279 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			279 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg.
 | 
						|
 * All rights reserved. This file is part of MD-Bench.
 | 
						|
 * Use of this source code is governed by a LGPL-3.0
 | 
						|
 * license that can be found in the LICENSE file.
 | 
						|
 */
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
//---
 | 
						|
#include <atom.h>
 | 
						|
#include <likwid-marker.h>
 | 
						|
#include <neighbor.h>
 | 
						|
#include <parameter.h>
 | 
						|
#include <stats.h>
 | 
						|
#include <timing.h>
 | 
						|
 | 
						|
#ifdef __SIMD_KERNEL__
 | 
						|
#include <simd.h>
 | 
						|
#endif
 | 
						|
 | 
						|
double computeForceLJFullNeigh_plain_c(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
 | 
						|
    int Nlocal = atom->Nlocal;
 | 
						|
    int* neighs;
 | 
						|
    #ifndef EXPLICIT_TYPES
 | 
						|
    MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
 | 
						|
    MD_FLOAT sigma6 = param->sigma6;
 | 
						|
    MD_FLOAT epsilon = param->epsilon;
 | 
						|
    #endif
 | 
						|
    const MD_FLOAT num1 = 1.0;
 | 
						|
    const MD_FLOAT num48 = 48.0;
 | 
						|
    const MD_FLOAT num05 = 0.5;
 | 
						|
 | 
						|
    for(int i = 0; i < Nlocal; i++) {
 | 
						|
        atom_fx(i) = 0.0;
 | 
						|
        atom_fy(i) = 0.0;
 | 
						|
        atom_fz(i) = 0.0;
 | 
						|
    }
 | 
						|
    double S = getTimeStamp();
 | 
						|
 | 
						|
    #pragma omp parallel
 | 
						|
    {
 | 
						|
    LIKWID_MARKER_START("force");
 | 
						|
 | 
						|
    #pragma omp for schedule(runtime)
 | 
						|
    for(int i = 0; i < Nlocal; i++) {
 | 
						|
        neighs = &neighbor->neighbors[i * neighbor->maxneighs];
 | 
						|
        int numneighs = neighbor->numneigh[i];
 | 
						|
        MD_FLOAT xtmp = atom_x(i);
 | 
						|
        MD_FLOAT ytmp = atom_y(i);
 | 
						|
        MD_FLOAT ztmp = atom_z(i);
 | 
						|
        MD_FLOAT fix = 0;
 | 
						|
        MD_FLOAT fiy = 0;
 | 
						|
        MD_FLOAT fiz = 0;
 | 
						|
 | 
						|
        #ifdef EXPLICIT_TYPES
 | 
						|
        const int type_i = atom->type[i];
 | 
						|
        #endif
 | 
						|
 | 
						|
        for(int k = 0; k < numneighs; k++) {
 | 
						|
            int j = neighs[k];
 | 
						|
            MD_FLOAT delx = xtmp - atom_x(j);
 | 
						|
            MD_FLOAT dely = ytmp - atom_y(j);
 | 
						|
            MD_FLOAT delz = ztmp - atom_z(j);
 | 
						|
            MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
 | 
						|
 | 
						|
            #ifdef EXPLICIT_TYPES
 | 
						|
            const int type_j = atom->type[j];
 | 
						|
            const int type_ij = type_i * atom->ntypes + type_j;
 | 
						|
            const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
 | 
						|
            const MD_FLOAT sigma6 = atom->sigma6[type_ij];
 | 
						|
            const MD_FLOAT epsilon = atom->epsilon[type_ij];
 | 
						|
            #endif
 | 
						|
 | 
						|
            if(rsq < cutforcesq) {
 | 
						|
                MD_FLOAT sr2 = num1 / rsq;
 | 
						|
                MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
 | 
						|
                MD_FLOAT force = num48 * sr6 * (sr6 - num05) * sr2 * epsilon;
 | 
						|
                fix += delx * force;
 | 
						|
                fiy += dely * force;
 | 
						|
                fiz += delz * force;
 | 
						|
            #ifdef USE_REFERENCE_VERSION
 | 
						|
                addStat(stats->atoms_within_cutoff, 1);
 | 
						|
            } else {
 | 
						|
                addStat(stats->atoms_outside_cutoff, 1);
 | 
						|
            #endif
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        atom_fx(i) += fix;
 | 
						|
        atom_fy(i) += fiy;
 | 
						|
        atom_fz(i) += fiz;
 | 
						|
 | 
						|
        #ifdef USE_REFERENCE_VERSION
 | 
						|
        if(numneighs % VECTOR_WIDTH > 0) {
 | 
						|
            addStat(stats->atoms_outside_cutoff, VECTOR_WIDTH - (numneighs % VECTOR_WIDTH));
 | 
						|
        }
 | 
						|
        #endif
 | 
						|
 | 
						|
        addStat(stats->total_force_neighs, numneighs);
 | 
						|
        addStat(stats->total_force_iters, (numneighs + VECTOR_WIDTH - 1) / VECTOR_WIDTH);
 | 
						|
    }
 | 
						|
 | 
						|
    LIKWID_MARKER_STOP("force");
 | 
						|
    }
 | 
						|
 | 
						|
    double E = getTimeStamp();
 | 
						|
    return E-S;
 | 
						|
}
 | 
						|
 | 
						|
double computeForceLJHalfNeigh(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
 | 
						|
    int Nlocal = atom->Nlocal;
 | 
						|
    int* neighs;
 | 
						|
    #ifndef EXPLICIT_TYPES
 | 
						|
    MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
 | 
						|
    MD_FLOAT sigma6 = param->sigma6;
 | 
						|
    MD_FLOAT epsilon = param->epsilon;
 | 
						|
    #endif
 | 
						|
    const MD_FLOAT num1 = 1.0;
 | 
						|
    const MD_FLOAT num48 = 48.0;
 | 
						|
    const MD_FLOAT num05 = 0.5;
 | 
						|
 | 
						|
    for(int i = 0; i < Nlocal; i++) {
 | 
						|
        atom_fx(i) = 0.0;
 | 
						|
        atom_fy(i) = 0.0;
 | 
						|
        atom_fz(i) = 0.0;
 | 
						|
    }
 | 
						|
 | 
						|
    double S = getTimeStamp();
 | 
						|
 | 
						|
    #pragma omp parallel
 | 
						|
    {
 | 
						|
    LIKWID_MARKER_START("forceLJ-halfneigh");
 | 
						|
 | 
						|
    #pragma omp for schedule(runtime)
 | 
						|
    for(int i = 0; i < Nlocal; i++) {
 | 
						|
        neighs = &neighbor->neighbors[i * neighbor->maxneighs];
 | 
						|
        int numneighs = neighbor->numneigh[i];
 | 
						|
        MD_FLOAT xtmp = atom_x(i);
 | 
						|
        MD_FLOAT ytmp = atom_y(i);
 | 
						|
        MD_FLOAT ztmp = atom_z(i);
 | 
						|
        MD_FLOAT fix = 0;
 | 
						|
        MD_FLOAT fiy = 0;
 | 
						|
        MD_FLOAT fiz = 0;
 | 
						|
 | 
						|
        #ifdef EXPLICIT_TYPES
 | 
						|
        const int type_i = atom->type[i];
 | 
						|
        #endif
 | 
						|
 | 
						|
        // Pragma required to vectorize the inner loop
 | 
						|
        #ifdef ENABLE_OMP_SIMD
 | 
						|
        #pragma omp simd reduction(+: fix,fiy,fiz)
 | 
						|
        #endif
 | 
						|
        for(int k = 0; k < numneighs; k++) {
 | 
						|
            int j = neighs[k];
 | 
						|
            MD_FLOAT delx = xtmp - atom_x(j);
 | 
						|
            MD_FLOAT dely = ytmp - atom_y(j);
 | 
						|
            MD_FLOAT delz = ztmp - atom_z(j);
 | 
						|
            MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
 | 
						|
 | 
						|
            #ifdef EXPLICIT_TYPES
 | 
						|
            const int type_j = atom->type[j];
 | 
						|
            const int type_ij = type_i * atom->ntypes + type_j;
 | 
						|
            const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
 | 
						|
            const MD_FLOAT sigma6 = atom->sigma6[type_ij];
 | 
						|
            const MD_FLOAT epsilon = atom->epsilon[type_ij];
 | 
						|
            #endif
 | 
						|
 | 
						|
            if(rsq < cutforcesq) {
 | 
						|
                MD_FLOAT sr2 = num1 / rsq;
 | 
						|
                MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
 | 
						|
                MD_FLOAT force = num48 * sr6 * (sr6 - num05) * sr2 * epsilon;
 | 
						|
                fix += delx * force;
 | 
						|
                fiy += dely * force;
 | 
						|
                fiz += delz * force;
 | 
						|
 | 
						|
                // We do not need to update forces for ghost atoms
 | 
						|
                if(j < Nlocal) {
 | 
						|
                    atom_fx(j) -= delx * force;
 | 
						|
                    atom_fy(j) -= dely * force;
 | 
						|
                    atom_fz(j) -= delz * force;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        atom_fx(i) += fix;
 | 
						|
        atom_fy(i) += fiy;
 | 
						|
        atom_fz(i) += fiz;
 | 
						|
 | 
						|
        addStat(stats->total_force_neighs, numneighs);
 | 
						|
        addStat(stats->total_force_iters, (numneighs + VECTOR_WIDTH - 1) / VECTOR_WIDTH);
 | 
						|
    }
 | 
						|
 | 
						|
    LIKWID_MARKER_STOP("forceLJ-halfneigh");
 | 
						|
    }
 | 
						|
 | 
						|
    double E = getTimeStamp();
 | 
						|
    return E-S;
 | 
						|
}
 | 
						|
 | 
						|
double computeForceLJFullNeigh_simd(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
 | 
						|
    int Nlocal = atom->Nlocal;
 | 
						|
    int* neighs;
 | 
						|
    MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
 | 
						|
    MD_FLOAT sigma6 = param->sigma6;
 | 
						|
    MD_FLOAT epsilon = param->epsilon;
 | 
						|
 | 
						|
    for(int i = 0; i < Nlocal; i++) {
 | 
						|
        atom_fx(i) = 0.0;
 | 
						|
        atom_fy(i) = 0.0;
 | 
						|
        atom_fz(i) = 0.0;
 | 
						|
    }
 | 
						|
 | 
						|
    double S = getTimeStamp();
 | 
						|
 | 
						|
    #ifndef __SIMD_KERNEL__
 | 
						|
    fprintf(stderr, "Error: SIMD kernel not implemented for specified instruction set!");
 | 
						|
    exit(-1);
 | 
						|
    #else
 | 
						|
    MD_SIMD_FLOAT cutforcesq_vec = simd_broadcast(cutforcesq);
 | 
						|
    MD_SIMD_FLOAT sigma6_vec = simd_broadcast(sigma6);
 | 
						|
    MD_SIMD_FLOAT eps_vec = simd_broadcast(epsilon);
 | 
						|
    MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0);
 | 
						|
    MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5);
 | 
						|
 | 
						|
 | 
						|
    #pragma omp parallel
 | 
						|
    {
 | 
						|
    LIKWID_MARKER_START("force");
 | 
						|
 | 
						|
    #pragma omp for schedule(runtime)
 | 
						|
    for(int i = 0; i < Nlocal; i++) {
 | 
						|
        neighs = &neighbor->neighbors[i * neighbor->maxneighs];
 | 
						|
        int numneighs = neighbor->numneigh[i];
 | 
						|
        MD_SIMD_INT numneighs_vec = simd_int_broadcast(numneighs);
 | 
						|
        MD_SIMD_FLOAT xtmp = simd_broadcast(atom_x(i));
 | 
						|
        MD_SIMD_FLOAT ytmp = simd_broadcast(atom_y(i));
 | 
						|
        MD_SIMD_FLOAT ztmp = simd_broadcast(atom_z(i));
 | 
						|
        MD_SIMD_FLOAT fix = simd_zero();
 | 
						|
        MD_SIMD_FLOAT fiy = simd_zero();
 | 
						|
        MD_SIMD_FLOAT fiz = simd_zero();
 | 
						|
 | 
						|
        for(int k = 0; k < numneighs; k += VECTOR_WIDTH) {
 | 
						|
            // If the last iteration of this loop is separated from the rest, this mask can be set only there
 | 
						|
            MD_SIMD_MASK mask_numneighs = simd_mask_int_cond_lt(simd_int_add(simd_int_broadcast(k), simd_int_seq()), numneighs_vec);
 | 
						|
            MD_SIMD_INT j = simd_int_mask_load(&neighs[k], mask_numneighs);
 | 
						|
            #ifdef AOS
 | 
						|
            MD_SIMD_INT j3 = simd_int_add(simd_int_add(j, j), j); // j * 3
 | 
						|
            MD_SIMD_FLOAT delx = xtmp - simd_gather(j3, &(atom->x[0]), sizeof(MD_FLOAT));
 | 
						|
            MD_SIMD_FLOAT dely = ytmp - simd_gather(j3, &(atom->x[1]), sizeof(MD_FLOAT));
 | 
						|
            MD_SIMD_FLOAT delz = ztmp - simd_gather(j3, &(atom->x[2]), sizeof(MD_FLOAT));
 | 
						|
            #else
 | 
						|
            MD_SIMD_FLOAT delx = xtmp - simd_gather(j, atom->x, sizeof(MD_FLOAT));
 | 
						|
            MD_SIMD_FLOAT dely = ytmp - simd_gather(j, atom->y, sizeof(MD_FLOAT));
 | 
						|
            MD_SIMD_FLOAT delz = ztmp - simd_gather(j, atom->z, sizeof(MD_FLOAT));
 | 
						|
            #endif
 | 
						|
            MD_SIMD_FLOAT rsq = simd_fma(delx, delx, simd_fma(dely, dely, simd_mul(delz, delz)));
 | 
						|
            MD_SIMD_MASK cutoff_mask = simd_mask_and(mask_numneighs, simd_mask_cond_lt(rsq, cutforcesq_vec));
 | 
						|
            MD_SIMD_FLOAT sr2 = simd_reciprocal(rsq);
 | 
						|
            MD_SIMD_FLOAT sr6 = simd_mul(sr2, simd_mul(sr2, simd_mul(sr2, sigma6_vec)));
 | 
						|
            MD_SIMD_FLOAT force = simd_mul(c48_vec, simd_mul(sr6, simd_mul(simd_sub(sr6, c05_vec), simd_mul(sr2, eps_vec))));
 | 
						|
 | 
						|
            fix = simd_masked_add(fix, simd_mul(delx, force), cutoff_mask);
 | 
						|
            fiy = simd_masked_add(fiy, simd_mul(dely, force), cutoff_mask);
 | 
						|
            fiz = simd_masked_add(fiz, simd_mul(delz, force), cutoff_mask);
 | 
						|
        }
 | 
						|
 | 
						|
        atom_fx(i) += simd_h_reduce_sum(fix);
 | 
						|
        atom_fy(i) += simd_h_reduce_sum(fiy);
 | 
						|
        atom_fz(i) += simd_h_reduce_sum(fiz);
 | 
						|
    }
 | 
						|
 | 
						|
    LIKWID_MARKER_STOP("force");
 | 
						|
    }
 | 
						|
    #endif
 | 
						|
 | 
						|
    double E = getTimeStamp();
 | 
						|
    return E-S;
 | 
						|
}
 |