MD-Bench/src/main.c
2020-08-19 09:22:43 +02:00

294 lines
8.3 KiB
C

/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* =======================================================================================
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <limits.h>
#include <math.h>
#include <float.h>
#include <timing.h>
#include <allocate.h>
#include <neighbor.h>
#include <parameter.h>
#include <atom.h>
#include <thermo.h>
#include <pbc.h>
#define HLINE "----------------------------------------------------------------------------\n"
typedef enum {
TOTAL = 0,
NEIGH,
FORCE,
NUMTIMER
} timertype;
void init(Parameter *param)
{
param->epsilon = 1.0;
param->sigma6 = 1.0;
param->rho = 0.8442;
param->ntimes = 200;
param->dt = 0.005;
param->nx = 32;
param->ny = 32;
param->nz = 32;
param->cutforce = 2.5;
param->cutneigh = param->cutforce + 0.30;
param->temp = 1.44;
param->nstat = 100;
param->mass = 1.0;
param->dtforce = 0.5 * param->dt;
param->every = 20;
double lattice = pow((4.0 / param->rho), (1.0 / 3.0));
param->xprd = param->nx * lattice;
param->yprd = param->ny * lattice;
param->zprd = param->nz * lattice;
}
double setup(
Parameter *param,
Atom *atom,
Neighbor *neighbor)
{
double S, E;
S = getTimeStamp();
initAtom(atom);
initNeighbor(neighbor, param);
initPbc();
setupNeighbor();
createAtom(atom, param);
setupThermo(param, atom->Natoms);
adjustThermo(param, atom);
setupPbc(atom, param);
updatePbc(atom, param);
buildNeighbor(atom, neighbor);
E = getTimeStamp();
return E-S;
}
double reneighbour(
Parameter *param,
Atom *atom,
Neighbor *neighbor)
{
double S, E;
S = getTimeStamp();
updateAtomsPbc(atom, param);
setupPbc(atom, param);
updatePbc(atom, param);
/* sortAtom(); */
buildNeighbor(atom, neighbor);
E = getTimeStamp();
return E-S;
}
void initialIntegrate(Parameter *param, Atom *atom)
{
double* x = atom->x; double* y = atom->y; double* z = atom->z;
double* fx = atom->fx; double* fy = atom->fy; double* fz = atom->fz;
double* vx = atom->vx; double* vy = atom->vy; double* vz = atom->vz;
for(int i = 0; i < atom->Nlocal; i++) {
vx[i] += param->dtforce * fx[i];
vy[i] += param->dtforce * fy[i];
vz[i] += param->dtforce * fz[i];
x[i] += param->dt * vx[i];
y[i] += param->dt * vy[i];
z[i] += param->dt * vz[i];
}
}
void finalIntegrate(Parameter *param, Atom *atom)
{
double* fx = atom->fx; double* fy = atom->fy; double* fz = atom->fz;
double* vx = atom->vx; double* vy = atom->vy; double* vz = atom->vz;
for(int i = 0; i < atom->Nlocal; i++) {
vx[i] += param->dtforce * fx[i];
vy[i] += param->dtforce * fy[i];
vz[i] += param->dtforce * fz[i];
}
}
double computeForce(Parameter *param, Atom *atom, Neighbor *neighbor)
{
int Nlocal = atom->Natoms;
int* neighs;
double cutforcesq = param->cutforce * param->cutforce;
double sigma6 = param->sigma6;
double epsilon = param->epsilon;
double* x = atom->x; double* y = atom->y; double* z = atom->z;
double* fx = atom->fx; double* fy = atom->fy; double* fz = atom->fz;
double S, E;
S = getTimeStamp();
for(int i = 0; i < Nlocal; i++) {
fx[i] = 0.0;
fy[i] = 0.0;
fz[i] = 0.0;
}
for(int i = 0; i < Nlocal; i++) {
neighs = &neighbor->neighbors[i * neighbor->maxneighs];
int numneighs = neighbor->numneigh[i];
double xtmp = x[i];
double ytmp = y[i];
double ztmp = z[i];
double fix = 0;
double fiy = 0;
double fiz = 0;
for(int k = 0; k < numneighs; k++) {
int j = neighs[k];
double delx = xtmp - x[j];
double dely = ytmp - y[j];
double delz = ztmp - z[j];
double rsq = delx * delx + dely * dely + delz * delz;
if(rsq < cutforcesq) {
double sr2 = 1.0 / rsq;
double sr6 = sr2 * sr2 * sr2 * sigma6;
double force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
fix += delx * force;
fiy += dely * force;
fiz += delz * force;
}
}
fx[i] += fix;
fy[i] += fiy;
fz[i] += fiz;
}
E = getTimeStamp();
return E-S;
}
void printAtomState(Atom *atom)
{
printf("Atom counts: Natoms=%d Nlocal=%d Nghost=%d Nmax=%d\n",
atom->Natoms, atom->Nlocal, atom->Nghost, atom->Nmax);
int nall = atom->Nlocal + atom->Nghost;
for (int i=0; i<nall; i++) {
printf("%d %f %f %f\n", i, atom->x[i], atom->y[i], atom->z[i]);
}
}
int main (int argc, char** argv)
{
double timer[NUMTIMER];
Atom atom;
Neighbor neighbor;
Parameter param;
init(&param);
for(int i = 0; i < argc; i++)
{
if((strcmp(argv[i], "-n") == 0) || (strcmp(argv[i], "--nsteps") == 0))
{
param.ntimes = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-nx") == 0))
{
param.nx = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-ny") == 0))
{
param.ny = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-nz") == 0))
{
param.nz = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-h") == 0) || (strcmp(argv[i], "--help") == 0))
{
printf("MD Bench: A minimalistic re-implementation of miniMD\n");
printf(HLINE);
printf("-n / --nsteps <int>: set number of timesteps for simulation\n");
printf("-nx/-ny/-nz <int>: set linear dimension of systembox in x/y/z direction\n");
printf(HLINE);
exit(EXIT_SUCCESS);
}
}
setup(&param, &atom, &neighbor);
computeThermo(0, &param, &atom);
computeForce(&param, &atom, &neighbor);
timer[FORCE] = 0.0;
timer[NEIGH] = 0.0;
timer[TOTAL] = getTimeStamp();
for(int n = 0; n < param.ntimes; n++) {
initialIntegrate(&param, &atom);
if((n + 1) % param.every) {
updatePbc(&atom, &param);
} else {
timer[NEIGH] += reneighbour(&param, &atom, &neighbor);
}
timer[FORCE] += computeForce(&param, &atom, &neighbor);
finalIntegrate(&param, &atom);
if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) {
computeThermo(n + 1, &param, &atom);
}
}
timer[TOTAL] = getTimeStamp() - timer[TOTAL];
computeThermo(-1, &param, &atom);
printf(HLINE);
printf("System: %d atoms, Steps: %d\n", atom.Natoms, param.ntimes);
printf("TOTAL %.2fs FORCE %.2fs NEIGH %.2fs REST %.2fs\n",
timer[TOTAL], timer[FORCE], timer[NEIGH], timer[TOTAL]-timer[FORCE]-timer[NEIGH]);
printf(HLINE);
printf("Performance: %.2f million atom updates per second\n", 1e-6 * (double) (atom.Natoms * param.ntimes) / timer[TOTAL]);
return EXIT_SUCCESS;
}