++) { y = dy * (j - 0.5); for (int i = 1; i < imax + 1; i++) { x = dx * (i - 0.5); double velU = (U(i, j) + U(i - 1, j)) / 2.0; double velV = (V(i, j) + V(i, j - 1)) / 2.0; double len = sqrt((velU * velU) + (velV * velV)); fprintf(fp, "%.2f %.2f %f %f %f\n", x, y, velU, velV, len); } } fclose(fp); }