/* * ======================================================================================= * * Author: Jan Eitzinger (je), jan.eitzinger@fau.de * Copyright (c) 2020 RRZE, University Erlangen-Nuremberg * * This file is part of MD-Bench. * * MD-Bench is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License along * with MD-Bench. If not, see . * ======================================================================================= */ #include #include #include #include #include static int *steparr; static MD_FLOAT *tmparr; static MD_FLOAT *engarr; static MD_FLOAT *prsarr; static MD_FLOAT mvv2e; static MD_FLOAT dof_boltz; static MD_FLOAT t_scale; static MD_FLOAT p_scale; static MD_FLOAT e_scale; static MD_FLOAT t_act; static MD_FLOAT p_act; static MD_FLOAT e_act; static int mstat; /* exported subroutines */ void setupThermo(Parameter *param, int natoms) { int maxstat = param->ntimes / param->nstat + 2; steparr = (int*) malloc(maxstat * sizeof(int)); tmparr = (MD_FLOAT*) malloc(maxstat * sizeof(MD_FLOAT)); engarr = (MD_FLOAT*) malloc(maxstat * sizeof(MD_FLOAT)); prsarr = (MD_FLOAT*) malloc(maxstat * sizeof(MD_FLOAT)); if(param->force_field == FF_LJ) { mvv2e = 1.0; dof_boltz = (natoms * 3 - 3); t_scale = mvv2e / dof_boltz; p_scale = 1.0 / 3 / param->xprd / param->yprd / param->zprd; e_scale = 0.5; } else { mvv2e = 1.036427e-04; dof_boltz = (natoms * 3 - 3) * 8.617343e-05; t_scale = mvv2e / dof_boltz; p_scale = 1.602176e+06 / 3 / param->xprd / param->yprd / param->zprd; e_scale = 524287.985533;//16.0; param->dtforce /= mvv2e; } printf("step\ttemp\t\tpressure\n"); } void computeThermo(int iflag, Parameter *param, Atom *atom) { MD_FLOAT t = 0.0, p; MD_FLOAT* vx = atom->vx; MD_FLOAT* vy = atom->vy; MD_FLOAT* vz = atom->vz; for(int i = 0; i < atom->Nlocal; i++) { t += (vx[i] * vx[i] + vy[i] * vy[i] + vz[i] * vz[i]) * param->mass; } t = t * t_scale; p = (t * dof_boltz) * p_scale; int istep = iflag; if(iflag == -1){ istep = param->ntimes; } if(iflag == 0){ mstat = 0; } steparr[mstat] = istep; tmparr[mstat] = t; prsarr[mstat] = p; mstat++; fprintf(stdout, "%i\t%e\t%e\n", istep, t, p); } void adjustThermo(Parameter *param, Atom *atom) { /* zero center-of-mass motion */ MD_FLOAT vxtot = 0.0; MD_FLOAT vytot = 0.0; MD_FLOAT vztot = 0.0; MD_FLOAT* vx = atom->vx; MD_FLOAT* vy = atom->vy; MD_FLOAT* vz = atom->vz; for(int i = 0; i < atom->Nlocal; i++) { vxtot += vx[i]; vytot += vy[i]; vztot += vz[i]; } vxtot = vxtot / atom->Natoms; vytot = vytot / atom->Natoms; vztot = vztot / atom->Natoms; for(int i = 0; i < atom->Nlocal; i++) { vx[i] -= vxtot; vy[i] -= vytot; vz[i] -= vztot; } t_act = 0; MD_FLOAT t = 0.0; for(int i = 0; i < atom->Nlocal; i++) { t += (vx[i] * vx[i] + vy[i] * vy[i] + vz[i] * vz[i]) * param->mass; } t *= t_scale; MD_FLOAT factor = sqrt(param->temp / t); for(int i = 0; i < atom->Nlocal; i++) { vx[i] *= factor; vy[i] *= factor; vz[i] *= factor; } }