MD-Bench/gromacs/main.c
2024-04-15 16:53:25 +02:00

405 lines
14 KiB
C

/*
* Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg.
* All rights reserved. This file is part of MD-Bench.
* Use of this source code is governed by a LGPL-3.0
* license that can be found in the LICENSE file.
*/
#include <stdio.h>
#include <math.h>
//--
#include <likwid-marker.h>
//--
#include <atom.h>
#include <allocate.h>
#include <device.h>
#include <eam.h>
#include <integrate.h>
#include <neighbor.h>
#include <parameter.h>
#include <pbc.h>
#include <stats.h>
#include <thermo.h>
#include <timers.h>
#include <timing.h>
#include <util.h>
#include <vtk.h>
#include <xtc.h>
#include <comm.h>
#include <grid.h>
#include <shell_methods.h>
#include <mpi.h>
#define HLINE "----------------------------------------------------------------------------\n"
extern double computeForceLJ_ref(Parameter*, Atom*, Neighbor*, Stats*);
extern double computeForceLJ_4xn(Parameter*, Atom*, Neighbor*, Stats*);
extern double computeForceLJ_2xnn(Parameter*, Atom*, Neighbor*, Stats*);
extern double computeForceEam(Eam*, Parameter*, Atom*, Neighbor*, Stats*);
#ifdef CUDA_TARGET
extern int isReneighboured;
extern double computeForceLJ_cuda(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats);
extern void copyDataToCUDADevice(Atom *atom);
extern void copyDataFromCUDADevice(Atom *atom);
extern void cudaDeviceFree();
#endif
double dynamicBalance(Comm* comm, Grid* grid, Atom* atom, Parameter* param, double time)
{
double S, E;
int dims = 3; //TODO: Adjust to do in 3d and 2d
S = getTimeStamp();
if(param->balance == RCB) {
rcbBalance(grid, atom, param, meanBisect,dims,0);
neighComm(comm, param, grid);
}else if(param->balance == meanTimeRCB){
rcbBalance(grid, atom, param, meanTimeBisect,dims,time);
neighComm(comm, param, grid);
}else if(param->balance == Staggered) {
staggeredBalance(grid, atom, param, time);
neighComm(comm, param, grid);
exchangeComm(comm,atom);
}else { } //Do nothing
//printGrid(grid);
E = getTimeStamp();
return E-S;
}
double initialBalance(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Stats *stats, Comm *comm, Grid *grid)
{
double E,S,time;
int me;
MPI_Comm_rank(world,&me);
S = getTimeStamp();
if(param->balance == meanTimeRCB || param->balance == RCB){
rcbBalance(grid, atom, param, meanBisect,3,0);
neighComm(comm, param, grid);
}
MPI_Allreduce(&atom->Nlocal, &atom->Natoms, 1, MPI_INT, MPI_SUM, world);
printf("Processor:%i, Local atoms:%i, Total atoms:%i\n",me, atom->Nlocal,atom->Natoms);
MPI_Barrier(world);
E = getTimeStamp();
return E-S;
}
double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Stats *stats, Comm *comm, Grid *grid) {
if(param->force_field == FF_EAM) { initEam(eam, param); }
double S, E;
param->lattice = pow((4.0 / param->rho), (1.0 / 3.0));
param->xprd = param->nx * param->lattice;
param->yprd = param->ny * param->lattice;
param->zprd = param->nz * param->lattice;
S = getTimeStamp();
initAtom(atom);
//initPbc(atom);
initStats(stats);
initNeighbor(neighbor, param);
if(param->input_file == NULL) {
createAtom(atom, param);
} else {
readAtom(atom, param);
}
setupGrid(grid,atom,param);
setupNeighbor(param, atom);
setupComm(comm, param, grid);
if(param->balance){
initialBalance(param, eam, atom, neighbor, stats, comm, grid);
}
setupThermo(param, atom->Natoms);
if(param->input_file == NULL) { adjustThermo(param, atom); }
buildClusters(atom);
defineJClusters(atom);
//setupPbc(atom, param);
ghostNeighbor(comm, atom, param); //change
binClusters(atom);
buildNeighbor(atom, neighbor);
initDevice(atom, neighbor);
E = getTimeStamp();
return E-S;
}
double reneighbour(Comm* comm, Parameter *param, Atom *atom, Neighbor *neighbor) {
double S, E;
S = getTimeStamp();
LIKWID_MARKER_START("reneighbour");
//updateAtomsPbc(atom, param);
buildClusters(atom);
defineJClusters(atom);
//setupPbc(atom, param);
ghostNeighbor(comm, atom, param);
binClusters(atom);
buildNeighbor(atom, neighbor);
LIKWID_MARKER_STOP("reneighbour");
E = getTimeStamp();
return E-S;
}
double updateAtoms(Comm* comm, Atom* atom){
double S,E;
S = getTimeStamp();
updateSingleAtoms(atom);
exchangeComm(comm, atom);
E = getTimeStamp();
return E-S;
}
int main(int argc, char** argv) {
double timer[NUMTIMER];
Eam eam;
Atom atom;
Neighbor neighbor;
Stats stats;
Parameter param;
Comm comm;
Grid grid;
LIKWID_MARKER_INIT;
#pragma omp parallel
{
LIKWID_MARKER_REGISTER("force");
//LIKWID_MARKER_REGISTER("reneighbour");
//LIKWID_MARKER_REGISTER("pbc");
}
initComm(&argc, &argv, &comm); //change
initParameter(&param);
for(int i = 0; i < argc; i++) {
if((strcmp(argv[i], "-p") == 0) || (strcmp(argv[i], "--param") == 0)) {
readParameter(&param, argv[++i]);
continue;
}
if((strcmp(argv[i], "-f") == 0)) {
if((param.force_field = str2ff(argv[++i])) < 0) {
fprintf(stderr, "Invalid force field!\n");
exit(-1);
}
continue;
}
if((strcmp(argv[i], "-i") == 0)) {
param.input_file = strdup(argv[++i]);
continue;
}
if((strcmp(argv[i], "-e") == 0)) {
param.eam_file = strdup(argv[++i]);
continue;
}
if((strcmp(argv[i], "-n") == 0) || (strcmp(argv[i], "--nsteps") == 0)) {
param.ntimes = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-nx") == 0)) {
param.nx = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-ny") == 0)) {
param.ny = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-nz") == 0)) {
param.nz = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-half") == 0)) {
param.half_neigh = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-method") == 0)) {
param.method = atoi(argv[++i]);
if (param.method>2 || param.method< 0){
if(comm.myproc == 0) fprintf(stderr, "Method does not exist!\n");
endComm(&comm);
exit(0);
}
continue;
}
if((strcmp(argv[i], "-bal") == 0)) {
param.balance = atoi(argv[++i]);
if (param.balance>3 || param.balance< 0){
if(comm.myproc == 0) fprintf(stderr, "Load balance does not exist!\n");
endComm(&comm);
exit(0);
}
continue;
}
if((strcmp(argv[i], "-m") == 0) || (strcmp(argv[i], "--mass") == 0)) {
param.mass = atof(argv[++i]);
continue;
}
if((strcmp(argv[i], "-r") == 0) || (strcmp(argv[i], "--radius") == 0)) {
param.cutforce = atof(argv[++i]);
continue;
}
if((strcmp(argv[i], "-s") == 0) || (strcmp(argv[i], "--skin") == 0)) {
param.skin = atof(argv[++i]);
continue;
}
if((strcmp(argv[i], "--freq") == 0)) {
param.proc_freq = atof(argv[++i]);
continue;
}
if((strcmp(argv[i], "--vtk") == 0)) {
param.vtk_file = strdup(argv[++i]);
continue;
}
if((strcmp(argv[i], "--xtc") == 0)) {
#ifndef XTC_OUTPUT
fprintf(stderr, "XTC not available, set XTC_OUTPUT option in config.mk file and recompile MD-Bench!");
exit(-1);
#else
param.xtc_file = strdup(argv[++i]);
#endif
continue;
}
if((strcmp(argv[i], "-h") == 0) || (strcmp(argv[i], "--help") == 0)) {
//TODO: add the shell and ac print options
printf("MD Bench: A minimalistic re-implementation of miniMD\n");
printf(HLINE);
printf("-p <string>: file to read parameters from (can be specified more than once)\n");
printf("-f <string>: force field (lj or eam), default lj\n");
printf("-i <string>: input file with atom positions (dump)\n");
printf("-e <string>: input file for EAM\n");
printf("-n / --nsteps <int>: set number of timesteps for simulation\n");
printf("-nx/-ny/-nz <int>: set linear dimension of systembox in x/y/z direction\n");
printf("-r / --radius <real>: set cutoff radius\n");
printf("-s / --skin <real>: set skin (verlet buffer)\n");
printf("--freq <real>: processor frequency (GHz)\n");
printf("--vtk <string>: VTK file for visualization\n");
printf("--xtc <string>: XTC file for visualization\n");
printf(HLINE);
exit(EXIT_SUCCESS);
}
}
if(param.balance>0 && param.method == 1){
if(comm.myproc == 0) fprintf(stderr, "Half Shell is not supported by load balance!\n");
endComm(&comm);
exit(0);
}
param.cutneigh = param.cutforce + param.skin;
timer[SETUP]=setup(&param, &eam, &atom, &neighbor, &stats, &comm, &grid);
if(comm.myproc == 0) printParameter(&param);
if(comm.myproc == 0) printf(HLINE);
if(comm.myproc == 0) printf("step\ttemp\t\tpressure\n");
computeThermo(0, &param, &atom);
#if defined(MEM_TRACER) || defined(INDEX_TRACER)
traceAddresses(&param, &atom, &neighbor, n + 1);
#endif
#ifdef CUDA_TARGET
copyDataToCUDADevice(&atom);
#endif
if(param.force_field == FF_EAM) {
timer[FORCE] = computeForceEam(&eam, &param, &atom, &neighbor, &stats);
} else {
timer[FORCE] = computeForceLJ(&param, &atom, &neighbor, &stats);
}
timer[NEIGH] = 0.0;
timer[FORWARD] = 0.0;
timer[UPDATE] = 0.0;
timer[BALANCE] = 0.0;
timer[REVERSE] = reverse(&comm, &atom, &param);
MPI_Barrier(world);
timer[TOTAL] = getTimeStamp();
if(param.vtk_file != NULL) {
//write_data_to_vtk_file(param.vtk_file, &comm ,&atom, 0);
printvtk(param.vtk_file, &comm, &atom, &param, 0);
}
//TODO: modify xct
if(param.xtc_file != NULL) {
xtc_init(param.xtc_file, &atom, 0);
}
double forceTime=0.0;
double commTime=0.0;
for(int n = 0; n < param.ntimes; n++) {
initialIntegrate(&param, &atom);
if((n + 1) % param.reneigh_every) {
timer[FORWARD]+=forward(&comm, &atom, &param);
if(!((n + 1) % param.prune_every)){
pruneNeighbor(&param, &atom, &neighbor);
}
} else {
#ifdef CUDA_TARGET
copyDataFromCUDADevice(&atom);
#endif
timer[UPDATE] +=updateAtoms(&comm,&atom);
if(param.balance && !((n+1)%param.balance_every))
timer[BALANCE] +=dynamicBalance(&comm, &grid, &atom , &param, timer[FORCE]);
timer[NEIGH] += reneighbour(&comm, &param, &atom, &neighbor);
#ifdef CUDA_TARGET
copyDataToCUDADevice(&atom);
isReneighboured = 1;
#endif
}
#if defined(MEM_TRACER) || defined(INDEX_TRACER)
traceAddresses(&param, &atom, &neighbor, n + 1);
#endif
if(param.force_field == FF_EAM) {
timer[FORCE] += computeForceEam(&eam, &param, &atom, &neighbor, &stats);
} else {
timer[FORCE] += computeForceLJ(&param, &atom, &neighbor, &stats);
}
timer[REVERSE] += reverse(&comm, &atom, &param);
finalIntegrate(&param, &atom);
if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) {
computeThermo(n + 1, &param, &atom);
}
int write_pos = !((n + 1) % param.x_out_every);
int write_vel = !((n + 1) % param.v_out_every);
if(write_pos || write_vel) {
if(param.vtk_file != NULL) {
printvtk(param.vtk_file, &comm, &atom, &param, n+1);
}
//TODO: xtc file
if(param.xtc_file != NULL) {
xtc_write(&atom, n + 1, write_pos, write_vel);
}
}
}
#ifdef CUDA_TARGET
copyDataFromCUDADevice(&atom);
#endif
MPI_Barrier(world);
timer[TOTAL] = getTimeStamp() - timer[TOTAL];
updateAtoms(&comm,&atom);
computeThermo(-1, &param, &atom);
//TODO:
if(param.xtc_file != NULL) {
xtc_end();
}
#ifdef CUDA_TARGET
cudaDeviceFree();
#endif
double mint[NUMTIMER];
double maxt[NUMTIMER];
double sumt[NUMTIMER];
timer[REST] = timer[TOTAL]-timer[FORCE]-timer[NEIGH]-timer[BALANCE]-timer[FORWARD]-timer[REVERSE];
MPI_Reduce(timer,mint,NUMTIMER,MPI_DOUBLE,MPI_MIN,0,world);
MPI_Reduce(timer,maxt,NUMTIMER,MPI_DOUBLE,MPI_MAX,0,world);
MPI_Reduce(timer,sumt,NUMTIMER,MPI_DOUBLE,MPI_SUM,0,world);
int Nghost;
MPI_Reduce(&atom.Nghost,&Nghost,1,MPI_INT,MPI_SUM,0,world);
if(comm.myproc == 0){
int n = comm.numproc;
printf(HLINE);
printf("System: %d atoms %d ghost atoms, Steps: %d\n", atom.Natoms, Nghost, param.ntimes);
printf("TOTAL %.2fs\n\n",timer[TOTAL]);
printf("%4s|%7s|%7s|%7s|%7s|%7s|%7s|%7s|%7s|\n","","FORCE ", "NEIGH ", "BALANCE", "FORWARD", "REVERSE","UPDATE","REST ","SETUP");
printf("----|-------|-------|-------|-------|-------|-------|-------|-------|\n");
printf("%4s|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|\n", "AVG", sumt[FORCE]/n,sumt[NEIGH]/n,sumt[BALANCE]/n,sumt[FORWARD]/n,sumt[REVERSE]/n,sumt[UPDATE]/n,sumt[REST]/n,sumt[SETUP]/n);
printf("%4s|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|\n", "MIN", mint[FORCE],mint[NEIGH],mint[BALANCE],mint[FORWARD],mint[REVERSE],mint[UPDATE],mint[REST],mint[SETUP]);
printf("%4s|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|\n", "MAX", maxt[FORCE],maxt[NEIGH],maxt[BALANCE],maxt[FORWARD],maxt[REVERSE],maxt[UPDATE],maxt[REST],maxt[SETUP]);
printf(HLINE);
printf("Performance: %.2f million atom updates per second\n",
1e-6 * (double) atom.Natoms * param.ntimes / timer[TOTAL]);
#ifdef COMPUTE_STATS
displayStatistics(&atom, &param, &stats, timer);
#endif
}
endComm(&comm);
LIKWID_MARKER_CLOSE;
return EXIT_SUCCESS;
}