0e742766b7
Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
764 lines
38 KiB
C
764 lines
38 KiB
C
/*
|
|
* =======================================================================================
|
|
*
|
|
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
|
|
* Copyright (c) 2021 RRZE, University Erlangen-Nuremberg
|
|
*
|
|
* This file is part of MD-Bench.
|
|
*
|
|
* MD-Bench is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU Lesser General Public License as published
|
|
* by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
|
|
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License along
|
|
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
|
|
* =======================================================================================
|
|
*/
|
|
#include <stdio.h>
|
|
|
|
#include <likwid-marker.h>
|
|
#include <timing.h>
|
|
#include <neighbor.h>
|
|
#include <parameter.h>
|
|
#include <atom.h>
|
|
#include <stats.h>
|
|
#include <util.h>
|
|
#include <simd.h>
|
|
|
|
|
|
double computeForceLJ_ref(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
|
|
DEBUG_MESSAGE("computeForceLJ begin\n");
|
|
int Nlocal = atom->Nlocal;
|
|
int* neighs;
|
|
MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
|
|
MD_FLOAT sigma6 = param->sigma6;
|
|
MD_FLOAT epsilon = param->epsilon;
|
|
|
|
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
|
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
|
MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base];
|
|
for(int cii = 0; cii < atom->iclusters[ci].natoms; cii++) {
|
|
ci_f[CL_X_OFFSET + cii] = 0.0;
|
|
ci_f[CL_Y_OFFSET + cii] = 0.0;
|
|
ci_f[CL_Z_OFFSET + cii] = 0.0;
|
|
}
|
|
}
|
|
|
|
double S = getTimeStamp();
|
|
LIKWID_MARKER_START("force");
|
|
|
|
#pragma omp parallel for
|
|
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
|
int ci_cj0 = CJ0_FROM_CI(ci);
|
|
int ci_cj1 = CJ1_FROM_CI(ci);
|
|
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
|
MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
|
|
MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base];
|
|
neighs = &neighbor->neighbors[ci * neighbor->maxneighs];
|
|
int numneighs = neighbor->numneigh[ci];
|
|
|
|
for(int k = 0; k < numneighs; k++) {
|
|
int cj = neighs[k];
|
|
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
|
|
int any = 0;
|
|
MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base];
|
|
MD_FLOAT *cj_f = &atom->cl_f[cj_vec_base];
|
|
|
|
for(int cii = 0; cii < CLUSTER_M; cii++) {
|
|
MD_FLOAT xtmp = ci_x[CL_X_OFFSET + cii];
|
|
MD_FLOAT ytmp = ci_x[CL_Y_OFFSET + cii];
|
|
MD_FLOAT ztmp = ci_x[CL_Z_OFFSET + cii];
|
|
MD_FLOAT fix = 0;
|
|
MD_FLOAT fiy = 0;
|
|
MD_FLOAT fiz = 0;
|
|
|
|
for(int cjj = 0; cjj < CLUSTER_N; cjj++) {
|
|
int cond;
|
|
#if CLUSTER_M == CLUSTER_N
|
|
cond = neighbor->half_neigh ? (ci_cj0 != cj || cii < cjj) :
|
|
(ci_cj0 != cj || cii != cjj);
|
|
#elif CLUSTER_M < CLUSTER_N
|
|
cond = neighbor->half_neigh ? (ci_cj0 != cj || cii + CLUSTER_M * (ci & 0x1) < cjj) :
|
|
(ci_cj0 != cj || cii + CLUSTER_M * (ci & 0x1) != cjj);
|
|
#else
|
|
cond = neighbor->half_neigh ? (ci_cj0 != cj || cii < cjj) && (ci_cj1 != cj || cii < cjj + CLUSTER_N) :
|
|
(ci_cj0 != cj || cii != cjj) && (ci_cj1 != cj || cii != cjj + CLUSTER_N);
|
|
#endif
|
|
if(cond) {
|
|
MD_FLOAT delx = xtmp - cj_x[CL_X_OFFSET + cjj];
|
|
MD_FLOAT dely = ytmp - cj_x[CL_Y_OFFSET + cjj];
|
|
MD_FLOAT delz = ztmp - cj_x[CL_Z_OFFSET + cjj];
|
|
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
|
|
if(rsq < cutforcesq) {
|
|
MD_FLOAT sr2 = 1.0 / rsq;
|
|
MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
|
|
MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
|
|
|
|
if(neighbor->half_neigh) {
|
|
cj_f[CL_X_OFFSET + cjj] -= delx * force;
|
|
cj_f[CL_Y_OFFSET + cjj] -= dely * force;
|
|
cj_f[CL_Z_OFFSET + cjj] -= delz * force;
|
|
}
|
|
|
|
fix += delx * force;
|
|
fiy += dely * force;
|
|
fiz += delz * force;
|
|
any = 1;
|
|
addStat(stats->atoms_within_cutoff, 1);
|
|
} else {
|
|
addStat(stats->atoms_outside_cutoff, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(any != 0) {
|
|
addStat(stats->clusters_within_cutoff, 1);
|
|
} else {
|
|
addStat(stats->clusters_outside_cutoff, 1);
|
|
}
|
|
|
|
ci_f[CL_X_OFFSET + cii] += fix;
|
|
ci_f[CL_Y_OFFSET + cii] += fiy;
|
|
ci_f[CL_Z_OFFSET + cii] += fiz;
|
|
}
|
|
}
|
|
|
|
addStat(stats->calculated_forces, 1);
|
|
addStat(stats->num_neighs, numneighs);
|
|
addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_M / CLUSTER_N));
|
|
}
|
|
|
|
LIKWID_MARKER_STOP("force");
|
|
double E = getTimeStamp();
|
|
DEBUG_MESSAGE("computeForceLJ end\n");
|
|
return E-S;
|
|
}
|
|
|
|
double computeForceLJ_2xnn_half(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
|
|
DEBUG_MESSAGE("computeForceLJ_2xnn begin\n");
|
|
int Nlocal = atom->Nlocal;
|
|
int* neighs;
|
|
MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
|
|
MD_FLOAT sigma6 = param->sigma6;
|
|
MD_FLOAT epsilon = param->epsilon;
|
|
MD_SIMD_FLOAT cutforcesq_vec = simd_broadcast(cutforcesq);
|
|
MD_SIMD_FLOAT sigma6_vec = simd_broadcast(sigma6);
|
|
MD_SIMD_FLOAT eps_vec = simd_broadcast(epsilon);
|
|
MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0);
|
|
MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5);
|
|
const unsigned int half_mask_bits = VECTOR_WIDTH >> 1;
|
|
|
|
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
|
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
|
MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base];
|
|
for(int cii = 0; cii < atom->iclusters[ci].natoms; cii++) {
|
|
ci_f[CL_X_OFFSET + cii] = 0.0;
|
|
ci_f[CL_Y_OFFSET + cii] = 0.0;
|
|
ci_f[CL_Z_OFFSET + cii] = 0.0;
|
|
}
|
|
}
|
|
|
|
double S = getTimeStamp();
|
|
LIKWID_MARKER_START("force");
|
|
|
|
#pragma omp parallel for
|
|
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
|
int ci_cj0 = CJ0_FROM_CI(ci);
|
|
#if CLUSTER_M > CLUSTER_N
|
|
int ci_cj1 = CJ1_FROM_CI(ci);
|
|
#endif
|
|
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
|
MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
|
|
MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base];
|
|
neighs = &neighbor->neighbors[ci * neighbor->maxneighs];
|
|
int numneighs = neighbor->numneigh[ci];
|
|
|
|
MD_SIMD_FLOAT xi0_tmp = simd_load_h_dual(&ci_x[CL_X_OFFSET + 0]);
|
|
MD_SIMD_FLOAT xi2_tmp = simd_load_h_dual(&ci_x[CL_X_OFFSET + 2]);
|
|
MD_SIMD_FLOAT yi0_tmp = simd_load_h_dual(&ci_x[CL_Y_OFFSET + 0]);
|
|
MD_SIMD_FLOAT yi2_tmp = simd_load_h_dual(&ci_x[CL_Y_OFFSET + 2]);
|
|
MD_SIMD_FLOAT zi0_tmp = simd_load_h_dual(&ci_x[CL_Z_OFFSET + 0]);
|
|
MD_SIMD_FLOAT zi2_tmp = simd_load_h_dual(&ci_x[CL_Z_OFFSET + 2]);
|
|
MD_SIMD_FLOAT fix0 = simd_zero();
|
|
MD_SIMD_FLOAT fiy0 = simd_zero();
|
|
MD_SIMD_FLOAT fiz0 = simd_zero();
|
|
MD_SIMD_FLOAT fix2 = simd_zero();
|
|
MD_SIMD_FLOAT fiy2 = simd_zero();
|
|
MD_SIMD_FLOAT fiz2 = simd_zero();
|
|
|
|
for(int k = 0; k < numneighs; k++) {
|
|
int cj = neighs[k];
|
|
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
|
|
MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base];
|
|
MD_FLOAT *cj_f = &atom->cl_f[cj_vec_base];
|
|
unsigned int mask0, mask1, mask2, mask3;
|
|
|
|
MD_SIMD_FLOAT xj_tmp = simd_load_h_duplicate(&cj_x[CL_X_OFFSET]);
|
|
MD_SIMD_FLOAT yj_tmp = simd_load_h_duplicate(&cj_x[CL_Y_OFFSET]);
|
|
MD_SIMD_FLOAT zj_tmp = simd_load_h_duplicate(&cj_x[CL_Z_OFFSET]);
|
|
MD_SIMD_FLOAT delx0 = simd_sub(xi0_tmp, xj_tmp);
|
|
MD_SIMD_FLOAT dely0 = simd_sub(yi0_tmp, yj_tmp);
|
|
MD_SIMD_FLOAT delz0 = simd_sub(zi0_tmp, zj_tmp);
|
|
MD_SIMD_FLOAT delx2 = simd_sub(xi2_tmp, xj_tmp);
|
|
MD_SIMD_FLOAT dely2 = simd_sub(yi2_tmp, yj_tmp);
|
|
MD_SIMD_FLOAT delz2 = simd_sub(zi2_tmp, zj_tmp);
|
|
|
|
#if CLUSTER_M == CLUSTER_N
|
|
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
|
mask0 = (unsigned int)(0xf - 0x1 * cond0);
|
|
mask1 = (unsigned int)(0xf - 0x3 * cond0);
|
|
mask2 = (unsigned int)(0xf - 0x7 * cond0);
|
|
mask3 = (unsigned int)(0xf - 0xf * cond0);
|
|
#elif CLUSTER_M < CLUSTER_N
|
|
unsigned int cond0 = (unsigned int)((cj << 1) + 0 == ci);
|
|
unsigned int cond1 = (unsigned int)((cj << 1) + 1 == ci);
|
|
mask0 = (unsigned int)(0xff - 0x1 * cond0 - 0x1f * cond1);
|
|
mask1 = (unsigned int)(0xff - 0x3 * cond0 - 0x3f * cond1);
|
|
mask2 = (unsigned int)(0xff - 0x7 * cond0 - 0x7f * cond1);
|
|
mask3 = (unsigned int)(0xff - 0xf * cond0 - 0xff * cond1);
|
|
#else
|
|
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
|
unsigned int cond1 = (unsigned int)(cj == ci_cj1);
|
|
mask0 = (unsigned int)(0x3 - 0x1 * cond0);
|
|
mask1 = (unsigned int)(0x3 - 0x3 * cond0);
|
|
mask2 = (unsigned int)(0x3 - cond0 * 0x3 - 0x1 * cond1);
|
|
mask3 = (unsigned int)(0x3 - cond0 * 0x3 - 0x3 * cond1);
|
|
#endif
|
|
|
|
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32((mask1 << half_mask_bits) | mask0);
|
|
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32((mask3 << half_mask_bits) | mask2);
|
|
|
|
MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, simd_mul(delz0, delz0)));
|
|
MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, simd_mul(delz2, delz2)));
|
|
|
|
MD_SIMD_MASK cutoff_mask0 = simd_mask_and(excl_mask0, simd_mask_cond_lt(rsq0, cutforcesq_vec));
|
|
MD_SIMD_MASK cutoff_mask2 = simd_mask_and(excl_mask2, simd_mask_cond_lt(rsq2, cutforcesq_vec));
|
|
|
|
MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0);
|
|
MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2);
|
|
|
|
MD_SIMD_FLOAT sr6_0 = simd_mul(sr2_0, simd_mul(sr2_0, simd_mul(sr2_0, sigma6_vec)));
|
|
MD_SIMD_FLOAT sr6_2 = simd_mul(sr2_2, simd_mul(sr2_2, simd_mul(sr2_2, sigma6_vec)));
|
|
|
|
MD_SIMD_FLOAT force0 = simd_mul(c48_vec, simd_mul(sr6_0, simd_mul(simd_sub(sr6_0, c05_vec), simd_mul(sr2_0, eps_vec))));
|
|
MD_SIMD_FLOAT force2 = simd_mul(c48_vec, simd_mul(sr6_2, simd_mul(simd_sub(sr6_2, c05_vec), simd_mul(sr2_2, eps_vec))));
|
|
|
|
MD_SIMD_FLOAT tx0 = select_by_mask(simd_mul(delx0, force0), cutoff_mask0);
|
|
MD_SIMD_FLOAT ty0 = select_by_mask(simd_mul(dely0, force0), cutoff_mask0);
|
|
MD_SIMD_FLOAT tz0 = select_by_mask(simd_mul(delz0, force0), cutoff_mask0);
|
|
MD_SIMD_FLOAT tx2 = select_by_mask(simd_mul(delx2, force2), cutoff_mask2);
|
|
MD_SIMD_FLOAT ty2 = select_by_mask(simd_mul(dely2, force2), cutoff_mask2);
|
|
MD_SIMD_FLOAT tz2 = select_by_mask(simd_mul(delz2, force2), cutoff_mask2);
|
|
|
|
fix0 = simd_add(fix0, tx0);
|
|
fiy0 = simd_add(fiy0, ty0);
|
|
fiz0 = simd_add(fiz0, tz0);
|
|
fix2 = simd_add(fix2, tx2);
|
|
fiy2 = simd_add(fiy2, ty2);
|
|
fiz2 = simd_add(fiz2, tz2);
|
|
|
|
simd_h_decr3(cj_f, tx0 + tx2, ty0 + ty2, tz0 + tz2);
|
|
}
|
|
|
|
simd_h_dual_incr_reduced_sum(&ci_f[CL_X_OFFSET], fix0, fix2);
|
|
simd_h_dual_incr_reduced_sum(&ci_f[CL_Y_OFFSET], fiy0, fiy2);
|
|
simd_h_dual_incr_reduced_sum(&ci_f[CL_Z_OFFSET], fiz0, fiz2);
|
|
|
|
addStat(stats->calculated_forces, 1);
|
|
addStat(stats->num_neighs, numneighs);
|
|
addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_M / CLUSTER_N));
|
|
}
|
|
|
|
LIKWID_MARKER_STOP("force");
|
|
double E = getTimeStamp();
|
|
DEBUG_MESSAGE("computeForceLJ_2xnn end\n");
|
|
return E-S;
|
|
}
|
|
|
|
double computeForceLJ_2xnn_full(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
|
|
DEBUG_MESSAGE("computeForceLJ_2xnn begin\n");
|
|
int Nlocal = atom->Nlocal;
|
|
int* neighs;
|
|
MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
|
|
MD_FLOAT sigma6 = param->sigma6;
|
|
MD_FLOAT epsilon = param->epsilon;
|
|
MD_SIMD_FLOAT cutforcesq_vec = simd_broadcast(cutforcesq);
|
|
MD_SIMD_FLOAT sigma6_vec = simd_broadcast(sigma6);
|
|
MD_SIMD_FLOAT eps_vec = simd_broadcast(epsilon);
|
|
MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0);
|
|
MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5);
|
|
const unsigned int half_mask_bits = VECTOR_WIDTH >> 1;
|
|
|
|
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
|
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
|
MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base];
|
|
for(int cii = 0; cii < atom->iclusters[ci].natoms; cii++) {
|
|
ci_f[CL_X_OFFSET + cii] = 0.0;
|
|
ci_f[CL_Y_OFFSET + cii] = 0.0;
|
|
ci_f[CL_Z_OFFSET + cii] = 0.0;
|
|
}
|
|
}
|
|
|
|
double S = getTimeStamp();
|
|
LIKWID_MARKER_START("force");
|
|
|
|
#pragma omp parallel for
|
|
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
|
int ci_cj0 = CJ0_FROM_CI(ci);
|
|
#if CLUSTER_M > CLUSTER_N
|
|
int ci_cj1 = CJ1_FROM_CI(ci);
|
|
#endif
|
|
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
|
MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
|
|
MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base];
|
|
neighs = &neighbor->neighbors[ci * neighbor->maxneighs];
|
|
int numneighs = neighbor->numneigh[ci];
|
|
|
|
MD_SIMD_FLOAT xi0_tmp = simd_load_h_dual(&ci_x[CL_X_OFFSET + 0]);
|
|
MD_SIMD_FLOAT xi2_tmp = simd_load_h_dual(&ci_x[CL_X_OFFSET + 2]);
|
|
MD_SIMD_FLOAT yi0_tmp = simd_load_h_dual(&ci_x[CL_Y_OFFSET + 0]);
|
|
MD_SIMD_FLOAT yi2_tmp = simd_load_h_dual(&ci_x[CL_Y_OFFSET + 2]);
|
|
MD_SIMD_FLOAT zi0_tmp = simd_load_h_dual(&ci_x[CL_Z_OFFSET + 0]);
|
|
MD_SIMD_FLOAT zi2_tmp = simd_load_h_dual(&ci_x[CL_Z_OFFSET + 2]);
|
|
MD_SIMD_FLOAT fix0 = simd_zero();
|
|
MD_SIMD_FLOAT fiy0 = simd_zero();
|
|
MD_SIMD_FLOAT fiz0 = simd_zero();
|
|
MD_SIMD_FLOAT fix2 = simd_zero();
|
|
MD_SIMD_FLOAT fiy2 = simd_zero();
|
|
MD_SIMD_FLOAT fiz2 = simd_zero();
|
|
|
|
for(int k = 0; k < numneighs; k++) {
|
|
int cj = neighs[k];
|
|
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
|
|
MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base];
|
|
unsigned int mask0, mask1, mask2, mask3;
|
|
|
|
MD_SIMD_FLOAT xj_tmp = simd_load_h_duplicate(&cj_x[CL_X_OFFSET]);
|
|
MD_SIMD_FLOAT yj_tmp = simd_load_h_duplicate(&cj_x[CL_Y_OFFSET]);
|
|
MD_SIMD_FLOAT zj_tmp = simd_load_h_duplicate(&cj_x[CL_Z_OFFSET]);
|
|
MD_SIMD_FLOAT delx0 = simd_sub(xi0_tmp, xj_tmp);
|
|
MD_SIMD_FLOAT dely0 = simd_sub(yi0_tmp, yj_tmp);
|
|
MD_SIMD_FLOAT delz0 = simd_sub(zi0_tmp, zj_tmp);
|
|
MD_SIMD_FLOAT delx2 = simd_sub(xi2_tmp, xj_tmp);
|
|
MD_SIMD_FLOAT dely2 = simd_sub(yi2_tmp, yj_tmp);
|
|
MD_SIMD_FLOAT delz2 = simd_sub(zi2_tmp, zj_tmp);
|
|
|
|
#if CLUSTER_M == CLUSTER_N
|
|
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
|
mask0 = (unsigned int)(0xf - 0x1 * cond0);
|
|
mask1 = (unsigned int)(0xf - 0x2 * cond0);
|
|
mask2 = (unsigned int)(0xf - 0x4 * cond0);
|
|
mask3 = (unsigned int)(0xf - 0x8 * cond0);
|
|
#elif CLUSTER_M < CLUSTER_N
|
|
unsigned int cond0 = (unsigned int)((cj << 1) + 0 == ci);
|
|
unsigned int cond1 = (unsigned int)((cj << 1) + 1 == ci);
|
|
mask0 = (unsigned int)(0xff - 0x1 * cond0 - 0x10 * cond1);
|
|
mask1 = (unsigned int)(0xff - 0x2 * cond0 - 0x20 * cond1);
|
|
mask2 = (unsigned int)(0xff - 0x4 * cond0 - 0x40 * cond1);
|
|
mask3 = (unsigned int)(0xff - 0x8 * cond0 - 0x80 * cond1);
|
|
#else
|
|
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
|
unsigned int cond1 = (unsigned int)(cj == ci_cj1);
|
|
mask0 = (unsigned int)(0x3 - 0x1 * cond0);
|
|
mask1 = (unsigned int)(0x3 - 0x2 * cond0);
|
|
mask2 = (unsigned int)(0x3 - 0x1 * cond1);
|
|
mask3 = (unsigned int)(0x3 - 0x2 * cond1);
|
|
#endif
|
|
|
|
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32((mask1 << half_mask_bits) | mask0);
|
|
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32((mask3 << half_mask_bits) | mask2);
|
|
|
|
MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, simd_mul(delz0, delz0)));
|
|
MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, simd_mul(delz2, delz2)));
|
|
|
|
MD_SIMD_MASK cutoff_mask0 = simd_mask_and(excl_mask0, simd_mask_cond_lt(rsq0, cutforcesq_vec));
|
|
MD_SIMD_MASK cutoff_mask2 = simd_mask_and(excl_mask2, simd_mask_cond_lt(rsq2, cutforcesq_vec));
|
|
|
|
MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0);
|
|
MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2);
|
|
|
|
MD_SIMD_FLOAT sr6_0 = simd_mul(sr2_0, simd_mul(sr2_0, simd_mul(sr2_0, sigma6_vec)));
|
|
MD_SIMD_FLOAT sr6_2 = simd_mul(sr2_2, simd_mul(sr2_2, simd_mul(sr2_2, sigma6_vec)));
|
|
|
|
MD_SIMD_FLOAT force0 = simd_mul(c48_vec, simd_mul(sr6_0, simd_mul(simd_sub(sr6_0, c05_vec), simd_mul(sr2_0, eps_vec))));
|
|
MD_SIMD_FLOAT force2 = simd_mul(c48_vec, simd_mul(sr6_2, simd_mul(simd_sub(sr6_2, c05_vec), simd_mul(sr2_2, eps_vec))));
|
|
|
|
fix0 = simd_masked_add(fix0, simd_mul(delx0, force0), cutoff_mask0);
|
|
fiy0 = simd_masked_add(fiy0, simd_mul(dely0, force0), cutoff_mask0);
|
|
fiz0 = simd_masked_add(fiz0, simd_mul(delz0, force0), cutoff_mask0);
|
|
fix2 = simd_masked_add(fix2, simd_mul(delx2, force2), cutoff_mask2);
|
|
fiy2 = simd_masked_add(fiy2, simd_mul(dely2, force2), cutoff_mask2);
|
|
fiz2 = simd_masked_add(fiz2, simd_mul(delz2, force2), cutoff_mask2);
|
|
}
|
|
|
|
simd_h_dual_incr_reduced_sum(&ci_f[CL_X_OFFSET], fix0, fix2);
|
|
simd_h_dual_incr_reduced_sum(&ci_f[CL_Y_OFFSET], fiy0, fiy2);
|
|
simd_h_dual_incr_reduced_sum(&ci_f[CL_Z_OFFSET], fiz0, fiz2);
|
|
|
|
addStat(stats->calculated_forces, 1);
|
|
addStat(stats->num_neighs, numneighs);
|
|
addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_M / CLUSTER_N));
|
|
}
|
|
|
|
LIKWID_MARKER_STOP("force");
|
|
double E = getTimeStamp();
|
|
DEBUG_MESSAGE("computeForceLJ_2xnn end\n");
|
|
return E-S;
|
|
}
|
|
|
|
double computeForceLJ_2xnn(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
|
|
if(neighbor->half_neigh) {
|
|
return computeForceLJ_2xnn_half(param, atom, neighbor, stats);
|
|
}
|
|
|
|
return computeForceLJ_2xnn_full(param, atom, neighbor, stats);
|
|
}
|
|
|
|
double computeForceLJ_4xn_half(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
|
|
DEBUG_MESSAGE("computeForceLJ_4xn begin\n");
|
|
int Nlocal = atom->Nlocal;
|
|
int* neighs;
|
|
MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
|
|
MD_FLOAT sigma6 = param->sigma6;
|
|
MD_FLOAT epsilon = param->epsilon;
|
|
MD_SIMD_FLOAT cutforcesq_vec = simd_broadcast(cutforcesq);
|
|
MD_SIMD_FLOAT sigma6_vec = simd_broadcast(sigma6);
|
|
MD_SIMD_FLOAT eps_vec = simd_broadcast(epsilon);
|
|
MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0);
|
|
MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5);
|
|
double S = getTimeStamp();
|
|
LIKWID_MARKER_START("force");
|
|
|
|
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
|
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
|
MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base];
|
|
for(int cii = 0; cii < atom->iclusters[ci].natoms; cii++) {
|
|
ci_f[CL_X_OFFSET + cii] = 0.0;
|
|
ci_f[CL_Y_OFFSET + cii] = 0.0;
|
|
ci_f[CL_Z_OFFSET + cii] = 0.0;
|
|
}
|
|
}
|
|
|
|
#pragma omp parallel for
|
|
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
|
int ci_cj0 = CJ0_FROM_CI(ci);
|
|
#if CLUSTER_M > CLUSTER_N
|
|
int ci_cj1 = CJ1_FROM_CI(ci);
|
|
#endif
|
|
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
|
MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
|
|
MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base];
|
|
neighs = &neighbor->neighbors[ci * neighbor->maxneighs];
|
|
int numneighs = neighbor->numneigh[ci];
|
|
|
|
MD_SIMD_FLOAT xi0_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 0]);
|
|
MD_SIMD_FLOAT xi1_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 1]);
|
|
MD_SIMD_FLOAT xi2_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 2]);
|
|
MD_SIMD_FLOAT xi3_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 3]);
|
|
MD_SIMD_FLOAT yi0_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 0]);
|
|
MD_SIMD_FLOAT yi1_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 1]);
|
|
MD_SIMD_FLOAT yi2_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 2]);
|
|
MD_SIMD_FLOAT yi3_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 3]);
|
|
MD_SIMD_FLOAT zi0_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 0]);
|
|
MD_SIMD_FLOAT zi1_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 1]);
|
|
MD_SIMD_FLOAT zi2_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 2]);
|
|
MD_SIMD_FLOAT zi3_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 3]);
|
|
MD_SIMD_FLOAT fix0 = simd_zero();
|
|
MD_SIMD_FLOAT fiy0 = simd_zero();
|
|
MD_SIMD_FLOAT fiz0 = simd_zero();
|
|
MD_SIMD_FLOAT fix1 = simd_zero();
|
|
MD_SIMD_FLOAT fiy1 = simd_zero();
|
|
MD_SIMD_FLOAT fiz1 = simd_zero();
|
|
MD_SIMD_FLOAT fix2 = simd_zero();
|
|
MD_SIMD_FLOAT fiy2 = simd_zero();
|
|
MD_SIMD_FLOAT fiz2 = simd_zero();
|
|
MD_SIMD_FLOAT fix3 = simd_zero();
|
|
MD_SIMD_FLOAT fiy3 = simd_zero();
|
|
MD_SIMD_FLOAT fiz3 = simd_zero();
|
|
|
|
for(int k = 0; k < numneighs; k++) {
|
|
int cj = neighs[k];
|
|
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
|
|
MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base];
|
|
MD_FLOAT *cj_f = &atom->cl_f[cj_vec_base];
|
|
MD_SIMD_FLOAT xj_tmp = simd_load(&cj_x[CL_X_OFFSET]);
|
|
MD_SIMD_FLOAT yj_tmp = simd_load(&cj_x[CL_Y_OFFSET]);
|
|
MD_SIMD_FLOAT zj_tmp = simd_load(&cj_x[CL_Z_OFFSET]);
|
|
MD_SIMD_FLOAT delx0 = simd_sub(xi0_tmp, xj_tmp);
|
|
MD_SIMD_FLOAT dely0 = simd_sub(yi0_tmp, yj_tmp);
|
|
MD_SIMD_FLOAT delz0 = simd_sub(zi0_tmp, zj_tmp);
|
|
MD_SIMD_FLOAT delx1 = simd_sub(xi1_tmp, xj_tmp);
|
|
MD_SIMD_FLOAT dely1 = simd_sub(yi1_tmp, yj_tmp);
|
|
MD_SIMD_FLOAT delz1 = simd_sub(zi1_tmp, zj_tmp);
|
|
MD_SIMD_FLOAT delx2 = simd_sub(xi2_tmp, xj_tmp);
|
|
MD_SIMD_FLOAT dely2 = simd_sub(yi2_tmp, yj_tmp);
|
|
MD_SIMD_FLOAT delz2 = simd_sub(zi2_tmp, zj_tmp);
|
|
MD_SIMD_FLOAT delx3 = simd_sub(xi3_tmp, xj_tmp);
|
|
MD_SIMD_FLOAT dely3 = simd_sub(yi3_tmp, yj_tmp);
|
|
MD_SIMD_FLOAT delz3 = simd_sub(zi3_tmp, zj_tmp);
|
|
|
|
#if CLUSTER_M == CLUSTER_N
|
|
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
|
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32((unsigned int)(0xf - 0x1 * cond0));
|
|
MD_SIMD_MASK excl_mask1 = simd_mask_from_u32((unsigned int)(0xf - 0x3 * cond0));
|
|
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32((unsigned int)(0xf - 0x7 * cond0));
|
|
MD_SIMD_MASK excl_mask3 = simd_mask_from_u32((unsigned int)(0xf - 0xf * cond0));
|
|
#elif CLUSTER_M < CLUSTER_N
|
|
unsigned int cond0 = (unsigned int)((cj << 1) + 0 == ci);
|
|
unsigned int cond1 = (unsigned int)((cj << 1) + 1 == ci);
|
|
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32((unsigned int)(0xff - 0x1 * cond0 - 0x1f * cond1));
|
|
MD_SIMD_MASK excl_mask1 = simd_mask_from_u32((unsigned int)(0xff - 0x3 * cond0 - 0x3f * cond1));
|
|
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32((unsigned int)(0xff - 0x7 * cond0 - 0x7f * cond1));
|
|
MD_SIMD_MASK excl_mask3 = simd_mask_from_u32((unsigned int)(0xff - 0xf * cond0 - 0xff * cond1));
|
|
#else
|
|
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
|
unsigned int cond1 = (unsigned int)(cj == ci_cj1);
|
|
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32((unsigned int)(0x3 - 0x1 * cond0));
|
|
MD_SIMD_MASK excl_mask1 = simd_mask_from_u32((unsigned int)(0x3 - 0x3 * cond0));
|
|
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32((unsigned int)(0x3 - 0x3 * cond0 - 0x1 * cond1));
|
|
MD_SIMD_MASK excl_mask3 = simd_mask_from_u32((unsigned int)(0x3 - 0x3 * cond0 - 0x3 * cond1));
|
|
#endif
|
|
|
|
MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, simd_mul(delz0, delz0)));
|
|
MD_SIMD_FLOAT rsq1 = simd_fma(delx1, delx1, simd_fma(dely1, dely1, simd_mul(delz1, delz1)));
|
|
MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, simd_mul(delz2, delz2)));
|
|
MD_SIMD_FLOAT rsq3 = simd_fma(delx3, delx3, simd_fma(dely3, dely3, simd_mul(delz3, delz3)));
|
|
|
|
MD_SIMD_MASK cutoff_mask0 = simd_mask_and(excl_mask0, simd_mask_cond_lt(rsq0, cutforcesq_vec));
|
|
MD_SIMD_MASK cutoff_mask1 = simd_mask_and(excl_mask1, simd_mask_cond_lt(rsq1, cutforcesq_vec));
|
|
MD_SIMD_MASK cutoff_mask2 = simd_mask_and(excl_mask2, simd_mask_cond_lt(rsq2, cutforcesq_vec));
|
|
MD_SIMD_MASK cutoff_mask3 = simd_mask_and(excl_mask3, simd_mask_cond_lt(rsq3, cutforcesq_vec));
|
|
|
|
MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0);
|
|
MD_SIMD_FLOAT sr2_1 = simd_reciprocal(rsq1);
|
|
MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2);
|
|
MD_SIMD_FLOAT sr2_3 = simd_reciprocal(rsq3);
|
|
|
|
MD_SIMD_FLOAT sr6_0 = simd_mul(sr2_0, simd_mul(sr2_0, simd_mul(sr2_0, sigma6_vec)));
|
|
MD_SIMD_FLOAT sr6_1 = simd_mul(sr2_1, simd_mul(sr2_1, simd_mul(sr2_1, sigma6_vec)));
|
|
MD_SIMD_FLOAT sr6_2 = simd_mul(sr2_2, simd_mul(sr2_2, simd_mul(sr2_2, sigma6_vec)));
|
|
MD_SIMD_FLOAT sr6_3 = simd_mul(sr2_3, simd_mul(sr2_3, simd_mul(sr2_3, sigma6_vec)));
|
|
|
|
MD_SIMD_FLOAT force0 = simd_mul(c48_vec, simd_mul(sr6_0, simd_mul(simd_sub(sr6_0, c05_vec), simd_mul(sr2_0, eps_vec))));
|
|
MD_SIMD_FLOAT force1 = simd_mul(c48_vec, simd_mul(sr6_1, simd_mul(simd_sub(sr6_1, c05_vec), simd_mul(sr2_1, eps_vec))));
|
|
MD_SIMD_FLOAT force2 = simd_mul(c48_vec, simd_mul(sr6_2, simd_mul(simd_sub(sr6_2, c05_vec), simd_mul(sr2_2, eps_vec))));
|
|
MD_SIMD_FLOAT force3 = simd_mul(c48_vec, simd_mul(sr6_3, simd_mul(simd_sub(sr6_3, c05_vec), simd_mul(sr2_3, eps_vec))));
|
|
|
|
MD_SIMD_FLOAT tx0 = select_by_mask(simd_mul(delx0, force0), cutoff_mask0);
|
|
MD_SIMD_FLOAT ty0 = select_by_mask(simd_mul(dely0, force0), cutoff_mask0);
|
|
MD_SIMD_FLOAT tz0 = select_by_mask(simd_mul(delz0, force0), cutoff_mask0);
|
|
MD_SIMD_FLOAT tx1 = select_by_mask(simd_mul(delx1, force1), cutoff_mask1);
|
|
MD_SIMD_FLOAT ty1 = select_by_mask(simd_mul(dely1, force1), cutoff_mask1);
|
|
MD_SIMD_FLOAT tz1 = select_by_mask(simd_mul(delz1, force1), cutoff_mask1);
|
|
MD_SIMD_FLOAT tx2 = select_by_mask(simd_mul(delx2, force2), cutoff_mask2);
|
|
MD_SIMD_FLOAT ty2 = select_by_mask(simd_mul(dely2, force2), cutoff_mask2);
|
|
MD_SIMD_FLOAT tz2 = select_by_mask(simd_mul(delz2, force2), cutoff_mask2);
|
|
MD_SIMD_FLOAT tx3 = select_by_mask(simd_mul(delx3, force3), cutoff_mask3);
|
|
MD_SIMD_FLOAT ty3 = select_by_mask(simd_mul(dely3, force3), cutoff_mask3);
|
|
MD_SIMD_FLOAT tz3 = select_by_mask(simd_mul(delz3, force3), cutoff_mask3);
|
|
|
|
fix0 = simd_add(fix0, tx0);
|
|
fiy0 = simd_add(fiy0, ty0);
|
|
fiz0 = simd_add(fiz0, tz0);
|
|
fix1 = simd_add(fix1, tx1);
|
|
fiy1 = simd_add(fiy1, ty1);
|
|
fiz1 = simd_add(fiz1, tz1);
|
|
fix2 = simd_add(fix2, tx2);
|
|
fiy2 = simd_add(fiy2, ty2);
|
|
fiz2 = simd_add(fiz2, tz2);
|
|
fix3 = simd_add(fix3, tx3);
|
|
fiy3 = simd_add(fiy3, ty3);
|
|
fiz3 = simd_add(fiz3, tz3);
|
|
|
|
simd_store(&cj_f[CL_X_OFFSET], simd_load(&cj_f[CL_X_OFFSET]) - (tx0 + tx1 + tx2 + tx3));
|
|
simd_store(&cj_f[CL_Y_OFFSET], simd_load(&cj_f[CL_Y_OFFSET]) - (ty0 + ty1 + ty2 + ty3));
|
|
simd_store(&cj_f[CL_Z_OFFSET], simd_load(&cj_f[CL_Z_OFFSET]) - (tz0 + tz1 + tz2 + tz3));
|
|
}
|
|
|
|
simd_incr_reduced_sum(&ci_f[CL_X_OFFSET], fix0, fix1, fix2, fix3);
|
|
simd_incr_reduced_sum(&ci_f[CL_Y_OFFSET], fiy0, fiy1, fiy2, fiy3);
|
|
simd_incr_reduced_sum(&ci_f[CL_Z_OFFSET], fiz0, fiz1, fiz2, fiz3);
|
|
|
|
addStat(stats->calculated_forces, 1);
|
|
addStat(stats->num_neighs, numneighs);
|
|
addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_M / CLUSTER_N));
|
|
}
|
|
|
|
LIKWID_MARKER_STOP("force");
|
|
double E = getTimeStamp();
|
|
DEBUG_MESSAGE("computeForceLJ_4xn end\n");
|
|
return E-S;
|
|
}
|
|
|
|
double computeForceLJ_4xn_full(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
|
|
DEBUG_MESSAGE("computeForceLJ_4xn begin\n");
|
|
int Nlocal = atom->Nlocal;
|
|
int* neighs;
|
|
MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
|
|
MD_FLOAT sigma6 = param->sigma6;
|
|
MD_FLOAT epsilon = param->epsilon;
|
|
MD_SIMD_FLOAT cutforcesq_vec = simd_broadcast(cutforcesq);
|
|
MD_SIMD_FLOAT sigma6_vec = simd_broadcast(sigma6);
|
|
MD_SIMD_FLOAT eps_vec = simd_broadcast(epsilon);
|
|
MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0);
|
|
MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5);
|
|
double S = getTimeStamp();
|
|
LIKWID_MARKER_START("force");
|
|
|
|
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
|
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
|
MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base];
|
|
for(int cii = 0; cii < atom->iclusters[ci].natoms; cii++) {
|
|
ci_f[CL_X_OFFSET + cii] = 0.0;
|
|
ci_f[CL_Y_OFFSET + cii] = 0.0;
|
|
ci_f[CL_Z_OFFSET + cii] = 0.0;
|
|
}
|
|
}
|
|
|
|
#pragma omp parallel for
|
|
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
|
int ci_cj0 = CJ0_FROM_CI(ci);
|
|
#if CLUSTER_M > CLUSTER_N
|
|
int ci_cj1 = CJ1_FROM_CI(ci);
|
|
#endif
|
|
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
|
MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
|
|
MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base];
|
|
neighs = &neighbor->neighbors[ci * neighbor->maxneighs];
|
|
int numneighs = neighbor->numneigh[ci];
|
|
|
|
MD_SIMD_FLOAT xi0_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 0]);
|
|
MD_SIMD_FLOAT xi1_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 1]);
|
|
MD_SIMD_FLOAT xi2_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 2]);
|
|
MD_SIMD_FLOAT xi3_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 3]);
|
|
MD_SIMD_FLOAT yi0_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 0]);
|
|
MD_SIMD_FLOAT yi1_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 1]);
|
|
MD_SIMD_FLOAT yi2_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 2]);
|
|
MD_SIMD_FLOAT yi3_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 3]);
|
|
MD_SIMD_FLOAT zi0_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 0]);
|
|
MD_SIMD_FLOAT zi1_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 1]);
|
|
MD_SIMD_FLOAT zi2_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 2]);
|
|
MD_SIMD_FLOAT zi3_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 3]);
|
|
MD_SIMD_FLOAT fix0 = simd_zero();
|
|
MD_SIMD_FLOAT fiy0 = simd_zero();
|
|
MD_SIMD_FLOAT fiz0 = simd_zero();
|
|
MD_SIMD_FLOAT fix1 = simd_zero();
|
|
MD_SIMD_FLOAT fiy1 = simd_zero();
|
|
MD_SIMD_FLOAT fiz1 = simd_zero();
|
|
MD_SIMD_FLOAT fix2 = simd_zero();
|
|
MD_SIMD_FLOAT fiy2 = simd_zero();
|
|
MD_SIMD_FLOAT fiz2 = simd_zero();
|
|
MD_SIMD_FLOAT fix3 = simd_zero();
|
|
MD_SIMD_FLOAT fiy3 = simd_zero();
|
|
MD_SIMD_FLOAT fiz3 = simd_zero();
|
|
|
|
for(int k = 0; k < numneighs; k++) {
|
|
int cj = neighs[k];
|
|
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
|
|
MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base];
|
|
MD_SIMD_FLOAT xj_tmp = simd_load(&cj_x[CL_X_OFFSET]);
|
|
MD_SIMD_FLOAT yj_tmp = simd_load(&cj_x[CL_Y_OFFSET]);
|
|
MD_SIMD_FLOAT zj_tmp = simd_load(&cj_x[CL_Z_OFFSET]);
|
|
MD_SIMD_FLOAT delx0 = simd_sub(xi0_tmp, xj_tmp);
|
|
MD_SIMD_FLOAT dely0 = simd_sub(yi0_tmp, yj_tmp);
|
|
MD_SIMD_FLOAT delz0 = simd_sub(zi0_tmp, zj_tmp);
|
|
MD_SIMD_FLOAT delx1 = simd_sub(xi1_tmp, xj_tmp);
|
|
MD_SIMD_FLOAT dely1 = simd_sub(yi1_tmp, yj_tmp);
|
|
MD_SIMD_FLOAT delz1 = simd_sub(zi1_tmp, zj_tmp);
|
|
MD_SIMD_FLOAT delx2 = simd_sub(xi2_tmp, xj_tmp);
|
|
MD_SIMD_FLOAT dely2 = simd_sub(yi2_tmp, yj_tmp);
|
|
MD_SIMD_FLOAT delz2 = simd_sub(zi2_tmp, zj_tmp);
|
|
MD_SIMD_FLOAT delx3 = simd_sub(xi3_tmp, xj_tmp);
|
|
MD_SIMD_FLOAT dely3 = simd_sub(yi3_tmp, yj_tmp);
|
|
MD_SIMD_FLOAT delz3 = simd_sub(zi3_tmp, zj_tmp);
|
|
|
|
#if CLUSTER_M == CLUSTER_N
|
|
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
|
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32((unsigned int)(0xf - 0x1 * cond0));
|
|
MD_SIMD_MASK excl_mask1 = simd_mask_from_u32((unsigned int)(0xf - 0x2 * cond0));
|
|
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32((unsigned int)(0xf - 0x4 * cond0));
|
|
MD_SIMD_MASK excl_mask3 = simd_mask_from_u32((unsigned int)(0xf - 0x8 * cond0));
|
|
#elif CLUSTER_M < CLUSTER_N
|
|
unsigned int cond0 = (unsigned int)((cj << 1) + 0 == ci);
|
|
unsigned int cond1 = (unsigned int)((cj << 1) + 1 == ci);
|
|
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32((unsigned int)(0xff - 0x1 * cond0 - 0x10 * cond1));
|
|
MD_SIMD_MASK excl_mask1 = simd_mask_from_u32((unsigned int)(0xff - 0x2 * cond0 - 0x20 * cond1));
|
|
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32((unsigned int)(0xff - 0x4 * cond0 - 0x40 * cond1));
|
|
MD_SIMD_MASK excl_mask3 = simd_mask_from_u32((unsigned int)(0xff - 0x8 * cond0 - 0x80 * cond1));
|
|
#else
|
|
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
|
unsigned int cond1 = (unsigned int)(cj == ci_cj1);
|
|
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32((unsigned int)(0x3 - 0x1 * cond0));
|
|
MD_SIMD_MASK excl_mask1 = simd_mask_from_u32((unsigned int)(0x3 - 0x2 * cond0));
|
|
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32((unsigned int)(0x3 - 0x1 * cond1));
|
|
MD_SIMD_MASK excl_mask3 = simd_mask_from_u32((unsigned int)(0x3 - 0x2 * cond1));
|
|
#endif
|
|
|
|
MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, simd_mul(delz0, delz0)));
|
|
MD_SIMD_FLOAT rsq1 = simd_fma(delx1, delx1, simd_fma(dely1, dely1, simd_mul(delz1, delz1)));
|
|
MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, simd_mul(delz2, delz2)));
|
|
MD_SIMD_FLOAT rsq3 = simd_fma(delx3, delx3, simd_fma(dely3, dely3, simd_mul(delz3, delz3)));
|
|
|
|
MD_SIMD_MASK cutoff_mask0 = simd_mask_and(excl_mask0, simd_mask_cond_lt(rsq0, cutforcesq_vec));
|
|
MD_SIMD_MASK cutoff_mask1 = simd_mask_and(excl_mask1, simd_mask_cond_lt(rsq1, cutforcesq_vec));
|
|
MD_SIMD_MASK cutoff_mask2 = simd_mask_and(excl_mask2, simd_mask_cond_lt(rsq2, cutforcesq_vec));
|
|
MD_SIMD_MASK cutoff_mask3 = simd_mask_and(excl_mask3, simd_mask_cond_lt(rsq3, cutforcesq_vec));
|
|
|
|
MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0);
|
|
MD_SIMD_FLOAT sr2_1 = simd_reciprocal(rsq1);
|
|
MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2);
|
|
MD_SIMD_FLOAT sr2_3 = simd_reciprocal(rsq3);
|
|
|
|
MD_SIMD_FLOAT sr6_0 = simd_mul(sr2_0, simd_mul(sr2_0, simd_mul(sr2_0, sigma6_vec)));
|
|
MD_SIMD_FLOAT sr6_1 = simd_mul(sr2_1, simd_mul(sr2_1, simd_mul(sr2_1, sigma6_vec)));
|
|
MD_SIMD_FLOAT sr6_2 = simd_mul(sr2_2, simd_mul(sr2_2, simd_mul(sr2_2, sigma6_vec)));
|
|
MD_SIMD_FLOAT sr6_3 = simd_mul(sr2_3, simd_mul(sr2_3, simd_mul(sr2_3, sigma6_vec)));
|
|
|
|
MD_SIMD_FLOAT force0 = simd_mul(c48_vec, simd_mul(sr6_0, simd_mul(simd_sub(sr6_0, c05_vec), simd_mul(sr2_0, eps_vec))));
|
|
MD_SIMD_FLOAT force1 = simd_mul(c48_vec, simd_mul(sr6_1, simd_mul(simd_sub(sr6_1, c05_vec), simd_mul(sr2_1, eps_vec))));
|
|
MD_SIMD_FLOAT force2 = simd_mul(c48_vec, simd_mul(sr6_2, simd_mul(simd_sub(sr6_2, c05_vec), simd_mul(sr2_2, eps_vec))));
|
|
MD_SIMD_FLOAT force3 = simd_mul(c48_vec, simd_mul(sr6_3, simd_mul(simd_sub(sr6_3, c05_vec), simd_mul(sr2_3, eps_vec))));
|
|
|
|
fix0 = simd_masked_add(fix0, simd_mul(delx0, force0), cutoff_mask0);
|
|
fiy0 = simd_masked_add(fiy0, simd_mul(dely0, force0), cutoff_mask0);
|
|
fiz0 = simd_masked_add(fiz0, simd_mul(delz0, force0), cutoff_mask0);
|
|
fix1 = simd_masked_add(fix1, simd_mul(delx1, force1), cutoff_mask1);
|
|
fiy1 = simd_masked_add(fiy1, simd_mul(dely1, force1), cutoff_mask1);
|
|
fiz1 = simd_masked_add(fiz1, simd_mul(delz1, force1), cutoff_mask1);
|
|
fix2 = simd_masked_add(fix2, simd_mul(delx2, force2), cutoff_mask2);
|
|
fiy2 = simd_masked_add(fiy2, simd_mul(dely2, force2), cutoff_mask2);
|
|
fiz2 = simd_masked_add(fiz2, simd_mul(delz2, force2), cutoff_mask2);
|
|
fix3 = simd_masked_add(fix3, simd_mul(delx3, force3), cutoff_mask3);
|
|
fiy3 = simd_masked_add(fiy3, simd_mul(dely3, force3), cutoff_mask3);
|
|
fiz3 = simd_masked_add(fiz3, simd_mul(delz3, force3), cutoff_mask3);
|
|
}
|
|
|
|
simd_incr_reduced_sum(&ci_f[CL_X_OFFSET], fix0, fix1, fix2, fix3);
|
|
simd_incr_reduced_sum(&ci_f[CL_Y_OFFSET], fiy0, fiy1, fiy2, fiy3);
|
|
simd_incr_reduced_sum(&ci_f[CL_Z_OFFSET], fiz0, fiz1, fiz2, fiz3);
|
|
|
|
addStat(stats->calculated_forces, 1);
|
|
addStat(stats->num_neighs, numneighs);
|
|
addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_M / CLUSTER_N));
|
|
}
|
|
|
|
LIKWID_MARKER_STOP("force");
|
|
double E = getTimeStamp();
|
|
DEBUG_MESSAGE("computeForceLJ_4xn end\n");
|
|
return E-S;
|
|
}
|
|
|
|
double computeForceLJ_4xn(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
|
|
if(neighbor->half_neigh) {
|
|
return computeForceLJ_4xn_half(param, atom, neighbor, stats);
|
|
}
|
|
|
|
return computeForceLJ_4xn_full(param, atom, neighbor, stats);
|
|
}
|