Separate discretization and solver. Port Multigrid solver.
This commit is contained in:
parent
4c0fefe1b5
commit
5a872d0533
@ -21,6 +21,7 @@ VPATH = $(SRC_DIR)
|
||||
SRC = $(filter-out $(wildcard $(SRC_DIR)/*-*.c),$(wildcard $(SRC_DIR)/*.c))
|
||||
ASM = $(patsubst $(SRC_DIR)/%.c, $(BUILD_DIR)/%.s, $(SRC))
|
||||
OBJ = $(patsubst $(SRC_DIR)/%.c, $(BUILD_DIR)/%.o, $(SRC))
|
||||
OBJ += $(BUILD_DIR)/solver-$(SOLVER).o
|
||||
SOURCES = $(SRC) $(wildcard $(SRC_DIR)/*.h)
|
||||
CPPFLAGS := $(CPPFLAGS) $(DEFINES) $(OPTIONS) $(INCLUDES)
|
||||
|
||||
|
@ -1,12 +1,12 @@
|
||||
# Supported: GCC, CLANG, ICC
|
||||
TAG ?= CLANG
|
||||
ENABLE_OPENMP ?= false
|
||||
# Supported: sor, mg
|
||||
SOLVER ?= sor
|
||||
# Run in debug settings
|
||||
DEBUG ?= false
|
||||
|
||||
#Feature options
|
||||
OPTIONS += -DARRAY_ALIGNMENT=64
|
||||
# OPTIONS += -DVERBOSE
|
||||
#OPTIONS += -DVERBOSE
|
||||
#OPTIONS += -DDEBUG
|
||||
#OPTIONS += -DBOUNDCHECK
|
||||
#OPTIONS += -DVERBOSE_AFFINITY
|
||||
#OPTIONS += -DVERBOSE_DATASIZE
|
||||
#OPTIONS += -DVERBOSE_TIMER
|
||||
|
@ -36,11 +36,13 @@ te 10.0 # final time
|
||||
dt 0.02 # time stepsize
|
||||
tau 0.5 # safety factor for time stepsize control (<0 constant delt)
|
||||
|
||||
# Pressure Iteration Data:
|
||||
# Solver Data:
|
||||
# -----------------------
|
||||
|
||||
itermax 1000 # maximal number of pressure iteration in one time step
|
||||
eps 0.001 # stopping tolerance for pressure iteration
|
||||
rho 0.5
|
||||
omg 1.7 # relaxation parameter for SOR iteration
|
||||
gamma 0.9 # upwind differencing factor gamma
|
||||
levels 5 # Multigrid levels
|
||||
#===============================================================================
|
||||
|
@ -2,16 +2,18 @@ CC = clang
|
||||
GCC = cc
|
||||
LINKER = $(CC)
|
||||
|
||||
ifeq ($(ENABLE_OPENMP),true)
|
||||
ifeq ($(strip $(ENABLE_OPENMP)),true)
|
||||
OPENMP = -fopenmp
|
||||
#OPENMP = -Xpreprocessor -fopenmp #required on Macos with homebrew libomp
|
||||
LIBS = # -lomp
|
||||
endif
|
||||
ifeq ($(strip $(DEBUG)),true)
|
||||
CFLAGS = -O0 -g -std=c17
|
||||
else
|
||||
CFLAGS = -O3 -std=c17 $(OPENMP)
|
||||
endif
|
||||
|
||||
VERSION = --version
|
||||
# CFLAGS = -O3 -std=c17 $(OPENMP)
|
||||
CFLAGS = -Ofast -std=c17
|
||||
#CFLAGS = -Ofast -fnt-store=aggressive -std=c99 $(OPENMP) #AMD CLANG
|
||||
LFLAGS = $(OPENMP) -lm
|
||||
DEFINES = -D_GNU_SOURCE# -DDEBUG
|
||||
DEFINES = -D_GNU_SOURCE
|
||||
INCLUDES =
|
||||
|
435
BasicSolver/2D-seq/src/discretization.c
Normal file
435
BasicSolver/2D-seq/src/discretization.c
Normal file
@ -0,0 +1,435 @@
|
||||
/*
|
||||
* Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
|
||||
* All rights reserved. This file is part of nusif-solver.
|
||||
* Use of this source code is governed by a MIT style
|
||||
* license that can be found in the LICENSE file.
|
||||
*/
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "allocate.h"
|
||||
#include "discretization.h"
|
||||
#include "parameter.h"
|
||||
#include "util.h"
|
||||
|
||||
static void print(Discretization* d, double* grid)
|
||||
{
|
||||
int imax = d->grid.imax;
|
||||
|
||||
for (int j = 0; j < d->grid.jmax + 2; j++) {
|
||||
printf("%02d: ", j);
|
||||
for (int i = 0; i < d->grid.imax + 2; i++) {
|
||||
printf("%12.8f ", grid[j * (imax + 2) + i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
static void printConfig(Discretization* d)
|
||||
{
|
||||
printf("Parameters for #%s#\n", d->problem);
|
||||
printf("Boundary conditions Left:%d Right:%d Bottom:%d Top:%d\n",
|
||||
d->bcLeft,
|
||||
d->bcRight,
|
||||
d->bcBottom,
|
||||
d->bcTop);
|
||||
printf("\tReynolds number: %.2f\n", d->re);
|
||||
printf("\tGx Gy: %.2f %.2f\n", d->gx, d->gy);
|
||||
printf("Geometry data:\n");
|
||||
printf("\tDomain box size (x, y): %.2f, %.2f\n", d->grid.xlength, d->grid.ylength);
|
||||
printf("\tCells (x, y): %d, %d\n", d->grid.imax, d->grid.jmax);
|
||||
printf("Timestep parameters:\n");
|
||||
printf("\tDefault stepsize: %.2f, Final time %.2f\n", d->dt, d->te);
|
||||
printf("\tdt bound: %.6f\n", d->dtBound);
|
||||
printf("\tTau factor: %.2f\n", d->tau);
|
||||
printf("Iterative d parameters:\n");
|
||||
printf("\tgamma factor: %f\n", d->gamma);
|
||||
}
|
||||
|
||||
void initDiscretization(Discretization* d, Parameter* p)
|
||||
{
|
||||
d->problem = p->name;
|
||||
d->bcLeft = p->bcLeft;
|
||||
d->bcRight = p->bcRight;
|
||||
d->bcBottom = p->bcBottom;
|
||||
d->bcTop = p->bcTop;
|
||||
d->grid.imax = p->imax;
|
||||
d->grid.jmax = p->jmax;
|
||||
d->grid.xlength = p->xlength;
|
||||
d->grid.ylength = p->ylength;
|
||||
d->grid.dx = p->xlength / p->imax;
|
||||
d->grid.dy = p->ylength / p->jmax;
|
||||
d->re = p->re;
|
||||
d->gx = p->gx;
|
||||
d->gy = p->gy;
|
||||
d->dt = p->dt;
|
||||
d->te = p->te;
|
||||
d->tau = p->tau;
|
||||
d->gamma = p->gamma;
|
||||
|
||||
int imax = d->grid.imax;
|
||||
int jmax = d->grid.jmax;
|
||||
size_t size = (imax + 2) * (jmax + 2) * sizeof(double);
|
||||
d->u = allocate(64, size);
|
||||
d->v = allocate(64, size);
|
||||
d->p = allocate(64, size);
|
||||
d->rhs = allocate(64, size);
|
||||
d->f = allocate(64, size);
|
||||
d->g = allocate(64, size);
|
||||
|
||||
for (int i = 0; i < (imax + 2) * (jmax + 2); i++) {
|
||||
d->u[i] = p->u_init;
|
||||
d->v[i] = p->v_init;
|
||||
d->p[i] = p->p_init;
|
||||
d->rhs[i] = 0.0;
|
||||
d->f[i] = 0.0;
|
||||
d->g[i] = 0.0;
|
||||
}
|
||||
|
||||
double dx = d->grid.dx;
|
||||
double dy = d->grid.dy;
|
||||
double invSqrSum = 1.0 / (dx * dx) + 1.0 / (dy * dy);
|
||||
d->dtBound = 0.5 * d->re * 1.0 / invSqrSum;
|
||||
#ifdef VERBOSE
|
||||
printConfig(d);
|
||||
#endif
|
||||
}
|
||||
|
||||
void computeRHS(Discretization* d)
|
||||
{
|
||||
int imax = d->grid.imax;
|
||||
int jmax = d->grid.jmax;
|
||||
double idx = 1.0 / d->grid.dx;
|
||||
double idy = 1.0 / d->grid.dy;
|
||||
double idt = 1.0 / d->dt;
|
||||
double* rhs = d->rhs;
|
||||
double* f = d->f;
|
||||
double* g = d->g;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
RHS(i, j) = idt *
|
||||
((F(i, j) - F(i - 1, j)) * idx + (G(i, j) - G(i, j - 1)) * idy);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static double maxElement(Discretization* d, double* m)
|
||||
{
|
||||
int size = (d->grid.imax + 2) * (d->grid.jmax + 2);
|
||||
double maxval = DBL_MIN;
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
maxval = MAX(maxval, fabs(m[i]));
|
||||
}
|
||||
|
||||
return maxval;
|
||||
}
|
||||
|
||||
void normalizePressure(Discretization* d)
|
||||
{
|
||||
int size = (d->grid.imax + 2) * (d->grid.jmax + 2);
|
||||
double* p = d->p;
|
||||
double avgP = 0.0;
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
avgP += p[i];
|
||||
}
|
||||
avgP /= size;
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
p[i] = p[i] - avgP;
|
||||
}
|
||||
}
|
||||
|
||||
void computeTimestep(Discretization* d)
|
||||
{
|
||||
double dt = d->dtBound;
|
||||
double dx = d->grid.dx;
|
||||
double dy = d->grid.dy;
|
||||
double umax = maxElement(d, d->u);
|
||||
double vmax = maxElement(d, d->v);
|
||||
|
||||
if (umax > 0) {
|
||||
dt = (dt > dx / umax) ? dx / umax : dt;
|
||||
}
|
||||
if (vmax > 0) {
|
||||
dt = (dt > dy / vmax) ? dy / vmax : dt;
|
||||
}
|
||||
|
||||
d->dt = dt * d->tau;
|
||||
}
|
||||
|
||||
void setBoundaryConditions(Discretization* d)
|
||||
{
|
||||
int imax = d->grid.imax;
|
||||
int jmax = d->grid.jmax;
|
||||
double* u = d->u;
|
||||
double* v = d->v;
|
||||
|
||||
// Left boundary
|
||||
switch (d->bcLeft) {
|
||||
case NOSLIP:
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
U(0, j) = 0.0;
|
||||
V(0, j) = -V(1, j);
|
||||
}
|
||||
break;
|
||||
case SLIP:
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
U(0, j) = 0.0;
|
||||
V(0, j) = V(1, j);
|
||||
}
|
||||
break;
|
||||
case OUTFLOW:
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
U(0, j) = U(1, j);
|
||||
V(0, j) = V(1, j);
|
||||
}
|
||||
break;
|
||||
case PERIODIC:
|
||||
break;
|
||||
}
|
||||
|
||||
// Right boundary
|
||||
switch (d->bcRight) {
|
||||
case NOSLIP:
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
U(imax, j) = 0.0;
|
||||
V(imax + 1, j) = -V(imax, j);
|
||||
}
|
||||
break;
|
||||
case SLIP:
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
U(imax, j) = 0.0;
|
||||
V(imax + 1, j) = V(imax, j);
|
||||
}
|
||||
break;
|
||||
case OUTFLOW:
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
U(imax, j) = U(imax - 1, j);
|
||||
V(imax + 1, j) = V(imax, j);
|
||||
}
|
||||
break;
|
||||
case PERIODIC:
|
||||
break;
|
||||
}
|
||||
|
||||
// Bottom boundary
|
||||
switch (d->bcBottom) {
|
||||
case NOSLIP:
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
V(i, 0) = 0.0;
|
||||
U(i, 0) = -U(i, 1);
|
||||
}
|
||||
break;
|
||||
case SLIP:
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
V(i, 0) = 0.0;
|
||||
U(i, 0) = U(i, 1);
|
||||
}
|
||||
break;
|
||||
case OUTFLOW:
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
U(i, 0) = U(i, 1);
|
||||
V(i, 0) = V(i, 1);
|
||||
}
|
||||
break;
|
||||
case PERIODIC:
|
||||
break;
|
||||
}
|
||||
|
||||
// Top boundary
|
||||
switch (d->bcTop) {
|
||||
case NOSLIP:
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
V(i, jmax) = 0.0;
|
||||
U(i, jmax + 1) = -U(i, jmax);
|
||||
}
|
||||
break;
|
||||
case SLIP:
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
V(i, jmax) = 0.0;
|
||||
U(i, jmax + 1) = U(i, jmax);
|
||||
}
|
||||
break;
|
||||
case OUTFLOW:
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
U(i, jmax + 1) = U(i, jmax);
|
||||
V(i, jmax) = V(i, jmax - 1);
|
||||
}
|
||||
break;
|
||||
case PERIODIC:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void setSpecialBoundaryCondition(Discretization* d)
|
||||
{
|
||||
int imax = d->grid.imax;
|
||||
int jmax = d->grid.jmax;
|
||||
double mDy = d->grid.dy;
|
||||
double* u = d->u;
|
||||
|
||||
if (strcmp(d->problem, "dcavity") == 0) {
|
||||
for (int i = 1; i < imax; i++) {
|
||||
U(i, jmax + 1) = 2.0 - U(i, jmax);
|
||||
}
|
||||
} else if (strcmp(d->problem, "canal") == 0) {
|
||||
double ylength = d->grid.ylength;
|
||||
double y;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
y = mDy * (j - 0.5);
|
||||
U(0, j) = y * (ylength - y) * 4.0 / (ylength * ylength);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void computeFG(Discretization* d)
|
||||
{
|
||||
double* u = d->u;
|
||||
double* v = d->v;
|
||||
double* f = d->f;
|
||||
double* g = d->g;
|
||||
int imax = d->grid.imax;
|
||||
int jmax = d->grid.jmax;
|
||||
double gx = d->gx;
|
||||
double gy = d->gy;
|
||||
double gamma = d->gamma;
|
||||
double dt = d->dt;
|
||||
double inverseRe = 1.0 / d->re;
|
||||
double inverseDx = 1.0 / d->grid.dx;
|
||||
double inverseDy = 1.0 / d->grid.dy;
|
||||
double du2dx, dv2dy, duvdx, duvdy;
|
||||
double du2dx2, du2dy2, dv2dx2, dv2dy2;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
du2dx = inverseDx * 0.25 *
|
||||
((U(i, j) + U(i + 1, j)) * (U(i, j) + U(i + 1, j)) -
|
||||
(U(i, j) + U(i - 1, j)) * (U(i, j) + U(i - 1, j))) +
|
||||
gamma * inverseDx * 0.25 *
|
||||
(fabs(U(i, j) + U(i + 1, j)) * (U(i, j) - U(i + 1, j)) +
|
||||
fabs(U(i, j) + U(i - 1, j)) * (U(i, j) - U(i - 1, j)));
|
||||
|
||||
duvdy = inverseDy * 0.25 *
|
||||
((V(i, j) + V(i + 1, j)) * (U(i, j) + U(i, j + 1)) -
|
||||
(V(i, j - 1) + V(i + 1, j - 1)) * (U(i, j) + U(i, j - 1))) +
|
||||
gamma * inverseDy * 0.25 *
|
||||
(fabs(V(i, j) + V(i + 1, j)) * (U(i, j) - U(i, j + 1)) +
|
||||
fabs(V(i, j - 1) + V(i + 1, j - 1)) *
|
||||
(U(i, j) - U(i, j - 1)));
|
||||
|
||||
du2dx2 = inverseDx * inverseDx * (U(i + 1, j) - 2.0 * U(i, j) + U(i - 1, j));
|
||||
du2dy2 = inverseDy * inverseDy * (U(i, j + 1) - 2.0 * U(i, j) + U(i, j - 1));
|
||||
F(i, j) = U(i, j) + dt * (inverseRe * (du2dx2 + du2dy2) - du2dx - duvdy + gx);
|
||||
|
||||
duvdx = inverseDx * 0.25 *
|
||||
((U(i, j) + U(i, j + 1)) * (V(i, j) + V(i + 1, j)) -
|
||||
(U(i - 1, j) + U(i - 1, j + 1)) * (V(i, j) + V(i - 1, j))) +
|
||||
gamma * inverseDx * 0.25 *
|
||||
(fabs(U(i, j) + U(i, j + 1)) * (V(i, j) - V(i + 1, j)) +
|
||||
fabs(U(i - 1, j) + U(i - 1, j + 1)) *
|
||||
(V(i, j) - V(i - 1, j)));
|
||||
|
||||
dv2dy = inverseDy * 0.25 *
|
||||
((V(i, j) + V(i, j + 1)) * (V(i, j) + V(i, j + 1)) -
|
||||
(V(i, j) + V(i, j - 1)) * (V(i, j) + V(i, j - 1))) +
|
||||
gamma * inverseDy * 0.25 *
|
||||
(fabs(V(i, j) + V(i, j + 1)) * (V(i, j) - V(i, j + 1)) +
|
||||
fabs(V(i, j) + V(i, j - 1)) * (V(i, j) - V(i, j - 1)));
|
||||
|
||||
dv2dx2 = inverseDx * inverseDx * (V(i + 1, j) - 2.0 * V(i, j) + V(i - 1, j));
|
||||
dv2dy2 = inverseDy * inverseDy * (V(i, j + 1) - 2.0 * V(i, j) + V(i, j - 1));
|
||||
G(i, j) = V(i, j) + dt * (inverseRe * (dv2dx2 + dv2dy2) - duvdx - dv2dy + gy);
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------- boundary of F --------------------------- */
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
F(0, j) = U(0, j);
|
||||
F(imax, j) = U(imax, j);
|
||||
}
|
||||
|
||||
/* ---------------------- boundary of G --------------------------- */
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
G(i, 0) = V(i, 0);
|
||||
G(i, jmax) = V(i, jmax);
|
||||
}
|
||||
}
|
||||
|
||||
void adaptUV(Discretization* d)
|
||||
{
|
||||
int imax = d->grid.imax;
|
||||
int jmax = d->grid.jmax;
|
||||
double* p = d->p;
|
||||
double* u = d->u;
|
||||
double* v = d->v;
|
||||
double* f = d->f;
|
||||
double* g = d->g;
|
||||
double factorX = d->dt / d->grid.dx;
|
||||
double factorY = d->dt / d->grid.dy;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
U(i, j) = F(i, j) - (P(i + 1, j) - P(i, j)) * factorX;
|
||||
V(i, j) = G(i, j) - (P(i, j + 1) - P(i, j)) * factorY;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void writeResult(Discretization* d)
|
||||
{
|
||||
int imax = d->grid.imax;
|
||||
int jmax = d->grid.jmax;
|
||||
double dx = d->grid.dx;
|
||||
double dy = d->grid.dy;
|
||||
double* p = d->p;
|
||||
double* u = d->u;
|
||||
double* v = d->v;
|
||||
double x = 0.0, y = 0.0;
|
||||
|
||||
FILE* fp;
|
||||
fp = fopen("pressure.dat", "w");
|
||||
|
||||
if (fp == NULL) {
|
||||
printf("Error!\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
y = (double)(j - 0.5) * dy;
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
x = (double)(i - 0.5) * dx;
|
||||
fprintf(fp, "%.2f %.2f %f\n", x, y, P(i, j));
|
||||
}
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
|
||||
fp = fopen("velocity.dat", "w");
|
||||
|
||||
if (fp == NULL) {
|
||||
printf("Error!\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
y = dy * (j - 0.5);
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
x = dx * (i - 0.5);
|
||||
double velU = (U(i, j) + U(i - 1, j)) / 2.0;
|
||||
double velV = (V(i, j) + V(i, j - 1)) / 2.0;
|
||||
double len = sqrt((velU * velU) + (velV * velV));
|
||||
fprintf(fp, "%.2f %.2f %f %f %f\n", x, y, velU, velV, len);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
}
|
40
BasicSolver/2D-seq/src/discretization.h
Normal file
40
BasicSolver/2D-seq/src/discretization.h
Normal file
@ -0,0 +1,40 @@
|
||||
/*
|
||||
* Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
|
||||
* All rights reserved. This file is part of nusif-solver.
|
||||
* Use of this source code is governed by a MIT style
|
||||
* license that can be found in the LICENSE file.
|
||||
*/
|
||||
#ifndef __DISCRETIZATION_H_
|
||||
#define __DISCRETIZATION_H_
|
||||
#include "grid.h"
|
||||
#include "parameter.h"
|
||||
|
||||
enum BC { NOSLIP = 1, SLIP, OUTFLOW, PERIODIC };
|
||||
|
||||
typedef struct {
|
||||
/* geometry and grid information */
|
||||
Grid grid;
|
||||
/* arrays */
|
||||
double *p, *rhs;
|
||||
double *f, *g;
|
||||
double *u, *v;
|
||||
/* parameters */
|
||||
double re, tau, gamma;
|
||||
double gx, gy;
|
||||
/* time stepping */
|
||||
double dt, te;
|
||||
double dtBound;
|
||||
char* problem;
|
||||
int bcLeft, bcRight, bcBottom, bcTop;
|
||||
} Discretization;
|
||||
|
||||
extern void initDiscretization(Discretization*, Parameter*);
|
||||
extern void computeRHS(Discretization*);
|
||||
extern void normalizePressure(Discretization*);
|
||||
extern void computeTimestep(Discretization*);
|
||||
extern void setBoundaryConditions(Discretization*);
|
||||
extern void setSpecialBoundaryCondition(Discretization*);
|
||||
extern void computeFG(Discretization*);
|
||||
extern void adaptUV(Discretization*);
|
||||
extern void writeResult(Discretization*);
|
||||
#endif
|
@ -4,12 +4,11 @@
|
||||
* Use of this source code is governed by a MIT-style
|
||||
* license that can be found in the LICENSE file.
|
||||
*/
|
||||
#include <float.h>
|
||||
#include <limits.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "discretization.h"
|
||||
#include "parameter.h"
|
||||
#include "progress.h"
|
||||
#include "solver.h"
|
||||
@ -17,39 +16,41 @@
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
double S, E;
|
||||
Parameter params;
|
||||
Solver solver;
|
||||
initParameter(¶ms);
|
||||
double timeStart, timeStop;
|
||||
Parameter p;
|
||||
Discretization d;
|
||||
Solver s;
|
||||
initParameter(&p);
|
||||
|
||||
if (argc != 2) {
|
||||
printf("Usage: %s <configFile>\n", argv[0]);
|
||||
exit(EXIT_SUCCESS);
|
||||
}
|
||||
|
||||
readParameter(¶ms, argv[1]);
|
||||
printParameter(¶ms);
|
||||
initSolver(&solver, ¶ms);
|
||||
readParameter(&p, argv[1]);
|
||||
printParameter(&p);
|
||||
initDiscretization(&d, &p);
|
||||
initSolver(&s, &d, &p);
|
||||
#ifndef VERBOSE
|
||||
initProgress(solver.te);
|
||||
initProgress(d.te);
|
||||
#endif
|
||||
|
||||
double tau = solver.tau;
|
||||
double te = solver.te;
|
||||
double tau = d.tau;
|
||||
double te = d.te;
|
||||
double t = 0.0;
|
||||
int nt = 0;
|
||||
|
||||
S = getTimeStamp();
|
||||
timeStart = getTimeStamp();
|
||||
while (t <= te) {
|
||||
if (tau > 0.0) computeTimestep(&solver);
|
||||
setBoundaryConditions(&solver);
|
||||
setSpecialBoundaryCondition(&solver);
|
||||
computeFG(&solver);
|
||||
computeRHS(&solver);
|
||||
if (nt % 100 == 0) normalizePressure(&solver);
|
||||
solveRB(&solver);
|
||||
adaptUV(&solver);
|
||||
t += solver.dt;
|
||||
if (tau > 0.0) computeTimestep(&d);
|
||||
setBoundaryConditions(&d);
|
||||
setSpecialBoundaryCondition(&d);
|
||||
computeFG(&d);
|
||||
computeRHS(&d);
|
||||
if (nt % 100 == 0) normalizePressure(&d);
|
||||
solve(&s, d.p, d.rhs);
|
||||
adaptUV(&d);
|
||||
t += d.dt;
|
||||
nt++;
|
||||
|
||||
#ifdef VERBOSE
|
||||
@ -58,9 +59,9 @@ int main(int argc, char** argv)
|
||||
printProgress(t);
|
||||
#endif
|
||||
}
|
||||
E = getTimeStamp();
|
||||
timeStop = getTimeStamp();
|
||||
stopProgress();
|
||||
printf("Solution took %.2fs\n", E - S);
|
||||
writeResult(&solver);
|
||||
printf("Solution took %.2fs\n", timeStop - timeStart);
|
||||
writeResult(&d);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
@ -24,6 +24,8 @@ void initParameter(Parameter* param)
|
||||
param->re = 100.0;
|
||||
param->gamma = 0.9;
|
||||
param->tau = 0.5;
|
||||
param->rho = 0.99;
|
||||
param->levels = 5;
|
||||
}
|
||||
|
||||
void readParameter(Parameter* param, const char* filename)
|
||||
@ -61,6 +63,7 @@ void readParameter(Parameter* param, const char* filename)
|
||||
PARSE_INT(imax);
|
||||
PARSE_INT(jmax);
|
||||
PARSE_INT(itermax);
|
||||
PARSE_INT(levels);
|
||||
PARSE_REAL(eps);
|
||||
PARSE_REAL(omg);
|
||||
PARSE_REAL(re);
|
||||
@ -78,6 +81,7 @@ void readParameter(Parameter* param, const char* filename)
|
||||
PARSE_REAL(u_init);
|
||||
PARSE_REAL(v_init);
|
||||
PARSE_REAL(p_init);
|
||||
PARSE_REAL(rho);
|
||||
}
|
||||
}
|
||||
|
||||
@ -108,4 +112,6 @@ void printParameter(Parameter* param)
|
||||
printf("\tepsilon (stopping tolerance) : %f\n", param->eps);
|
||||
printf("\tgamma (stopping tolerance) : %f\n", param->gamma);
|
||||
printf("\tomega (SOR relaxation): %f\n", param->omg);
|
||||
printf("\trho (SOR relaxation): %f\n", param->rho);
|
||||
printf("\tMultiGrid levels : %d\n", param->levels);
|
||||
}
|
||||
|
@ -10,8 +10,8 @@
|
||||
typedef struct {
|
||||
double xlength, ylength;
|
||||
int imax, jmax;
|
||||
int itermax;
|
||||
double eps, omg;
|
||||
int itermax, levels;
|
||||
double eps, omg, rho;
|
||||
double re, tau, gamma;
|
||||
double te, dt;
|
||||
double gx, gy;
|
||||
|
192
BasicSolver/2D-seq/src/solver-mg.c
Normal file
192
BasicSolver/2D-seq/src/solver-mg.c
Normal file
@ -0,0 +1,192 @@
|
||||
/*
|
||||
* Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
|
||||
* All rights reserved. This file is part of nusif-solver.
|
||||
* Use of this source code is governed by a MIT style
|
||||
* license that can be found in the LICENSE file.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "allocate.h"
|
||||
#include "discretization.h"
|
||||
#include "parameter.h"
|
||||
#include "solver.h"
|
||||
#include "util.h"
|
||||
|
||||
#define FINEST_LEVEL 0
|
||||
#define S(i, j) s[(j) * (imax + 2) + (i)]
|
||||
#define E(i, j) e[(j) * (imax + 2) + (i)]
|
||||
#define R(i, j) r[(j) * (imax + 2) + (i)]
|
||||
#define OLD(i, j) old[(j) * (imax + 2) + (i)]
|
||||
|
||||
static void restrictMG(Solver* s, int level, int imax, int jmax)
|
||||
{
|
||||
double* r = s->r[level + 1];
|
||||
double* old = s->r[level];
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
R(i, j) = (OLD(2 * i - 1, 2 * j - 1) + OLD(2 * i, 2 * j - 1) * 2 +
|
||||
OLD(2 * i + 1, 2 * j - 1) + OLD(2 * i - 1, 2 * j) * 2 +
|
||||
OLD(2 * i, 2 * j) * 4 + OLD(2 * i + 1, 2 * j) * 2 +
|
||||
OLD(2 * i - 1, 2 * j + 1) + OLD(2 * i, 2 * j + 1) * 2 +
|
||||
OLD(2 * i + 1, 2 * j + 1)) /
|
||||
16.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void prolongate(Solver* s, int level, int imax, int jmax)
|
||||
{
|
||||
double* old = s->r[level + 1];
|
||||
double* e = s->r[level];
|
||||
|
||||
for (int j = 2; j < jmax + 1; j += 2) {
|
||||
for (int i = 2; i < imax + 1; i += 2) {
|
||||
E(i, j) = OLD(i / 2, j / 2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void correct(Solver* s, double* p, int level, int imax, int jmax)
|
||||
{
|
||||
double* e = s->e[level];
|
||||
for (int j = 1; j < jmax + 1; ++j) {
|
||||
for (int i = 1; i < imax + 1; ++i) {
|
||||
P(i, j) += E(i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void setBoundaryCondition(double* p, int imax, int jmax)
|
||||
{
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
P(i, 0) = P(i, 1);
|
||||
P(i, jmax + 1) = P(i, jmax);
|
||||
}
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
P(0, j) = P(1, j);
|
||||
P(imax + 1, j) = P(imax, j);
|
||||
}
|
||||
}
|
||||
|
||||
static double smooth(Solver* s, double* p, double* rhs, int level, int imax, int jmax)
|
||||
{
|
||||
double dx2 = s->grid->dx * s->grid->dx;
|
||||
double dy2 = s->grid->dy * s->grid->dy;
|
||||
double idx2 = 1.0 / dx2;
|
||||
double idy2 = 1.0 / dy2;
|
||||
double factor = s->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2);
|
||||
double* r = s->r[level];
|
||||
double res = 1.0;
|
||||
int pass, jsw, isw;
|
||||
|
||||
jsw = 1;
|
||||
|
||||
for (pass = 0; pass < 2; pass++) {
|
||||
isw = jsw;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
for (int i = isw; i < imax + 1; i += 2) {
|
||||
|
||||
R(i, j) = RHS(i, j) -
|
||||
((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 +
|
||||
(P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2);
|
||||
|
||||
P(i, j) -= (factor * R(i, j));
|
||||
res += (R(i, j) * R(i, j));
|
||||
}
|
||||
isw = 3 - isw;
|
||||
}
|
||||
jsw = 3 - jsw;
|
||||
}
|
||||
|
||||
res = res / (double)(imax * jmax);
|
||||
return res;
|
||||
}
|
||||
|
||||
void initSolver(Solver* s, Discretization* d, Parameter* p)
|
||||
{
|
||||
s->eps = p->eps;
|
||||
s->omega = p->omg;
|
||||
s->itermax = p->itermax;
|
||||
s->rho = p->rho;
|
||||
s->levels = p->levels;
|
||||
s->grid = &d->grid;
|
||||
|
||||
int imax = s->grid->imax;
|
||||
int jmax = s->grid->jmax;
|
||||
int levels = s->levels;
|
||||
printf("Using Multigrid solver with %d levels\n", levels);
|
||||
|
||||
s->r = malloc(levels * sizeof(double*));
|
||||
s->e = malloc(levels * sizeof(double*));
|
||||
|
||||
size_t size = (imax + 2) * (jmax + 2) * sizeof(double);
|
||||
|
||||
for (int j = 0; j < levels; j++) {
|
||||
s->r[j] = allocate(64, size);
|
||||
s->e[j] = allocate(64, size);
|
||||
|
||||
for (int i = 0; i < (imax + 2) * (jmax + 2); i++) {
|
||||
s->r[j][i] = 0.0;
|
||||
s->e[j][i] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double multiGrid(Solver* solver, double* p, double* rhs, int level, int imax, int jmax)
|
||||
{
|
||||
double res = 0.0;
|
||||
|
||||
// coarsest level TODO: Use direct solver?
|
||||
if (level == (solver->levels - 1)) {
|
||||
for (int i = 0; i < 5; i++) {
|
||||
smooth(solver, p, rhs, level, imax, jmax);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
// pre-smoothing TODO: Make smoothing steps configurable?
|
||||
for (int i = 0; i < 5; i++) {
|
||||
smooth(solver, p, rhs, level, imax, jmax);
|
||||
if (level == FINEST_LEVEL) setBoundaryCondition(p, imax, jmax);
|
||||
}
|
||||
|
||||
// restrict
|
||||
restrictMG(solver, level, imax, jmax);
|
||||
|
||||
// MGSolver on residual and error.
|
||||
// TODO: What if there is a rest?
|
||||
multiGrid(solver,
|
||||
solver->e[level + 1],
|
||||
solver->r[level],
|
||||
level + 1,
|
||||
imax / 2,
|
||||
jmax / 2);
|
||||
|
||||
// prolongate
|
||||
prolongate(solver, level, imax, jmax);
|
||||
|
||||
// correct p on finer level using residual
|
||||
correct(solver, p, level, imax, jmax);
|
||||
if (level == FINEST_LEVEL) setBoundaryCondition(p, imax, jmax);
|
||||
|
||||
// post-smoothing
|
||||
for (int i = 0; i < 5; i++) {
|
||||
res = smooth(solver, p, rhs, level, imax, jmax);
|
||||
if (level == FINEST_LEVEL) setBoundaryCondition(p, imax, jmax);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void solve(Solver* s, double* p, double* rhs)
|
||||
{
|
||||
double res = multiGrid(s, p, rhs, 0, s->grid->imax, s->grid->jmax);
|
||||
|
||||
#ifdef VERBOSE
|
||||
printf("Residuum: %.6f\n", res);
|
||||
#endif
|
||||
}
|
129
BasicSolver/2D-seq/src/solver-sor.c
Normal file
129
BasicSolver/2D-seq/src/solver-sor.c
Normal file
@ -0,0 +1,129 @@
|
||||
/*
|
||||
* Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
|
||||
* All rights reserved. This file is part of nusif-solver.
|
||||
* Use of this source code is governed by a MIT style
|
||||
* license that can be found in the LICENSE file.
|
||||
*/
|
||||
#include "discretization.h"
|
||||
#include "solver.h"
|
||||
#include "util.h"
|
||||
|
||||
void initSolver(Solver* s, Discretization* d, Parameter* p)
|
||||
{
|
||||
s->grid = &d->grid;
|
||||
s->itermax = p->itermax;
|
||||
s->eps = p->eps;
|
||||
s->omega = p->omg;
|
||||
}
|
||||
|
||||
void solveSOR(Solver* solver, double* p, double* rhs)
|
||||
{
|
||||
int imax = solver->grid->imax;
|
||||
int jmax = solver->grid->jmax;
|
||||
double eps = solver->eps;
|
||||
int itermax = solver->itermax;
|
||||
double dx2 = solver->grid->dx * solver->grid->dx;
|
||||
double dy2 = solver->grid->dy * solver->grid->dy;
|
||||
double idx2 = 1.0 / dx2;
|
||||
double idy2 = 1.0 / dy2;
|
||||
double factor = solver->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2);
|
||||
double epssq = eps * eps;
|
||||
int it = 0;
|
||||
double res = 1.0;
|
||||
|
||||
while ((res >= epssq) && (it < itermax)) {
|
||||
res = 0.0;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
|
||||
double r = RHS(i, j) -
|
||||
((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 +
|
||||
(P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2);
|
||||
|
||||
P(i, j) -= (factor * r);
|
||||
res += (r * r);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
P(i, 0) = P(i, 1);
|
||||
P(i, jmax + 1) = P(i, jmax);
|
||||
}
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
P(0, j) = P(1, j);
|
||||
P(imax + 1, j) = P(imax, j);
|
||||
}
|
||||
|
||||
res = res / (double)(imax * jmax);
|
||||
#ifdef DEBUG
|
||||
printf("%d Residuum: %e\n", it, res);
|
||||
#endif
|
||||
it++;
|
||||
}
|
||||
|
||||
#ifdef VERBOSE
|
||||
printf("Solver took %d iterations to reach %f\n", it, sqrt(res));
|
||||
#endif
|
||||
}
|
||||
|
||||
void solve(Solver* solver, double* p, double* rhs)
|
||||
{
|
||||
int imax = solver->grid->imax;
|
||||
int jmax = solver->grid->jmax;
|
||||
double eps = solver->eps;
|
||||
int itermax = solver->itermax;
|
||||
double dx2 = solver->grid->dx * solver->grid->dx;
|
||||
double dy2 = solver->grid->dy * solver->grid->dy;
|
||||
double idx2 = 1.0 / dx2;
|
||||
double idy2 = 1.0 / dy2;
|
||||
double factor = solver->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2);
|
||||
double epssq = eps * eps;
|
||||
int it = 0;
|
||||
double res = 1.0;
|
||||
int pass, jsw, isw;
|
||||
|
||||
while ((res >= epssq) && (it < itermax)) {
|
||||
res = 0.0;
|
||||
jsw = 1;
|
||||
|
||||
for (pass = 0; pass < 2; pass++) {
|
||||
isw = jsw;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
for (int i = isw; i < imax + 1; i += 2) {
|
||||
|
||||
double r = RHS(i, j) -
|
||||
((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 +
|
||||
(P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2);
|
||||
|
||||
P(i, j) -= (factor * r);
|
||||
res += (r * r);
|
||||
}
|
||||
isw = 3 - isw;
|
||||
}
|
||||
jsw = 3 - jsw;
|
||||
}
|
||||
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
P(i, 0) = P(i, 1);
|
||||
P(i, jmax + 1) = P(i, jmax);
|
||||
}
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
P(0, j) = P(1, j);
|
||||
P(imax + 1, j) = P(imax, j);
|
||||
}
|
||||
|
||||
res = res / (double)(imax * jmax);
|
||||
#ifdef DEBUG
|
||||
printf("%d Residuum: %e\n", it, res);
|
||||
#endif
|
||||
it++;
|
||||
}
|
||||
|
||||
#ifdef VERBOSE
|
||||
printf("Solver took %d iterations to reach %f\n", it, sqrt(res));
|
||||
#endif
|
||||
}
|
@ -1,564 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
|
||||
* All rights reserved. This file is part of nusif-solver.
|
||||
* Use of this source code is governed by a MIT style
|
||||
* license that can be found in the LICENSE file.
|
||||
*/
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "allocate.h"
|
||||
#include "parameter.h"
|
||||
#include "solver.h"
|
||||
#include "util.h"
|
||||
|
||||
#define P(i, j) p[(j) * (imax + 2) + (i)]
|
||||
#define F(i, j) f[(j) * (imax + 2) + (i)]
|
||||
#define G(i, j) g[(j) * (imax + 2) + (i)]
|
||||
#define U(i, j) u[(j) * (imax + 2) + (i)]
|
||||
#define V(i, j) v[(j) * (imax + 2) + (i)]
|
||||
#define RHS(i, j) rhs[(j) * (imax + 2) + (i)]
|
||||
|
||||
static void print(Solver* solver, double* grid)
|
||||
{
|
||||
int imax = solver->imax;
|
||||
|
||||
for (int j = 0; j < solver->jmax + 2; j++) {
|
||||
printf("%02d: ", j);
|
||||
for (int i = 0; i < solver->imax + 2; i++) {
|
||||
printf("%12.8f ", grid[j * (imax + 2) + i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
static void printConfig(Solver* solver)
|
||||
{
|
||||
printf("Parameters for #%s#\n", solver->problem);
|
||||
printf("Boundary conditions Left:%d Right:%d Bottom:%d Top:%d\n",
|
||||
solver->bcLeft,
|
||||
solver->bcRight,
|
||||
solver->bcBottom,
|
||||
solver->bcTop);
|
||||
printf("\tReynolds number: %.2f\n", solver->re);
|
||||
printf("\tGx Gy: %.2f %.2f\n", solver->gx, solver->gy);
|
||||
printf("Geometry data:\n");
|
||||
printf("\tDomain box size (x, y): %.2f, %.2f\n", solver->xlength, solver->ylength);
|
||||
printf("\tCells (x, y): %d, %d\n", solver->imax, solver->jmax);
|
||||
printf("Timestep parameters:\n");
|
||||
printf("\tDefault stepsize: %.2f, Final time %.2f\n", solver->dt, solver->te);
|
||||
printf("\tdt bound: %.6f\n", solver->dtBound);
|
||||
printf("\tTau factor: %.2f\n", solver->tau);
|
||||
printf("Iterative solver parameters:\n");
|
||||
printf("\tMax iterations: %d\n", solver->itermax);
|
||||
printf("\tepsilon (stopping tolerance) : %f\n", solver->eps);
|
||||
printf("\tgamma factor: %f\n", solver->gamma);
|
||||
printf("\tomega (SOR relaxation): %f\n", solver->omega);
|
||||
}
|
||||
|
||||
void initSolver(Solver* solver, Parameter* params)
|
||||
{
|
||||
solver->problem = params->name;
|
||||
solver->bcLeft = params->bcLeft;
|
||||
solver->bcRight = params->bcRight;
|
||||
solver->bcBottom = params->bcBottom;
|
||||
solver->bcTop = params->bcTop;
|
||||
solver->imax = params->imax;
|
||||
solver->jmax = params->jmax;
|
||||
solver->xlength = params->xlength;
|
||||
solver->ylength = params->ylength;
|
||||
solver->dx = params->xlength / params->imax;
|
||||
solver->dy = params->ylength / params->jmax;
|
||||
solver->eps = params->eps;
|
||||
solver->omega = params->omg;
|
||||
solver->itermax = params->itermax;
|
||||
solver->re = params->re;
|
||||
solver->gx = params->gx;
|
||||
solver->gy = params->gy;
|
||||
solver->dt = params->dt;
|
||||
solver->te = params->te;
|
||||
solver->tau = params->tau;
|
||||
solver->gamma = params->gamma;
|
||||
|
||||
int imax = solver->imax;
|
||||
int jmax = solver->jmax;
|
||||
size_t size = (imax + 2) * (jmax + 2) * sizeof(double);
|
||||
solver->u = allocate(64, size);
|
||||
solver->v = allocate(64, size);
|
||||
solver->p = allocate(64, size);
|
||||
solver->rhs = allocate(64, size);
|
||||
solver->f = allocate(64, size);
|
||||
solver->g = allocate(64, size);
|
||||
|
||||
for (int i = 0; i < (imax + 2) * (jmax + 2); i++) {
|
||||
solver->u[i] = params->u_init;
|
||||
solver->v[i] = params->v_init;
|
||||
solver->p[i] = params->p_init;
|
||||
solver->rhs[i] = 0.0;
|
||||
solver->f[i] = 0.0;
|
||||
solver->g[i] = 0.0;
|
||||
}
|
||||
|
||||
double dx = solver->dx;
|
||||
double dy = solver->dy;
|
||||
double invSqrSum = 1.0 / (dx * dx) + 1.0 / (dy * dy);
|
||||
solver->dtBound = 0.5 * solver->re * 1.0 / invSqrSum;
|
||||
#ifdef VERBOSE
|
||||
printConfig(solver);
|
||||
#endif
|
||||
}
|
||||
|
||||
void computeRHS(Solver* solver)
|
||||
{
|
||||
int imax = solver->imax;
|
||||
int jmax = solver->jmax;
|
||||
double idx = 1.0 / solver->dx;
|
||||
double idy = 1.0 / solver->dy;
|
||||
double idt = 1.0 / solver->dt;
|
||||
double* rhs = solver->rhs;
|
||||
double* f = solver->f;
|
||||
double* g = solver->g;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
RHS(i, j) = idt *
|
||||
((F(i, j) - F(i - 1, j)) * idx + (G(i, j) - G(i, j - 1)) * idy);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void solve(Solver* solver)
|
||||
{
|
||||
int imax = solver->imax;
|
||||
int jmax = solver->jmax;
|
||||
double eps = solver->eps;
|
||||
int itermax = solver->itermax;
|
||||
double dx2 = solver->dx * solver->dx;
|
||||
double dy2 = solver->dy * solver->dy;
|
||||
double idx2 = 1.0 / dx2;
|
||||
double idy2 = 1.0 / dy2;
|
||||
double factor = solver->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2);
|
||||
double* p = solver->p;
|
||||
double* rhs = solver->rhs;
|
||||
double epssq = eps * eps;
|
||||
int it = 0;
|
||||
double res = 1.0;
|
||||
|
||||
while ((res >= epssq) && (it < itermax)) {
|
||||
res = 0.0;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
|
||||
double r = RHS(i, j) -
|
||||
((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 +
|
||||
(P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2);
|
||||
|
||||
P(i, j) -= (factor * r);
|
||||
res += (r * r);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
P(i, 0) = P(i, 1);
|
||||
P(i, jmax + 1) = P(i, jmax);
|
||||
}
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
P(0, j) = P(1, j);
|
||||
P(imax + 1, j) = P(imax, j);
|
||||
}
|
||||
|
||||
res = res / (double)(imax * jmax);
|
||||
#ifdef DEBUG
|
||||
printf("%d Residuum: %e\n", it, res);
|
||||
#endif
|
||||
it++;
|
||||
}
|
||||
|
||||
#ifdef VERBOSE
|
||||
printf("Solver took %d iterations to reach %f\n", it, sqrt(res));
|
||||
#endif
|
||||
}
|
||||
|
||||
void solveRB(Solver* solver)
|
||||
{
|
||||
int imax = solver->imax;
|
||||
int jmax = solver->jmax;
|
||||
double eps = solver->eps;
|
||||
int itermax = solver->itermax;
|
||||
double dx2 = solver->dx * solver->dx;
|
||||
double dy2 = solver->dy * solver->dy;
|
||||
double idx2 = 1.0 / dx2;
|
||||
double idy2 = 1.0 / dy2;
|
||||
double factor = solver->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2);
|
||||
double* p = solver->p;
|
||||
double* rhs = solver->rhs;
|
||||
double epssq = eps * eps;
|
||||
int it = 0;
|
||||
double res = 1.0;
|
||||
int pass, jsw, isw;
|
||||
|
||||
while ((res >= epssq) && (it < itermax)) {
|
||||
res = 0.0;
|
||||
jsw = 1;
|
||||
|
||||
for (pass = 0; pass < 2; pass++) {
|
||||
isw = jsw;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
for (int i = isw; i < imax + 1; i += 2) {
|
||||
|
||||
double r = RHS(i, j) -
|
||||
((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 +
|
||||
(P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2);
|
||||
|
||||
P(i, j) -= (factor * r);
|
||||
res += (r * r);
|
||||
}
|
||||
isw = 3 - isw;
|
||||
}
|
||||
jsw = 3 - jsw;
|
||||
}
|
||||
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
P(i, 0) = P(i, 1);
|
||||
P(i, jmax + 1) = P(i, jmax);
|
||||
}
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
P(0, j) = P(1, j);
|
||||
P(imax + 1, j) = P(imax, j);
|
||||
}
|
||||
|
||||
res = res / (double)(imax * jmax);
|
||||
#ifdef DEBUG
|
||||
printf("%d Residuum: %e\n", it, res);
|
||||
#endif
|
||||
it++;
|
||||
}
|
||||
|
||||
#ifdef VERBOSE
|
||||
printf("Solver took %d iterations to reach %f\n", it, sqrt(res));
|
||||
#endif
|
||||
}
|
||||
|
||||
static double maxElement(Solver* solver, double* m)
|
||||
{
|
||||
int size = (solver->imax + 2) * (solver->jmax + 2);
|
||||
double maxval = DBL_MIN;
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
maxval = MAX(maxval, fabs(m[i]));
|
||||
}
|
||||
|
||||
return maxval;
|
||||
}
|
||||
|
||||
void normalizePressure(Solver* solver)
|
||||
{
|
||||
int size = (solver->imax + 2) * (solver->jmax + 2);
|
||||
double* p = solver->p;
|
||||
double avgP = 0.0;
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
avgP += p[i];
|
||||
}
|
||||
avgP /= size;
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
p[i] = p[i] - avgP;
|
||||
}
|
||||
}
|
||||
|
||||
void computeTimestep(Solver* solver)
|
||||
{
|
||||
double dt = solver->dtBound;
|
||||
double dx = solver->dx;
|
||||
double dy = solver->dy;
|
||||
double umax = maxElement(solver, solver->u);
|
||||
double vmax = maxElement(solver, solver->v);
|
||||
|
||||
if (umax > 0) {
|
||||
dt = (dt > dx / umax) ? dx / umax : dt;
|
||||
}
|
||||
if (vmax > 0) {
|
||||
dt = (dt > dy / vmax) ? dy / vmax : dt;
|
||||
}
|
||||
|
||||
solver->dt = dt * solver->tau;
|
||||
}
|
||||
|
||||
void setBoundaryConditions(Solver* solver)
|
||||
{
|
||||
int imax = solver->imax;
|
||||
int jmax = solver->jmax;
|
||||
double* u = solver->u;
|
||||
double* v = solver->v;
|
||||
|
||||
// Left boundary
|
||||
switch (solver->bcLeft) {
|
||||
case NOSLIP:
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
U(0, j) = 0.0;
|
||||
V(0, j) = -V(1, j);
|
||||
}
|
||||
break;
|
||||
case SLIP:
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
U(0, j) = 0.0;
|
||||
V(0, j) = V(1, j);
|
||||
}
|
||||
break;
|
||||
case OUTFLOW:
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
U(0, j) = U(1, j);
|
||||
V(0, j) = V(1, j);
|
||||
}
|
||||
break;
|
||||
case PERIODIC:
|
||||
break;
|
||||
}
|
||||
|
||||
// Right boundary
|
||||
switch (solver->bcRight) {
|
||||
case NOSLIP:
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
U(imax, j) = 0.0;
|
||||
V(imax + 1, j) = -V(imax, j);
|
||||
}
|
||||
break;
|
||||
case SLIP:
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
U(imax, j) = 0.0;
|
||||
V(imax + 1, j) = V(imax, j);
|
||||
}
|
||||
break;
|
||||
case OUTFLOW:
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
U(imax, j) = U(imax - 1, j);
|
||||
V(imax + 1, j) = V(imax, j);
|
||||
}
|
||||
break;
|
||||
case PERIODIC:
|
||||
break;
|
||||
}
|
||||
|
||||
// Bottom boundary
|
||||
switch (solver->bcBottom) {
|
||||
case NOSLIP:
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
V(i, 0) = 0.0;
|
||||
U(i, 0) = -U(i, 1);
|
||||
}
|
||||
break;
|
||||
case SLIP:
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
V(i, 0) = 0.0;
|
||||
U(i, 0) = U(i, 1);
|
||||
}
|
||||
break;
|
||||
case OUTFLOW:
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
U(i, 0) = U(i, 1);
|
||||
V(i, 0) = V(i, 1);
|
||||
}
|
||||
break;
|
||||
case PERIODIC:
|
||||
break;
|
||||
}
|
||||
|
||||
// Top boundary
|
||||
switch (solver->bcTop) {
|
||||
case NOSLIP:
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
V(i, jmax) = 0.0;
|
||||
U(i, jmax + 1) = -U(i, jmax);
|
||||
}
|
||||
break;
|
||||
case SLIP:
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
V(i, jmax) = 0.0;
|
||||
U(i, jmax + 1) = U(i, jmax);
|
||||
}
|
||||
break;
|
||||
case OUTFLOW:
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
U(i, jmax + 1) = U(i, jmax);
|
||||
V(i, jmax) = V(i, jmax - 1);
|
||||
}
|
||||
break;
|
||||
case PERIODIC:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void setSpecialBoundaryCondition(Solver* solver)
|
||||
{
|
||||
int imax = solver->imax;
|
||||
int jmax = solver->jmax;
|
||||
double mDy = solver->dy;
|
||||
double* u = solver->u;
|
||||
|
||||
if (strcmp(solver->problem, "dcavity") == 0) {
|
||||
for (int i = 1; i < imax; i++) {
|
||||
U(i, jmax + 1) = 2.0 - U(i, jmax);
|
||||
}
|
||||
} else if (strcmp(solver->problem, "canal") == 0) {
|
||||
double ylength = solver->ylength;
|
||||
double y;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
y = mDy * (j - 0.5);
|
||||
U(0, j) = y * (ylength - y) * 4.0 / (ylength * ylength);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void computeFG(Solver* solver)
|
||||
{
|
||||
double* u = solver->u;
|
||||
double* v = solver->v;
|
||||
double* f = solver->f;
|
||||
double* g = solver->g;
|
||||
int imax = solver->imax;
|
||||
int jmax = solver->jmax;
|
||||
double gx = solver->gx;
|
||||
double gy = solver->gy;
|
||||
double gamma = solver->gamma;
|
||||
double dt = solver->dt;
|
||||
double inverseRe = 1.0 / solver->re;
|
||||
double inverseDx = 1.0 / solver->dx;
|
||||
double inverseDy = 1.0 / solver->dy;
|
||||
double du2dx, dv2dy, duvdx, duvdy;
|
||||
double du2dx2, du2dy2, dv2dx2, dv2dy2;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
du2dx = inverseDx * 0.25 *
|
||||
((U(i, j) + U(i + 1, j)) * (U(i, j) + U(i + 1, j)) -
|
||||
(U(i, j) + U(i - 1, j)) * (U(i, j) + U(i - 1, j))) +
|
||||
gamma * inverseDx * 0.25 *
|
||||
(fabs(U(i, j) + U(i + 1, j)) * (U(i, j) - U(i + 1, j)) +
|
||||
fabs(U(i, j) + U(i - 1, j)) * (U(i, j) - U(i - 1, j)));
|
||||
|
||||
duvdy = inverseDy * 0.25 *
|
||||
((V(i, j) + V(i + 1, j)) * (U(i, j) + U(i, j + 1)) -
|
||||
(V(i, j - 1) + V(i + 1, j - 1)) * (U(i, j) + U(i, j - 1))) +
|
||||
gamma * inverseDy * 0.25 *
|
||||
(fabs(V(i, j) + V(i + 1, j)) * (U(i, j) - U(i, j + 1)) +
|
||||
fabs(V(i, j - 1) + V(i + 1, j - 1)) *
|
||||
(U(i, j) - U(i, j - 1)));
|
||||
|
||||
du2dx2 = inverseDx * inverseDx * (U(i + 1, j) - 2.0 * U(i, j) + U(i - 1, j));
|
||||
du2dy2 = inverseDy * inverseDy * (U(i, j + 1) - 2.0 * U(i, j) + U(i, j - 1));
|
||||
F(i, j) = U(i, j) + dt * (inverseRe * (du2dx2 + du2dy2) - du2dx - duvdy + gx);
|
||||
|
||||
duvdx = inverseDx * 0.25 *
|
||||
((U(i, j) + U(i, j + 1)) * (V(i, j) + V(i + 1, j)) -
|
||||
(U(i - 1, j) + U(i - 1, j + 1)) * (V(i, j) + V(i - 1, j))) +
|
||||
gamma * inverseDx * 0.25 *
|
||||
(fabs(U(i, j) + U(i, j + 1)) * (V(i, j) - V(i + 1, j)) +
|
||||
fabs(U(i - 1, j) + U(i - 1, j + 1)) *
|
||||
(V(i, j) - V(i - 1, j)));
|
||||
|
||||
dv2dy = inverseDy * 0.25 *
|
||||
((V(i, j) + V(i, j + 1)) * (V(i, j) + V(i, j + 1)) -
|
||||
(V(i, j) + V(i, j - 1)) * (V(i, j) + V(i, j - 1))) +
|
||||
gamma * inverseDy * 0.25 *
|
||||
(fabs(V(i, j) + V(i, j + 1)) * (V(i, j) - V(i, j + 1)) +
|
||||
fabs(V(i, j) + V(i, j - 1)) * (V(i, j) - V(i, j - 1)));
|
||||
|
||||
dv2dx2 = inverseDx * inverseDx * (V(i + 1, j) - 2.0 * V(i, j) + V(i - 1, j));
|
||||
dv2dy2 = inverseDy * inverseDy * (V(i, j + 1) - 2.0 * V(i, j) + V(i, j - 1));
|
||||
G(i, j) = V(i, j) + dt * (inverseRe * (dv2dx2 + dv2dy2) - duvdx - dv2dy + gy);
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------- boundary of F --------------------------- */
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
F(0, j) = U(0, j);
|
||||
F(imax, j) = U(imax, j);
|
||||
}
|
||||
|
||||
/* ---------------------- boundary of G --------------------------- */
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
G(i, 0) = V(i, 0);
|
||||
G(i, jmax) = V(i, jmax);
|
||||
}
|
||||
}
|
||||
|
||||
void adaptUV(Solver* solver)
|
||||
{
|
||||
int imax = solver->imax;
|
||||
int jmax = solver->jmax;
|
||||
double* p = solver->p;
|
||||
double* u = solver->u;
|
||||
double* v = solver->v;
|
||||
double* f = solver->f;
|
||||
double* g = solver->g;
|
||||
double factorX = solver->dt / solver->dx;
|
||||
double factorY = solver->dt / solver->dy;
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
U(i, j) = F(i, j) - (P(i + 1, j) - P(i, j)) * factorX;
|
||||
V(i, j) = G(i, j) - (P(i, j + 1) - P(i, j)) * factorY;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void writeResult(Solver* solver)
|
||||
{
|
||||
int imax = solver->imax;
|
||||
int jmax = solver->jmax;
|
||||
double dx = solver->dx;
|
||||
double dy = solver->dy;
|
||||
double* p = solver->p;
|
||||
double* u = solver->u;
|
||||
double* v = solver->v;
|
||||
double x = 0.0, y = 0.0;
|
||||
|
||||
FILE* fp;
|
||||
fp = fopen("pressure.dat", "w");
|
||||
|
||||
if (fp == NULL) {
|
||||
printf("Error!\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
y = (double)(j - 0.5) * dy;
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
x = (double)(i - 0.5) * dx;
|
||||
fprintf(fp, "%.2f %.2f %f\n", x, y, P(i, j));
|
||||
}
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
|
||||
fp = fopen("velocity.dat", "w");
|
||||
|
||||
if (fp == NULL) {
|
||||
printf("Error!\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
for (int j = 1; j < jmax + 1; j++) {
|
||||
y = dy * (j - 0.5);
|
||||
for (int i = 1; i < imax + 1; i++) {
|
||||
x = dx * (i - 0.5);
|
||||
double vel_u = (U(i, j) + U(i - 1, j)) / 2.0;
|
||||
double vel_v = (V(i, j) + V(i, j - 1)) / 2.0;
|
||||
double len = sqrt((vel_u * vel_u) + (vel_v * vel_v));
|
||||
fprintf(fp, "%.2f %.2f %f %f %f\n", x, y, vel_u, vel_v, len);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
}
|
@ -6,41 +6,21 @@
|
||||
*/
|
||||
#ifndef __SOLVER_H_
|
||||
#define __SOLVER_H_
|
||||
#include "discretization.h"
|
||||
#include "grid.h"
|
||||
#include "parameter.h"
|
||||
|
||||
enum BC { NOSLIP = 1, SLIP, OUTFLOW, PERIODIC };
|
||||
|
||||
typedef struct {
|
||||
/* geometry and grid information */
|
||||
double dx, dy;
|
||||
int imax, jmax;
|
||||
double xlength, ylength;
|
||||
/* arrays */
|
||||
double *p, *rhs;
|
||||
double *f, *g;
|
||||
double *u, *v;
|
||||
Grid* grid;
|
||||
/* parameters */
|
||||
double eps, omega;
|
||||
double re, tau, gamma;
|
||||
double gx, gy;
|
||||
/* time stepping */
|
||||
double eps, omega, rho;
|
||||
int itermax;
|
||||
double dt, te;
|
||||
double dtBound;
|
||||
char* problem;
|
||||
int bcLeft, bcRight, bcBottom, bcTop;
|
||||
int levels;
|
||||
double **r, **e;
|
||||
} Solver;
|
||||
|
||||
extern void initSolver(Solver*, Parameter*);
|
||||
extern void computeRHS(Solver*);
|
||||
extern void solve(Solver*);
|
||||
extern void solveRB(Solver*);
|
||||
extern void solveRBA(Solver*);
|
||||
extern void normalizePressure(Solver*);
|
||||
extern void computeTimestep(Solver*);
|
||||
extern void setBoundaryConditions(Solver*);
|
||||
extern void setSpecialBoundaryCondition(Solver*);
|
||||
extern void computeFG(Solver*);
|
||||
extern void adaptUV(Solver*);
|
||||
extern void writeResult(Solver*);
|
||||
extern void initSolver(Solver*, Discretization*, Parameter*);
|
||||
extern void solve(Solver*, double*, double*);
|
||||
|
||||
#endif
|
||||
|
@ -19,11 +19,11 @@
|
||||
#define ABS(a) ((a) >= 0 ? (a) : -(a))
|
||||
#endif
|
||||
|
||||
#define P(i, j) p[(j) * (imaxLocal + 2) + (i)]
|
||||
#define F(i, j) f[(j) * (imaxLocal + 2) + (i)]
|
||||
#define G(i, j) g[(j) * (imaxLocal + 2) + (i)]
|
||||
#define U(i, j) u[(j) * (imaxLocal + 2) + (i)]
|
||||
#define V(i, j) v[(j) * (imaxLocal + 2) + (i)]
|
||||
#define RHS(i, j) rhs[(j) * (imaxLocal + 2) + (i)]
|
||||
#define P(i, j) p[(j) * (imax + 2) + (i)]
|
||||
#define F(i, j) f[(j) * (imax + 2) + (i)]
|
||||
#define G(i, j) g[(j) * (imax + 2) + (i)]
|
||||
#define U(i, j) u[(j) * (imax + 2) + (i)]
|
||||
#define V(i, j) v[(j) * (imax + 2) + (i)]
|
||||
#define RHS(i, j) rhs[(j) * (imax + 2) + (i)]
|
||||
|
||||
#endif // __UTIL_H_
|
||||
|
Loading…
Reference in New Issue
Block a user