d4b34e1fa4
Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
127 lines
5.6 KiB
C
127 lines
5.6 KiB
C
/*
|
|
* =======================================================================================
|
|
*
|
|
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
|
|
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
|
|
*
|
|
* This file is part of MD-Bench.
|
|
*
|
|
* MD-Bench is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU Lesser General Public License as published
|
|
* by the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
|
|
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License along
|
|
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
|
|
* =======================================================================================
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <immintrin.h>
|
|
#include <zmmintrin.h>
|
|
|
|
#define MD_SIMD_FLOAT __m256d
|
|
|
|
#ifdef NO_AVX2
|
|
# define MD_SIMD_MASK __m256d
|
|
#else
|
|
# define MD_SIMD_MASK __mmask8
|
|
#endif
|
|
|
|
static inline MD_SIMD_FLOAT simd_broadcast(MD_FLOAT scalar) { return _mm256_set1_pd(scalar); }
|
|
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_pd(0.0); }
|
|
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_add_pd(a, b); }
|
|
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_sub_pd(a, b); }
|
|
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_mul_pd(a, b); }
|
|
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_pd(p); }
|
|
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const MD_FLOAT *m) {
|
|
MD_SIMD_FLOAT ret;
|
|
fprintf(stderr, "simd_load_h_duplicate(): Not implemented for AVX/AVX2 with double precision!");
|
|
exit(-1);
|
|
return ret;
|
|
}
|
|
|
|
static inline MD_SIMD_FLOAT simd_load_h_dual(const MD_FLOAT *m) {
|
|
MD_SIMD_FLOAT ret;
|
|
fprintf(stderr, "simd_load_h_dual(): Not implemented for AVX/AVX2 with double precision!");
|
|
exit(-1);
|
|
return ret;
|
|
}
|
|
|
|
static inline MD_FLOAT simd_h_dual_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
|
|
fprintf(stderr, "simd_h_dual_incr_reduced_sum(): Not implemented for AVX/AVX2 with double precision!");
|
|
exit(-1);
|
|
return 0.0;
|
|
}
|
|
|
|
static inline MD_FLOAT simd_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1, MD_SIMD_FLOAT v2, MD_SIMD_FLOAT v3) {
|
|
__m256d t0, t1, t2;
|
|
__m128d a0, a1;
|
|
|
|
t0 = _mm256_hadd_pd(v0, v1);
|
|
t1 = _mm256_hadd_pd(v2, v3);
|
|
t2 = _mm256_permute2f128_pd(t0, t1, 0x21);
|
|
t0 = _mm256_add_pd(t0, t2);
|
|
t1 = _mm256_add_pd(t1, t2);
|
|
t0 = _mm256_blend_pd(t0, t1, 0b1100);
|
|
t1 = _mm256_add_pd(t0, _mm256_load_pd(m));
|
|
_mm256_store_pd(m, t1);
|
|
|
|
t0 = _mm256_add_pd(t0, _mm256_permute_pd(t0, 0b0101));
|
|
a0 = _mm256_castpd256_pd128(t0);
|
|
a1 = _mm256_extractf128_pd(t0, 0x1);
|
|
a0 = _mm_add_sd(a0, a1);
|
|
return *((MD_FLOAT *) &a0);
|
|
}
|
|
|
|
#ifdef NO_AVX2
|
|
|
|
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_cvtps_pd(_mm_rcp_ps(_mm256_cvtpd_ps(a))); }
|
|
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return simd_add(simd_mul(a, b), c); }
|
|
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return simd_add(a, _mm256_and_pd(b, m)); }
|
|
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd(a, b, _CMP_LT_OQ); }
|
|
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _mm256_and_pd(a, b); }
|
|
// TODO: Initialize all diagonal cases and just select the proper one (all bits set or diagonal) based on cond0
|
|
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) {
|
|
const unsigned long long int all = 0xFFFFFFFFFFFFFFFF;
|
|
const unsigned long long int none = 0x0;
|
|
return _mm256_castsi256_pd(_mm256_set_epi64x((a & 0x8) ? all : none, (a & 0x4) ? all : none, (a & 0x2) ? all : none, (a & 0x1) ? all : none));
|
|
}
|
|
// TODO: Implement this, althrough it is just required for debugging
|
|
static inline int simd_mask_to_u32(MD_SIMD_MASK a) { return 0; }
|
|
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
|
|
__m128d a0, a1;
|
|
a = _mm256_add_pd(a, _mm256_permute_pd(a, 0b0101));
|
|
a0 = _mm256_castpd256_pd128(a);
|
|
a1 = _mm256_extractf128_pd(a, 0x1);
|
|
a0 = _mm_add_sd(a0, a1);
|
|
return *((MD_FLOAT *) &a0);
|
|
}
|
|
|
|
#else // AVX2
|
|
|
|
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_pd(a); }
|
|
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_pd(a, b, c); }
|
|
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm256_mask_add_pd(a, m, a, b); }
|
|
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd_mask(a, b, _CMP_LT_OQ); }
|
|
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
|
|
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
|
|
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
|
|
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
|
|
__m128d a0, a1;
|
|
// test with shuffle & add as an alternative to hadd later
|
|
a = _mm256_hadd_pd(a, a);
|
|
a0 = _mm256_castpd256_pd128(a);
|
|
a1 = _mm256_extractf128_pd(a, 0x1);
|
|
a0 = _mm_add_sd(a0, a1);
|
|
return *((MD_FLOAT *) &a0);
|
|
}
|
|
|
|
#endif
|