996 lines
28 KiB
C
996 lines
28 KiB
C
/*
|
|
* =======================================================================================
|
|
*
|
|
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
|
|
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
|
|
*
|
|
* This file is part of MD-Bench.
|
|
*
|
|
* MD-Bench is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU Lesser General Public License as published
|
|
* by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
|
|
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License along
|
|
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
|
|
* =======================================================================================
|
|
*/
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
#define HLINE "----------------------------------------------------------------------------\n"
|
|
|
|
#define FACTOR 0.999
|
|
#define SMALL 1.0e-6
|
|
#define DELTA 20000
|
|
|
|
#ifndef MIN
|
|
#define MIN(x,y) ((x)<(y)?(x):(y))
|
|
#endif
|
|
#ifndef MAX
|
|
#define MAX(x,y) ((x)>(y)?(x):(y))
|
|
#endif
|
|
#ifndef ABS
|
|
#define ABS(a) ((a) >= 0 ? (a) : -(a))
|
|
#endif
|
|
|
|
static int Natoms, Nlocal, Nghost, Nmax;
|
|
static double Cutneigh; // neighbor cutoff
|
|
static double xprd, yprd, zprd;
|
|
static double xlo, xhi;
|
|
static double ylo, yhi;
|
|
static double zlo, zhi;
|
|
static double *x, *y, *z;
|
|
static double *vx, *vy, *vz;
|
|
static double *fx, *fy, *fz;
|
|
|
|
static int NmaxGhost;
|
|
static int *BorderMap;
|
|
static int *PBCx, *PBCy, *PBCz;
|
|
|
|
typedef struct {
|
|
int* numneigh;
|
|
int* neighbors;
|
|
int maxneighs;
|
|
int nbinx, nbiny, nbinz;
|
|
/* double cutneigh; // neighbor cutoff */
|
|
double cutneighsq; // neighbor cutoff squared
|
|
int every;
|
|
int ncalls;
|
|
int max_totalneigh;
|
|
int *bincount;
|
|
int *bins;
|
|
int nmax;
|
|
int nstencil; // # of bins in stencil
|
|
int* stencil; // stencil list of bin offsets
|
|
int mbins; //total number of bins
|
|
int atoms_per_bin; // max atoms per bin
|
|
int mbinx, mbiny, mbinz; // n bins in x, y, z
|
|
int mbinxlo, mbinylo, mbinzlo;
|
|
double binsizex, binsizey, binsizez;
|
|
double bininvx, bininvy, bininvz;
|
|
} Neighbor;
|
|
|
|
typedef struct {
|
|
double epsilon;
|
|
double sigma6;
|
|
double temp;
|
|
double rho;
|
|
double mass;
|
|
int ntimes;
|
|
int nstat;
|
|
double dt;
|
|
double dtforce;
|
|
double cutforce;
|
|
int nx, ny, nz;
|
|
} Parameter;
|
|
|
|
typedef struct {
|
|
int *steparr;
|
|
double *tmparr;
|
|
double *engarr;
|
|
double *prsarr;
|
|
double mvv2e;
|
|
int dof_boltz;
|
|
double t_scale;
|
|
double p_scale;
|
|
double e_scale;
|
|
double t_act;
|
|
double p_act;
|
|
double e_act;
|
|
int mstat;
|
|
} Thermo;
|
|
|
|
/* Park/Miller RNG w/out MASKING, so as to be like f90s version */
|
|
#define IA 16807
|
|
#define IM 2147483647
|
|
#define AM (1.0/IM)
|
|
#define IQ 127773
|
|
#define IR 2836
|
|
#define MASK 123459876
|
|
|
|
double myrandom(int* idum)
|
|
{
|
|
int k= (*idum) / IQ;
|
|
double ans;
|
|
|
|
*idum = IA * (*idum - k * IQ) - IR * k;
|
|
if(*idum < 0) *idum += IM;
|
|
ans = AM * (*idum);
|
|
return ans;
|
|
}
|
|
|
|
int coord2bin(Neighbor* neighbor, double xin, double yin, double zin)
|
|
{
|
|
int ix, iy, iz;
|
|
double bininvx = neighbor->bininvx;
|
|
double bininvy = neighbor->bininvy;
|
|
double bininvz = neighbor->bininvz;
|
|
int mbinxlo = neighbor->mbinxlo;
|
|
int mbinylo = neighbor->mbinylo;
|
|
int mbinzlo = neighbor->mbinzlo;
|
|
|
|
if(xin >= xprd) {
|
|
ix = (int)((xin - xprd) * bininvx) + neighbor->nbinx - mbinxlo;
|
|
} else if(xin >= 0.0) {
|
|
ix = (int)(xin * bininvx) - mbinxlo;
|
|
} else {
|
|
ix = (int)(xin * bininvx) - mbinxlo - 1;
|
|
}
|
|
|
|
if(yin >= yprd) {
|
|
iy = (int)((yin - yprd) * bininvy) + neighbor->nbiny - mbinylo;
|
|
} else if(yin >= 0.0) {
|
|
iy = (int)(yin * bininvy) - mbinylo;
|
|
} else {
|
|
iy = (int)(yin * bininvy) - mbinylo - 1;
|
|
}
|
|
|
|
if(zin >= zprd) {
|
|
iz = (int)((zin - zprd) * bininvz) + neighbor->nbinz - mbinzlo;
|
|
} else if(zin >= 0.0) {
|
|
iz = (int)(zin * bininvz) - mbinzlo;
|
|
} else {
|
|
iz = (int)(zin * bininvz) - mbinzlo - 1;
|
|
}
|
|
|
|
return (iz * neighbor->mbiny * neighbor->mbinx + iy * neighbor->mbinx + ix + 1);
|
|
}
|
|
|
|
void binatoms(Neighbor *neighbor)
|
|
{
|
|
int* bincount = neighbor->bincount;
|
|
int mbins = neighbor->mbins;
|
|
int nall = Nlocal + Nghost;
|
|
int resize = 1;
|
|
|
|
while(resize > 0) {
|
|
resize = 0;
|
|
|
|
for(int i = 0; i < mbins; i++) {
|
|
bincount[i] = 0;
|
|
}
|
|
|
|
for(int i = 0; i < nall; i++) {
|
|
int ibin = coord2bin(neighbor, x[i], y[i], z[i]);
|
|
|
|
if(bincount[ibin] < neighbor->atoms_per_bin) {
|
|
int ac = neighbor->bincount[ibin]++;
|
|
neighbor->bins[ibin * neighbor->atoms_per_bin + ac] = i;
|
|
} else {
|
|
resize = 1;
|
|
}
|
|
}
|
|
|
|
if(resize) {
|
|
free(neighbor->bins);
|
|
neighbor->atoms_per_bin *= 2;
|
|
neighbor->bins = (int*) malloc(mbins * neighbor->atoms_per_bin * sizeof(int));
|
|
}
|
|
}
|
|
}
|
|
|
|
double bindist(Neighbor *neighbor, int i, int j, int k)
|
|
{
|
|
double delx, dely, delz;
|
|
|
|
if(i > 0) {
|
|
delx = (i - 1) * neighbor->binsizex;
|
|
} else if(i == 0) {
|
|
delx = 0.0;
|
|
} else {
|
|
delx = (i + 1) * neighbor->binsizex;
|
|
}
|
|
|
|
if(j > 0) {
|
|
dely = (j - 1) * neighbor->binsizey;
|
|
} else if(j == 0) {
|
|
dely = 0.0;
|
|
} else {
|
|
dely = (j + 1) * neighbor->binsizey;
|
|
}
|
|
|
|
if(k > 0) {
|
|
delz = (k - 1) * neighbor->binsizez;
|
|
} else if(k == 0) {
|
|
delz = 0.0;
|
|
} else {
|
|
delz = (k + 1) * neighbor->binsizez;
|
|
}
|
|
|
|
return (delx * delx + dely * dely + delz * delz);
|
|
}
|
|
|
|
void buildNeighborlist(Neighbor *neighbor)
|
|
{
|
|
neighbor->ncalls++;
|
|
int nall = Nlocal + Nghost;
|
|
|
|
/* extend atom arrays if necessary */
|
|
if(nall > neighbor->nmax) {
|
|
neighbor->nmax = nall;
|
|
if(neighbor->numneigh) free(neighbor->numneigh);
|
|
if(neighbor->neighbors) free(neighbor->neighbors);
|
|
neighbor->numneigh = (int*) malloc(neighbor->nmax * sizeof(int));
|
|
neighbor->neighbors = (int*) malloc(neighbor->nmax * neighbor->maxneighs * sizeof(int*));
|
|
}
|
|
|
|
/* bin local & ghost atoms */
|
|
binatoms(neighbor);
|
|
int resize = 1;
|
|
|
|
/* loop over each atom, storing neighbors */
|
|
while(resize) {
|
|
int new_maxneighs = neighbor->maxneighs;
|
|
resize = 0;
|
|
|
|
for(int i = 0; i < Nlocal; i++) {
|
|
int* neighptr = &neighbor->neighbors[i * neighbor->maxneighs];
|
|
int n = 0;
|
|
double xtmp = x[i];
|
|
double ytmp = y[i];
|
|
double ztmp = z[i];
|
|
int ibin = coord2bin(neighbor, xtmp, ytmp, ztmp);
|
|
|
|
for(int k = 0; k < neighbor->nstencil; k++) {
|
|
int jbin = ibin + neighbor->stencil[k];
|
|
int* loc_bin = &neighbor->bins[jbin * neighbor->atoms_per_bin];
|
|
|
|
for(int m = 0; m < neighbor->bincount[jbin]; m++) {
|
|
int j = loc_bin[m];
|
|
|
|
if ( j == i ){
|
|
continue;
|
|
}
|
|
|
|
double delx = xtmp - x[j];
|
|
double dely = ytmp - y[j];
|
|
double delz = ztmp - z[j];
|
|
double rsq = delx * delx + dely * dely + delz * delz;
|
|
|
|
if( rsq <= neighbor->cutneighsq ) {
|
|
neighptr[n++] = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
neighbor->numneigh[i] = n;
|
|
|
|
if(n >= neighbor->maxneighs) {
|
|
resize = 1;
|
|
|
|
if(n >= new_maxneighs) {
|
|
new_maxneighs = n;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(resize) {
|
|
neighbor->maxneighs = new_maxneighs * 1.2;
|
|
free(neighbor->neighbors);
|
|
neighbor->neighbors = (int*) malloc(Nmax* neighbor->maxneighs * sizeof(int));
|
|
}
|
|
}
|
|
}
|
|
|
|
void init(Neighbor *neighbor, Parameter *param)
|
|
{
|
|
x = NULL; y = NULL; z = NULL;
|
|
vx = NULL; vy = NULL; vz = NULL;
|
|
fx = NULL; fy = NULL; fz = NULL;
|
|
|
|
NmaxGhost = 0;
|
|
BorderMap = NULL;
|
|
PBCx = NULL; PBCy = NULL; PBCz = NULL;
|
|
|
|
param->epsilon = 1.0;
|
|
param->sigma6 = 1.0;
|
|
param->rho = 0.8442;
|
|
param->ntimes = 200;
|
|
param->dt = 0.005;
|
|
param->nx = 32;
|
|
param->ny = 32;
|
|
param->nz = 64;
|
|
param->cutforce = 2.5;
|
|
param->temp = 1.44;
|
|
param->nstat = 100;
|
|
param->mass = 1.0;
|
|
param->dtforce = 0.5 * param->dt;
|
|
|
|
Cutneigh = param->cutforce + 0.30;
|
|
double neighscale = 5.0 / 6.0;
|
|
neighbor->nbinx = neighscale * param->nx;
|
|
neighbor->nbiny = neighscale * param->ny;
|
|
neighbor->nbinz = neighscale * param->nz;
|
|
neighbor->every = 20;
|
|
neighbor->ncalls = 0;
|
|
neighbor->nmax = 0;
|
|
neighbor->atoms_per_bin = 8;
|
|
neighbor->maxneighs = 100;
|
|
/* neighbor->cutneigh = param->cutforce + 0.30; */
|
|
neighbor->numneigh = NULL;
|
|
neighbor->neighbors = NULL;
|
|
neighbor->stencil = NULL;
|
|
neighbor->bins = NULL;
|
|
neighbor->bincount = NULL;
|
|
}
|
|
|
|
void setup(Neighbor *neighbor, Parameter *param)
|
|
{
|
|
double lattice = pow((4.0 / param->rho), (1.0 / 3.0));
|
|
double coord;
|
|
int mbinxhi, mbinyhi, mbinzhi;
|
|
int nextx, nexty, nextz;
|
|
|
|
xprd = param->nx * lattice;
|
|
yprd = param->ny * lattice;
|
|
zprd = param->nz * lattice;
|
|
|
|
xlo = 0.0; xhi = xprd;
|
|
ylo = 0.0; yhi = yprd;
|
|
zlo = 0.0; zhi = zprd;
|
|
|
|
neighbor->cutneighsq = Cutneigh * Cutneigh;
|
|
neighbor->binsizex = xprd / neighbor->nbinx;
|
|
neighbor->binsizey = yprd / neighbor->nbiny;
|
|
neighbor->binsizez = zprd / neighbor->nbinz;
|
|
|
|
neighbor->bininvx = 1.0 / neighbor->binsizex;
|
|
neighbor->bininvy = 1.0 / neighbor->binsizey;
|
|
neighbor->bininvz = 1.0 / neighbor->binsizez;
|
|
|
|
coord = xlo - Cutneigh - SMALL * xprd;
|
|
neighbor->mbinxlo = (int) (coord * neighbor->bininvx);
|
|
if (coord < 0.0) {
|
|
neighbor->mbinxlo = neighbor->mbinxlo - 1;
|
|
}
|
|
coord = xhi + Cutneigh + SMALL * xprd;
|
|
mbinxhi = (int) (coord * neighbor->bininvx);
|
|
|
|
coord = ylo - Cutneigh - SMALL * yprd;
|
|
neighbor->mbinylo = (int) (coord * neighbor->bininvy);
|
|
if (coord < 0.0) {
|
|
neighbor->mbinylo = neighbor->mbinylo - 1;
|
|
}
|
|
coord = yhi + Cutneigh + SMALL * yprd;
|
|
mbinyhi = (int) (coord * neighbor->bininvy);
|
|
|
|
coord = zlo - Cutneigh - SMALL * zprd;
|
|
neighbor->mbinzlo = (int) (coord * neighbor->bininvz);
|
|
if (coord < 0.0) {
|
|
neighbor->mbinzlo = neighbor->mbinzlo - 1;
|
|
}
|
|
coord = zhi + Cutneigh + SMALL * zprd;
|
|
mbinzhi = (int) (coord * neighbor->bininvz);
|
|
|
|
neighbor->mbinxlo = neighbor->mbinxlo - 1;
|
|
mbinxhi = mbinxhi + 1;
|
|
neighbor->mbinx = mbinxhi - neighbor->mbinxlo + 1;
|
|
|
|
neighbor->mbinylo = neighbor->mbinylo - 1;
|
|
mbinyhi = mbinyhi + 1;
|
|
neighbor->mbiny = mbinyhi - neighbor->mbinylo + 1;
|
|
|
|
neighbor->mbinzlo = neighbor->mbinzlo - 1;
|
|
mbinzhi = mbinzhi + 1;
|
|
neighbor->mbinz = mbinzhi - neighbor->mbinzlo + 1;
|
|
|
|
nextx = (int) (Cutneigh * neighbor->bininvx);
|
|
if(nextx * neighbor->binsizex < FACTOR * Cutneigh) nextx++;
|
|
|
|
nexty = (int) (Cutneigh * neighbor->bininvy);
|
|
if(nexty * neighbor->binsizey < FACTOR * Cutneigh) nexty++;
|
|
|
|
nextz = (int) (Cutneigh * neighbor->bininvz);
|
|
if(nextz * neighbor->binsizez < FACTOR * Cutneigh) nextz++;
|
|
|
|
if (neighbor->stencil) {
|
|
free(neighbor->stencil);
|
|
}
|
|
|
|
neighbor->stencil = (int*) malloc(
|
|
(2 * nextz + 1) * (2 * nexty + 1) * (2 * nextx + 1) * sizeof(int));
|
|
|
|
neighbor->nstencil = 0;
|
|
int kstart = -nextz;
|
|
|
|
for(int k = kstart; k <= nextz; k++) {
|
|
for(int j = -nexty; j <= nexty; j++) {
|
|
for(int i = -nextx; i <= nextx; i++) {
|
|
if(bindist(neighbor, i, j, k) < neighbor->cutneighsq) {
|
|
neighbor->stencil[neighbor->nstencil++] =
|
|
k * neighbor->mbiny * neighbor->mbinx + j * neighbor->mbinx + i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
neighbor->mbins = neighbor->mbinx * neighbor->mbiny * neighbor->mbinz;
|
|
|
|
if (neighbor->bincount) {
|
|
free(neighbor->bincount);
|
|
}
|
|
neighbor->bincount = (int*) malloc(neighbor->mbins * sizeof(int));
|
|
|
|
if (neighbor->bins) {
|
|
free(neighbor->bins);
|
|
}
|
|
neighbor->bins = (int*) malloc(neighbor->mbins * neighbor->atoms_per_bin * sizeof(int));
|
|
}
|
|
|
|
double* myrealloc(double *ptr, int n, int nold) {
|
|
|
|
double* newarray;
|
|
newarray = (double*) malloc(n * sizeof(double));
|
|
|
|
if(nold) {
|
|
memcpy(newarray, ptr, nold * sizeof(double));
|
|
}
|
|
if(ptr) {
|
|
free(ptr);
|
|
}
|
|
|
|
return newarray;
|
|
}
|
|
|
|
int* myreallocInt(int *ptr, int n, int nold) {
|
|
|
|
int* newarray;
|
|
|
|
newarray = (int*) malloc(n * sizeof(int));
|
|
|
|
if(nold) {
|
|
memcpy(newarray, ptr, nold * sizeof(int));
|
|
}
|
|
if(ptr) {
|
|
free(ptr);
|
|
}
|
|
|
|
return newarray;
|
|
}
|
|
|
|
void growBoundary()
|
|
{
|
|
int nold = NmaxGhost;
|
|
NmaxGhost += DELTA;
|
|
|
|
BorderMap = myreallocInt(BorderMap, NmaxGhost, nold);
|
|
PBCx = myreallocInt(PBCx, NmaxGhost, nold);
|
|
PBCy = myreallocInt(PBCy, NmaxGhost, nold);
|
|
PBCz = myreallocInt(PBCz, NmaxGhost, nold);
|
|
|
|
if(BorderMap == NULL || PBCx == NULL || PBCy == NULL || PBCz == NULL ) {
|
|
printf("ERROR: No memory for Boundary\n");
|
|
}
|
|
}
|
|
|
|
void growarray()
|
|
{
|
|
int nold = Nmax;
|
|
Nmax += DELTA;
|
|
|
|
x = myrealloc(x, Nmax, nold); y = myrealloc(y, Nmax, nold); z = myrealloc(z, Nmax, nold);
|
|
vx = myrealloc(vx, Nmax, nold); vy = myrealloc(vy, Nmax, nold); vz = myrealloc(vz, Nmax, nold);
|
|
fx = myrealloc(fx, Nmax, nold); fy = myrealloc(fy, Nmax, nold); fz = myrealloc(fz, Nmax, nold);
|
|
|
|
if(x == NULL || y == NULL || z == NULL ||
|
|
vx == NULL || vy == NULL || vz == NULL ||
|
|
fx == NULL || fy == NULL || fz == NULL ) {
|
|
printf("ERROR: No memory for atoms\n");
|
|
}
|
|
}
|
|
|
|
void updateBorders()
|
|
{
|
|
for(int i = 0; i < Nghost; i++) {
|
|
x[Nlocal + i] = x[BorderMap[i]] + PBCx[i] * xprd;
|
|
y[Nlocal + i] = y[BorderMap[i]] + PBCy[i] * yprd;
|
|
z[Nlocal + i] = z[BorderMap[i]] + PBCz[i] * zprd;
|
|
}
|
|
}
|
|
|
|
void updateAtomLocations()
|
|
{
|
|
for(int i = 0; i < Nlocal; i++) {
|
|
|
|
if(x[i] < 0.0) {
|
|
x[i] += xprd;
|
|
} else if(x[i] >= xprd) {
|
|
x[i] -= xprd;
|
|
}
|
|
|
|
if(y[i] < 0.0) {
|
|
y[i] += yprd;
|
|
} else if(y[i] >= yprd) {
|
|
y[i] -= yprd;
|
|
}
|
|
|
|
if(z[i] < 0.0) {
|
|
z[i] += zprd;
|
|
} else if(z[i] >= zprd) {
|
|
z[i] -= zprd;
|
|
}
|
|
}
|
|
}
|
|
|
|
void setupBordersNew()
|
|
{
|
|
int lastidx = 0;
|
|
int nghostprev = 0;
|
|
Nghost = 0;
|
|
|
|
for (int i = 0; i < Nlocal; i++) {
|
|
|
|
if (Nlocal + Nghost + 1 >= Nmax) {
|
|
growarray();
|
|
}
|
|
|
|
if (x[i] < Cutneigh) {
|
|
Nghost++;
|
|
x[i+lastidx] = x[i] + xprd;
|
|
y[i+lastidx] = y[i];
|
|
z[i+lastidx] = z[i];
|
|
lastidx++;
|
|
} else if (x[i] >= xprd - Cutneigh) {
|
|
Nghost++;
|
|
x[i+lastidx] = x[i] - xprd;
|
|
y[i+lastidx] = y[i];
|
|
z[i+lastidx] = z[i];
|
|
lastidx++;
|
|
}
|
|
}
|
|
|
|
nghostprev = Nghost+1;
|
|
|
|
for (int i = 0; i < Nlocal + nghostprev ; i++) {
|
|
|
|
if (Nlocal + Nghost + 1 >= Nmax) {
|
|
growarray();
|
|
}
|
|
|
|
if (y[i] < Cutneigh) {
|
|
Nghost++;
|
|
x[i+lastidx] = x[i];
|
|
y[i+lastidx] = y[i] + yprd;
|
|
z[i+lastidx] = z[i];
|
|
lastidx++;
|
|
} else if (y[i] >= yprd - Cutneigh) {
|
|
Nghost++;
|
|
x[i+lastidx] = x[i];
|
|
y[i+lastidx] = y[i] - yprd;
|
|
z[i+lastidx] = z[i];
|
|
lastidx++;
|
|
}
|
|
}
|
|
|
|
nghostprev = Nghost+1;
|
|
|
|
for (int i = 0; i < Nlocal + nghostprev; i++) {
|
|
|
|
if (Nlocal + Nghost + 1 >= Nmax) {
|
|
growarray();
|
|
}
|
|
|
|
if (z[i] < Cutneigh) {
|
|
Nghost++;
|
|
x[i+lastidx] = x[i];
|
|
y[i+lastidx] = y[i];
|
|
z[i+lastidx] = z[i] + zprd;
|
|
lastidx++;
|
|
} else if(z[i] >= zprd - Cutneigh) {
|
|
Nghost++;
|
|
x[i+lastidx] = x[i];
|
|
y[i+lastidx] = y[i];
|
|
z[i+lastidx] = z[i] - zprd;
|
|
lastidx++;
|
|
}
|
|
}
|
|
|
|
Nghost++;
|
|
}
|
|
|
|
#define ADDGHOST(dx,dy,dz) Nghost++; BorderMap[Nghost] = i; PBCx[Nghost] = dx; PBCy[Nghost] = dy; PBCz[Nghost] = dz;
|
|
void setupBorders()
|
|
{
|
|
Nghost = -1;
|
|
|
|
for(int i = 0; i < Nlocal; i++) {
|
|
|
|
if (Nlocal + Nghost + 7 >= Nmax) {
|
|
growarray();
|
|
}
|
|
if (Nghost + 7 >= NmaxGhost) {
|
|
growBoundary();
|
|
}
|
|
|
|
/* Setup ghost atoms */
|
|
/* 6 planes */
|
|
if (x[i] < Cutneigh) { ADDGHOST(+1,0,0); }
|
|
if (x[i] >= (xprd-Cutneigh)) { ADDGHOST(-1,0,0); }
|
|
if (y[i] < Cutneigh) { ADDGHOST(0,+1,0); }
|
|
if (y[i] >= (yprd-Cutneigh)) { ADDGHOST(0,-1,0); }
|
|
if (z[i] < Cutneigh) { ADDGHOST(0,0,+1); }
|
|
if (z[i] >= (zprd-Cutneigh)) { ADDGHOST(0,0,-1); }
|
|
/* 8 corners */
|
|
if (x[i] < Cutneigh && y[i] < Cutneigh && z[i] < Cutneigh) { ADDGHOST(+1,+1,+1); }
|
|
if (x[i] < Cutneigh && y[i] >= (yprd-Cutneigh) && z[i] < Cutneigh) { ADDGHOST(+1,-1,+1); }
|
|
if (x[i] < Cutneigh && y[i] >= Cutneigh && z[i] >= (zprd-Cutneigh)) { ADDGHOST(+1,+1,-1); }
|
|
if (x[i] < Cutneigh && y[i] >= (yprd-Cutneigh) && z[i] >= (zprd-Cutneigh)) { ADDGHOST(+1,-1,-1); }
|
|
if (x[i] >= (xprd-Cutneigh) && y[i] < Cutneigh && z[i] < Cutneigh) { ADDGHOST(-1,+1,+1); }
|
|
if (x[i] >= (xprd-Cutneigh) && y[i] >= (yprd-Cutneigh) && z[i] < Cutneigh) { ADDGHOST(-1,-1,+1); }
|
|
if (x[i] >= (xprd-Cutneigh) && y[i] < Cutneigh && z[i] >= (zprd-Cutneigh)) { ADDGHOST(-1,+1,-1); }
|
|
if (x[i] >= (xprd-Cutneigh) && y[i] >= (yprd-Cutneigh) && z[i] >= (zprd-Cutneigh)) { ADDGHOST(-1,-1,-1); }
|
|
/* 12 edges */
|
|
if (x[i] < Cutneigh && z[i] < Cutneigh) { ADDGHOST(+1,0,+1); }
|
|
if (x[i] < Cutneigh && z[i] >= (zprd-Cutneigh)) { ADDGHOST(+1,0,-1); }
|
|
if (x[i] >= (xprd-Cutneigh) && z[i] < Cutneigh) { ADDGHOST(-1,0,+1); }
|
|
if (x[i] >= (xprd-Cutneigh) && z[i] >= (zprd-Cutneigh)) { ADDGHOST(-1,0,-1); }
|
|
if (y[i] < Cutneigh && z[i] < Cutneigh) { ADDGHOST(0,+1,+1); }
|
|
if (y[i] < Cutneigh && z[i] >= (zprd-Cutneigh)) { ADDGHOST(0,+1,-1); }
|
|
if (y[i] >= (yprd-Cutneigh) && z[i] < Cutneigh) { ADDGHOST(0,-1,+1); }
|
|
if (y[i] >= (yprd-Cutneigh) && z[i] >= (zprd-Cutneigh)) { ADDGHOST(0,-1,-1); }
|
|
if (y[i] < Cutneigh && x[i] < Cutneigh) { ADDGHOST(+1,+1,0); }
|
|
if (y[i] < Cutneigh && x[i] >= (xprd-Cutneigh)) { ADDGHOST(-1,+1,0); }
|
|
if (y[i] >= (yprd-Cutneigh) && x[i] < Cutneigh) { ADDGHOST(+1,-1,0); }
|
|
if (y[i] >= (yprd-Cutneigh) && x[i] >= (xprd-Cutneigh)) { ADDGHOST(-1,-1,0); }
|
|
}
|
|
// increase by one to make it the ghost atom count
|
|
Nghost++;
|
|
}
|
|
|
|
void sortAtoms(Neighbor *neighbor)
|
|
{
|
|
binatoms(neighbor);
|
|
int* binpos = neighbor->bincount;
|
|
int* bins = neighbor->bins;
|
|
|
|
int mbins = neighbor->mbins;
|
|
int atoms_per_bin = neighbor->atoms_per_bin;
|
|
|
|
for(int i=1; i<mbins; i++) {
|
|
binpos[i] += binpos[i-1];
|
|
}
|
|
|
|
double* new_x = (double*) malloc(Nmax * sizeof(double));
|
|
double* new_y = (double*) malloc(Nmax * sizeof(double));
|
|
double* new_z = (double*) malloc(Nmax * sizeof(double));
|
|
double* new_vx = (double*) malloc(Nmax * sizeof(double));
|
|
double* new_vy = (double*) malloc(Nmax * sizeof(double));
|
|
double* new_vz = (double*) malloc(Nmax * sizeof(double));
|
|
|
|
double* old_x = x; double* old_y = y; double* old_z = z;
|
|
double* old_vx = vx; double* old_vy = vy; double* old_vz = vz;
|
|
|
|
for(int mybin = 0; mybin<mbins; mybin++) {
|
|
int start = mybin>0?binpos[mybin-1]:0;
|
|
int count = binpos[mybin] - start;
|
|
|
|
for(int k=0; k<count; k++) {
|
|
int new_i = start + k;
|
|
int old_i = bins[mybin * atoms_per_bin + k];
|
|
new_x[new_i] = old_x[old_i];
|
|
new_y[new_i] = old_y[old_i];
|
|
new_z[new_i] = old_z[old_i];
|
|
new_vx[new_i] = old_vx[old_i];
|
|
new_vy[new_i] = old_vy[old_i];
|
|
new_vz[new_i] = old_vz[old_i];
|
|
}
|
|
}
|
|
|
|
free(x); free(y); free(z);
|
|
free(vx); free(vy); free(vz);
|
|
x = new_x; y = new_y; z = new_z;
|
|
vx = new_vx; vy = new_vy; vz = new_vz;
|
|
}
|
|
|
|
void create_atoms(Parameter *param)
|
|
{
|
|
Natoms = 4 * param->nx * param->ny * param->nz;
|
|
Nlocal = 0;
|
|
double alat = pow((4.0 / param->rho), (1.0 / 3.0));
|
|
int ilo = (int) (xlo / (0.5 * alat) - 1);
|
|
int ihi = (int) (xhi / (0.5 * alat) + 1);
|
|
int jlo = (int) (ylo / (0.5 * alat) - 1);
|
|
int jhi = (int) (yhi / (0.5 * alat) + 1);
|
|
int klo = (int) (zlo / (0.5 * alat) - 1);
|
|
int khi = (int) (zhi / (0.5 * alat) + 1);
|
|
|
|
ilo = MAX(ilo, 0);
|
|
ihi = MIN(ihi, 2 * param->nx - 1);
|
|
jlo = MAX(jlo, 0);
|
|
jhi = MIN(jhi, 2 * param->ny - 1);
|
|
klo = MAX(klo, 0);
|
|
khi = MIN(khi, 2 * param->nz - 1);
|
|
|
|
double xtmp, ytmp, ztmp, vxtmp, vytmp, vztmp;
|
|
int i, j, k, m, n;
|
|
int sx = 0; int sy = 0; int sz = 0;
|
|
int ox = 0; int oy = 0; int oz = 0;
|
|
int subboxdim = 8;
|
|
|
|
while(oz * subboxdim <= khi) {
|
|
|
|
k = oz * subboxdim + sz;
|
|
j = oy * subboxdim + sy;
|
|
i = ox * subboxdim + sx;
|
|
|
|
if(((i + j + k) % 2 == 0) &&
|
|
(i >= ilo) && (i <= ihi) &&
|
|
(j >= jlo) && (j <= jhi) &&
|
|
(k >= klo) && (k <= khi)) {
|
|
|
|
xtmp = 0.5 * alat * i;
|
|
ytmp = 0.5 * alat * j;
|
|
ztmp = 0.5 * alat * k;
|
|
|
|
if( xtmp >= xlo && xtmp < xhi &&
|
|
ytmp >= ylo && ytmp < yhi &&
|
|
ztmp >= zlo && ztmp < zhi ) {
|
|
|
|
n = k * (2 * param->ny) * (2 * param->nx) +
|
|
j * (2 * param->nx) +
|
|
i + 1;
|
|
|
|
for(m = 0; m < 5; m++) {
|
|
myrandom(&n);
|
|
}
|
|
vxtmp = myrandom(&n);
|
|
|
|
for(m = 0; m < 5; m++){
|
|
myrandom(&n);
|
|
}
|
|
vytmp = myrandom(&n);
|
|
|
|
for(m = 0; m < 5; m++) {
|
|
myrandom(&n);
|
|
}
|
|
vztmp = myrandom(&n);
|
|
|
|
if(Nlocal == Nmax) {
|
|
growarray();
|
|
}
|
|
|
|
x[Nlocal] = xtmp; y[Nlocal] = ytmp; z[Nlocal] = ztmp;
|
|
vx[Nlocal] = vxtmp; vy[Nlocal] = vytmp; vz[Nlocal] = vztmp;
|
|
Nlocal++;
|
|
}
|
|
}
|
|
|
|
sx++;
|
|
|
|
if(sx == subboxdim) { sx = 0; sy++; }
|
|
if(sy == subboxdim) { sy = 0; sz++; }
|
|
if(sz == subboxdim) { sz = 0; ox++; }
|
|
if(ox * subboxdim > ihi) { ox = 0; oy++; }
|
|
if(oy * subboxdim > jhi) { oy = 0; oz++; }
|
|
}
|
|
}
|
|
|
|
void adjustVelocity(Parameter *param, Thermo *thermo)
|
|
{
|
|
/* zero center-of-mass motion */
|
|
double vxtot = 0.0;
|
|
double vytot = 0.0;
|
|
double vztot = 0.0;
|
|
|
|
for(int i = 0; i < Nlocal; i++) {
|
|
vxtot += vx[i];
|
|
vytot += vy[i];
|
|
vztot += vz[i];
|
|
}
|
|
|
|
vxtot = vxtot / Natoms;
|
|
vytot = vytot / Natoms;
|
|
vztot = vztot / Natoms;
|
|
|
|
for(int i = 0; i < Nlocal; i++) {
|
|
vx[i] -= vxtot;
|
|
vy[i] -= vytot;
|
|
vz[i] -= vztot;
|
|
}
|
|
|
|
thermo->t_act = 0;
|
|
double t = 0.0;
|
|
|
|
for(int i = 0; i < Nlocal; i++) {
|
|
t += (vx[i] * vx[i] + vy[i] * vy[i] + vz[i] * vz[i]) * param->mass;
|
|
}
|
|
|
|
t *= thermo->t_scale;
|
|
double factor = sqrt(param->temp / t);
|
|
|
|
for(int i = 0; i < Nlocal; i++) {
|
|
vx[i] *= factor;
|
|
vy[i] *= factor;
|
|
vz[i] *= factor;
|
|
}
|
|
}
|
|
|
|
void thermoSetup(Parameter *param, Thermo *thermo)
|
|
{
|
|
int maxstat = param->ntimes / param->nstat + 2;
|
|
|
|
thermo->steparr = (int*) malloc(maxstat * sizeof(int));
|
|
thermo->tmparr = (double*) malloc(maxstat * sizeof(double));
|
|
thermo->engarr = (double*) malloc(maxstat * sizeof(double));
|
|
thermo->prsarr = (double*) malloc(maxstat * sizeof(double));
|
|
|
|
thermo->mvv2e = 1.0;
|
|
thermo->dof_boltz = (Natoms * 3 - 3);
|
|
thermo->t_scale = thermo->mvv2e / thermo->dof_boltz;
|
|
thermo->p_scale = 1.0 / 3 / xprd / yprd / zprd;
|
|
thermo->e_scale = 0.5;
|
|
|
|
printf("step\ttemp\t\tpressure\n");
|
|
}
|
|
|
|
|
|
void thermoCompute(int iflag, Parameter *param, Thermo *thermo)
|
|
{
|
|
double t = 0.0, p;
|
|
|
|
for(int i = 0; i < Nlocal; i++) {
|
|
t += (vx[i] * vx[i] + vy[i] * vy[i] + vz[i] * vz[i]) * param->mass;
|
|
}
|
|
|
|
t = t * thermo->t_scale;
|
|
p = (t * thermo->dof_boltz) * thermo->p_scale;
|
|
|
|
int istep = iflag;
|
|
|
|
if(iflag == -1){
|
|
istep = param->ntimes;
|
|
}
|
|
if(iflag == 0){
|
|
thermo->mstat = 0;
|
|
}
|
|
|
|
thermo->steparr[thermo->mstat] = istep;
|
|
thermo->tmparr[thermo->mstat] = t;
|
|
thermo->prsarr[thermo->mstat] = p;
|
|
thermo->mstat++;
|
|
fprintf(stdout, "%i\t%e\t%e\n", istep, t, p);
|
|
}
|
|
|
|
void initialIntegrate(Parameter *param)
|
|
{
|
|
for(int i = 0; i < Nlocal; i++) {
|
|
vx[i] += param->dtforce * fx[i];
|
|
vy[i] += param->dtforce * fy[i];
|
|
vz[i] += param->dtforce * fz[i];
|
|
x[i] += param->dt * vx[i];
|
|
y[i] += param->dt * vy[i];
|
|
z[i] += param->dt * vz[i];
|
|
}
|
|
}
|
|
|
|
void finalIntegrate(Parameter *param)
|
|
{
|
|
for(int i = 0; i < Nlocal; i++) {
|
|
vx[i] += param->dtforce * fx[i];
|
|
vy[i] += param->dtforce * fy[i];
|
|
vz[i] += param->dtforce * fz[i];
|
|
}
|
|
}
|
|
|
|
void computeForce(Neighbor *neighbor, Parameter *param)
|
|
{
|
|
int* neighs;
|
|
double cutforcesq = param->cutforce * param->cutforce;
|
|
double sigma6 = param->sigma6;
|
|
double epsilon = param->epsilon;
|
|
|
|
for(int i = 0; i < Nlocal; i++) {
|
|
fx[i] = 0.0;
|
|
fy[i] = 0.0;
|
|
fz[i] = 0.0;
|
|
}
|
|
|
|
for(int i = 0; i < Nlocal; i++) {
|
|
neighs = &neighbor->neighbors[i * neighbor->maxneighs];
|
|
int numneighs = neighbor->numneigh[i];
|
|
double xtmp = x[i];
|
|
double ytmp = y[i];
|
|
double ztmp = z[i];
|
|
|
|
double fix = 0;
|
|
double fiy = 0;
|
|
double fiz = 0;
|
|
|
|
for(int k = 0; k < numneighs; k++) {
|
|
int j = neighs[k];
|
|
double delx = xtmp - x[j];
|
|
double dely = ytmp - y[j];
|
|
double delz = ztmp - z[j];
|
|
double rsq = delx * delx + dely * dely + delz * delz;
|
|
|
|
if(rsq < cutforcesq) {
|
|
double sr2 = 1.0 / rsq;
|
|
double sr6 = sr2 * sr2 * sr2 * sigma6;
|
|
double force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
|
|
fix += delx * force;
|
|
fiy += dely * force;
|
|
fiz += delz * force;
|
|
}
|
|
}
|
|
|
|
fx[i] += fix;
|
|
fy[i] += fiy;
|
|
fz[i] += fiz;
|
|
}
|
|
}
|
|
|
|
int main (int argc, char** argv)
|
|
{
|
|
Neighbor neighbor;
|
|
Parameter param;
|
|
Thermo thermo;
|
|
|
|
init(&neighbor, ¶m);
|
|
setup(&neighbor, ¶m);
|
|
create_atoms(¶m);
|
|
thermoSetup(¶m, &thermo);
|
|
adjustVelocity(¶m, &thermo);
|
|
setupBorders();
|
|
updateBorders();
|
|
buildNeighborlist(&neighbor);
|
|
thermoCompute(0, ¶m, &thermo);
|
|
computeForce(&neighbor, ¶m);
|
|
|
|
for(int n = 0; n < param.ntimes; n++) {
|
|
|
|
initialIntegrate(¶m);
|
|
|
|
if((n + 1) % neighbor.every) {
|
|
updateBorders();
|
|
} else {
|
|
updateAtomLocations();
|
|
setupBorders();
|
|
updateBorders();
|
|
/* sortAtoms(&neighbor); */
|
|
buildNeighborlist(&neighbor);
|
|
}
|
|
|
|
computeForce(&neighbor, ¶m);
|
|
finalIntegrate(¶m);
|
|
|
|
if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) {
|
|
thermoCompute(n + 1, ¶m, &thermo);
|
|
}
|
|
}
|
|
|
|
thermoCompute(-1, ¶m, &thermo);
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|