MD-Bench/lammps/main.c
Rafael Ravedutti 437b380229 Adjust NVCC flags
Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
2022-11-07 20:37:01 +01:00

286 lines
9.3 KiB
C

/*
* Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg.
* All rights reserved. This file is part of MD-Bench.
* Use of this source code is governed by a LGPL-3.0
* license that can be found in the LICENSE file.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <limits.h>
#include <math.h>
#include <float.h>
#include <likwid-marker.h>
#include <allocate.h>
#include <atom.h>
#include <device.h>
#include <eam.h>
#include <integrate.h>
#include <thermo.h>
#include <timing.h>
#include <neighbor.h>
#include <parameter.h>
#include <pbc.h>
#include <stats.h>
#include <timers.h>
#include <util.h>
#include <vtk.h>
#define HLINE "----------------------------------------------------------------------------\n"
extern double computeForceLJFullNeigh_plain_c(Parameter*, Atom*, Neighbor*, Stats*);
extern double computeForceLJFullNeigh_simd(Parameter*, Atom*, Neighbor*, Stats*);
extern double computeForceLJHalfNeigh(Parameter*, Atom*, Neighbor*, Stats*);
extern double computeForceEam(Eam*, Parameter*, Atom*, Neighbor*, Stats*);
extern double computeForceDemFullNeigh(Parameter*, Atom*, Neighbor*, Stats*);
#ifdef CUDA_TARGET
extern double computeForceLJFullNeigh_cuda(Parameter*, Atom*, Neighbor*);
#endif
double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Stats *stats) {
if(param->force_field == FF_EAM) { initEam(eam, param); }
double S, E;
param->lattice = pow((4.0 / param->rho), (1.0 / 3.0));
param->xprd = param->nx * param->lattice;
param->yprd = param->ny * param->lattice;
param->zprd = param->nz * param->lattice;
S = getTimeStamp();
initAtom(atom);
initPbc(atom);
initStats(stats);
initNeighbor(neighbor, param);
if(param->input_file == NULL) {
createAtom(atom, param);
} else {
readAtom(atom, param);
}
setupNeighbor(param);
setupThermo(param, atom->Natoms);
if(param->input_file == NULL) { adjustThermo(param, atom); }
setupPbc(atom, param);
initDevice(atom, neighbor);
updatePbc(atom, param, true);
buildNeighbor(atom, neighbor);
E = getTimeStamp();
return E-S;
}
double reneighbour(Parameter *param, Atom *atom, Neighbor *neighbor) {
double S, E;
S = getTimeStamp();
LIKWID_MARKER_START("reneighbour");
updateAtomsPbc(atom, param);
setupPbc(atom, param);
updatePbc(atom, param, true);
//sortAtom(atom);
buildNeighbor(atom, neighbor);
LIKWID_MARKER_STOP("reneighbour");
E = getTimeStamp();
return E-S;
}
void printAtomState(Atom *atom) {
printf("Atom counts: Natoms=%d Nlocal=%d Nghost=%d Nmax=%d\n", atom->Natoms, atom->Nlocal, atom->Nghost, atom->Nmax);
// int nall = atom->Nlocal + atom->Nghost;
// for (int i=0; i<nall; i++) {
// printf("%d %f %f %f\n", i, atom->x[i], atom->y[i], atom->z[i]);
// }
}
double computeForce(Eam *eam, Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
if(param->force_field == FF_EAM) {
return computeForceEam(eam, param, atom, neighbor, stats);
} else if(param->force_field == FF_DEM) {
if(param->half_neigh) {
fprintf(stderr, "Error: DEM cannot use half neighbor-lists!\n");
return 0.0;
} else {
return computeForceDemFullNeigh(param, atom, neighbor, stats);
}
}
if(param->half_neigh) {
return computeForceLJHalfNeigh(param, atom, neighbor, stats);
}
#ifdef CUDA_TARGET
return computeForceLJFullNeigh(param, atom, neighbor);
#else
return computeForceLJFullNeigh(param, atom, neighbor, stats);
#endif
}
void writeInput(Parameter *param, Atom *atom) {
FILE *fpin = fopen("input.in", "w");
fprintf(fpin, "0,%f,0,%f,0,%f\n", param->xprd, param->yprd, param->zprd);
for(int i = 0; i < atom->Nlocal; i++) {
fprintf(fpin, "1,%f,%f,%f,%f,%f,%f\n", atom_x(i), atom_y(i), atom_z(i), atom_vx(i), atom_vy(i), atom_vz(i));
}
fclose(fpin);
}
int main(int argc, char** argv) {
double timer[NUMTIMER];
Eam eam;
Atom atom;
Neighbor neighbor;
Stats stats;
Parameter param;
LIKWID_MARKER_INIT;
#pragma omp parallel
{
LIKWID_MARKER_REGISTER("force");
//LIKWID_MARKER_REGISTER("reneighbour");
//LIKWID_MARKER_REGISTER("pbc");
}
initParameter(&param);
for(int i = 0; i < argc; i++) {
if((strcmp(argv[i], "-p") == 0)) {
readParameter(&param, argv[++i]);
continue;
}
if((strcmp(argv[i], "-f") == 0)) {
if((param.force_field = str2ff(argv[++i])) < 0) {
fprintf(stderr, "Invalid force field!\n");
exit(-1);
}
continue;
}
if((strcmp(argv[i], "-i") == 0)) {
param.input_file = strdup(argv[++i]);
continue;
}
if((strcmp(argv[i], "-e") == 0)) {
param.eam_file = strdup(argv[++i]);
continue;
}
if((strcmp(argv[i], "-n") == 0) || (strcmp(argv[i], "--nsteps") == 0)) {
param.ntimes = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-nx") == 0)) {
param.nx = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-ny") == 0)) {
param.ny = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-nz") == 0)) {
param.nz = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-half") == 0)) {
param.half_neigh = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-r") == 0) || (strcmp(argv[i], "--radius") == 0)) {
param.cutforce = atof(argv[++i]);
continue;
}
if((strcmp(argv[i], "-s") == 0) || (strcmp(argv[i], "--skin") == 0)) {
param.skin = atof(argv[++i]);
continue;
}
if((strcmp(argv[i], "--freq") == 0)) {
param.proc_freq = atof(argv[++i]);
continue;
}
if((strcmp(argv[i], "--vtk") == 0)) {
param.vtk_file = strdup(argv[++i]);
continue;
}
if((strcmp(argv[i], "-h") == 0) || (strcmp(argv[i], "--help") == 0)) {
printf("MD Bench: A minimalistic re-implementation of miniMD\n");
printf(HLINE);
printf("-p <string>: file to read parameters from (can be specified more than once)\n");
printf("-f <string>: force field (lj, eam or dem), default lj\n");
printf("-i <string>: input file with atom positions (dump)\n");
printf("-e <string>: input file for EAM\n");
printf("-n / --nsteps <int>: set number of timesteps for simulation\n");
printf("-nx/-ny/-nz <int>: set linear dimension of systembox in x/y/z direction\n");
printf("-r / --radius <real>: set cutoff radius\n");
printf("-s / --skin <real>: set skin (verlet buffer)\n");
printf("--freq <real>: processor frequency (GHz)\n");
printf("--vtk <string>: VTK file for visualization\n");
printf(HLINE);
exit(EXIT_SUCCESS);
}
}
param.cutneigh = param.cutforce + param.skin;
setup(&param, &eam, &atom, &neighbor, &stats);
printParameter(&param);
printf(HLINE);
printf("step\ttemp\t\tpressure\n");
computeThermo(0, &param, &atom);
#if defined(MEM_TRACER) || defined(INDEX_TRACER)
traceAddresses(&param, &atom, &neighbor, n + 1);
#endif
//writeInput(&param, &atom);
timer[FORCE] = computeForce(&eam, &param, &atom, &neighbor, &stats);
timer[NEIGH] = 0.0;
timer[TOTAL] = getTimeStamp();
if(param.vtk_file != NULL) {
write_atoms_to_vtk_file(param.vtk_file, &atom, 0);
}
for(int n = 0; n < param.ntimes; n++) {
bool reneigh = (n + 1) % param.reneigh_every == 0;
initialIntegrate(reneigh, &param, &atom);
if((n + 1) % param.reneigh_every) {
updatePbc(&atom, &param, false);
} else {
timer[NEIGH] += reneighbour(&param, &atom, &neighbor);
}
#if defined(MEM_TRACER) || defined(INDEX_TRACER)
traceAddresses(&param, &atom, &neighbor, n + 1);
#endif
timer[FORCE] += computeForce(&eam, &param, &atom, &neighbor, &stats);
finalIntegrate(reneigh, &param, &atom);
if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) {
#ifdef CUDA_TARGET
memcpyFromGPU(atom.x, atom.d_atom.x, atom.Nmax * sizeof(MD_FLOAT) * 3);
#endif
computeThermo(n + 1, &param, &atom);
}
if(param.vtk_file != NULL) {
write_atoms_to_vtk_file(param.vtk_file, &atom, n + 1);
}
}
timer[TOTAL] = getTimeStamp() - timer[TOTAL];
computeThermo(-1, &param, &atom);
printf(HLINE);
printf("System: %d atoms %d ghost atoms, Steps: %d\n", atom.Natoms, atom.Nghost, param.ntimes);
printf("TOTAL %.2fs FORCE %.2fs NEIGH %.2fs REST %.2fs\n",
timer[TOTAL], timer[FORCE], timer[NEIGH], timer[TOTAL]-timer[FORCE]-timer[NEIGH]);
printf(HLINE);
printf("Performance: %.2f million atom updates per second\n",
1e-6 * (double) atom.Natoms * param.ntimes / timer[TOTAL]);
#ifdef COMPUTE_STATS
displayStatistics(&atom, &param, &stats, timer);
#endif
LIKWID_MARKER_CLOSE;
return EXIT_SUCCESS;
}