/* * ======================================================================================= * * Author: Jan Eitzinger (je), jan.eitzinger@fau.de * Copyright (c) 2020 RRZE, University Erlangen-Nuremberg * * This file is part of MD-Bench. * * MD-Bench is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License along * with MD-Bench. If not, see . * ======================================================================================= */ #include #include #include #include #include #include #include #define DELTA 20000 static int NmaxGhost; static void growPbc(Atom*); /* exported subroutines */ void initPbc(Atom* atom) { NmaxGhost = 0; atom->border_map = NULL; atom->PBCx = NULL; atom->PBCy = NULL; atom->PBCz = NULL; } /* update coordinates of ghost atoms */ /* uses mapping created in setupPbc */ void updatePbc(Atom *atom, Parameter *param, int firstUpdate) { int *border_map = atom->border_map; int nlocal = atom->Nclusters_local; MD_FLOAT xprd = param->xprd; MD_FLOAT yprd = param->yprd; MD_FLOAT zprd = param->zprd; for(int cg = 0; cg < atom->Nclusters_ghost; cg++) { const int ci = nlocal + cg; MD_FLOAT *cptr = cluster_pos_ptr(ci); MD_FLOAT *bmap_cptr = cluster_pos_ptr(border_map[cg]); MD_FLOAT bbminx = INFINITY, bbmaxx = -INFINITY; MD_FLOAT bbminy = INFINITY, bbmaxy = -INFINITY; MD_FLOAT bbminz = INFINITY, bbmaxz = -INFINITY; for(int cii = 0; cii < atom->clusters[ci].natoms; cii++) { MD_FLOAT xtmp = cluster_x(bmap_cptr, cii) + atom->PBCx[cg] * xprd; MD_FLOAT ytmp = cluster_y(bmap_cptr, cii) + atom->PBCy[cg] * yprd; MD_FLOAT ztmp = cluster_z(bmap_cptr, cii) + atom->PBCz[cg] * zprd; cluster_x(cptr, cii) = xtmp; cluster_y(cptr, cii) = ytmp; cluster_z(cptr, cii) = ztmp; if(firstUpdate) { // TODO: To create the bounding boxes faster, we can use SIMD operations if(bbminx > xtmp) { bbminx = xtmp; } if(bbmaxx < xtmp) { bbmaxx = xtmp; } if(bbminy > ytmp) { bbminy = ytmp; } if(bbmaxy < ytmp) { bbmaxy = ytmp; } if(bbminz > ztmp) { bbminz = ztmp; } if(bbmaxz < ztmp) { bbmaxz = ztmp; } } } if(firstUpdate) { for(int cii = atom->clusters[ci].natoms; cii < CLUSTER_DIM_M; cii++) { cluster_x(cptr, cii) = INFINITY; cluster_y(cptr, cii) = INFINITY; cluster_z(cptr, cii) = INFINITY; } atom->clusters[ci].bbminx = bbminx; atom->clusters[ci].bbmaxx = bbmaxx; atom->clusters[ci].bbminy = bbminy; atom->clusters[ci].bbmaxy = bbmaxy; atom->clusters[ci].bbminz = bbminz; atom->clusters[ci].bbmaxz = bbmaxz; } } } /* relocate atoms that have left domain according * to periodic boundary conditions */ void updateAtomsPbc(Atom *atom, Parameter *param) { MD_FLOAT xprd = param->xprd; MD_FLOAT yprd = param->yprd; MD_FLOAT zprd = param->zprd; for(int i = 0; i < atom->Nlocal; i++) { if(atom_x(i) < 0.0) { atom_x(i) += xprd; } else if(atom_x(i) >= xprd) { atom_x(i) -= xprd; } if(atom_y(i) < 0.0) { atom_y(i) += yprd; } else if(atom_y(i) >= yprd) { atom_y(i) -= yprd; } if(atom_z(i) < 0.0) { atom_z(i) += zprd; } else if(atom_z(i) >= zprd) { atom_z(i) -= zprd; } } } /* setup periodic boundary conditions by * defining ghost atoms around domain * only creates mapping and coordinate corrections * that are then enforced in updatePbc */ #define ADDGHOST(dx,dy,dz); \ Nghost++; \ const int g_atom_idx = atom->Nclusters_local + Nghost; \ border_map[Nghost] = ci; \ atom->PBCx[Nghost] = dx; \ atom->PBCy[Nghost] = dy; \ atom->PBCz[Nghost] = dz; \ atom->clusters[g_atom_idx].natoms = atom->clusters[ci].natoms; \ Nghost_atoms += atom->clusters[g_atom_idx].natoms; \ for(int cii = 0; cii < atom->clusters[ci].natoms; cii++) { \ atom->clusters[g_atom_idx].type[cii] = atom->clusters[ci].type[cii]; \ } /* internal subroutines */ void growPbc(Atom* atom) { int nold = NmaxGhost; NmaxGhost += DELTA; atom->border_map = (int*) reallocate(atom->border_map, ALIGNMENT, NmaxGhost * sizeof(int), nold * sizeof(int)); atom->PBCx = (int*) reallocate(atom->PBCx, ALIGNMENT, NmaxGhost * sizeof(int), nold * sizeof(int)); atom->PBCy = (int*) reallocate(atom->PBCy, ALIGNMENT, NmaxGhost * sizeof(int), nold * sizeof(int)); atom->PBCz = (int*) reallocate(atom->PBCz, ALIGNMENT, NmaxGhost * sizeof(int), nold * sizeof(int)); } void setupPbc(Atom *atom, Parameter *param) { int *border_map = atom->border_map; MD_FLOAT xprd = param->xprd; MD_FLOAT yprd = param->yprd; MD_FLOAT zprd = param->zprd; MD_FLOAT Cutneigh = param->cutneigh; int Nghost = -1; int Nghost_atoms = 0; for(int ci = 0; ci < atom->Nclusters_local; ci++) { if (atom->Nclusters_local + Nghost + 7 >= atom->Nclusters_max) { growClusters(atom); } if (Nghost + 7 >= NmaxGhost) { growPbc(atom); border_map = atom->border_map; } MD_FLOAT bbminx = atom->clusters[ci].bbminx; MD_FLOAT bbmaxx = atom->clusters[ci].bbmaxx; MD_FLOAT bbminy = atom->clusters[ci].bbminy; MD_FLOAT bbmaxy = atom->clusters[ci].bbmaxy; MD_FLOAT bbminz = atom->clusters[ci].bbminz; MD_FLOAT bbmaxz = atom->clusters[ci].bbmaxz; /* Setup ghost atoms */ /* 6 planes */ if (bbminx < Cutneigh) { ADDGHOST(+1,0,0); } if (bbmaxx >= (xprd-Cutneigh)) { ADDGHOST(-1,0,0); } if (bbminy < Cutneigh) { ADDGHOST(0,+1,0); } if (bbmaxy >= (yprd-Cutneigh)) { ADDGHOST(0,-1,0); } if (bbminz < Cutneigh) { ADDGHOST(0,0,+1); } if (bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(0,0,-1); } /* 8 corners */ if (bbminx < Cutneigh && bbminy < Cutneigh && bbminz < Cutneigh) { ADDGHOST(+1,+1,+1); } if (bbminx < Cutneigh && bbmaxy >= (yprd-Cutneigh) && bbminz < Cutneigh) { ADDGHOST(+1,-1,+1); } if (bbminx < Cutneigh && bbminy < Cutneigh && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(+1,+1,-1); } if (bbminx < Cutneigh && bbmaxy >= (yprd-Cutneigh) && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(+1,-1,-1); } if (bbmaxx >= (xprd-Cutneigh) && bbminy < Cutneigh && bbminz < Cutneigh) { ADDGHOST(-1,+1,+1); } if (bbmaxx >= (xprd-Cutneigh) && bbmaxy >= (yprd-Cutneigh) && bbminz < Cutneigh) { ADDGHOST(-1,-1,+1); } if (bbmaxx >= (xprd-Cutneigh) && bbminy < Cutneigh && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(-1,+1,-1); } if (bbmaxx >= (xprd-Cutneigh) && bbmaxy >= (yprd-Cutneigh) && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(-1,-1,-1); } /* 12 edges */ if (bbminx < Cutneigh && bbminz < Cutneigh) { ADDGHOST(+1,0,+1); } if (bbminx < Cutneigh && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(+1,0,-1); } if (bbmaxx >= (xprd-Cutneigh) && bbminz < Cutneigh) { ADDGHOST(-1,0,+1); } if (bbmaxx >= (xprd-Cutneigh) && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(-1,0,-1); } if (bbminy < Cutneigh && bbminz < Cutneigh) { ADDGHOST(0,+1,+1); } if (bbminy < Cutneigh && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(0,+1,-1); } if (bbmaxy >= (yprd-Cutneigh) && bbminz < Cutneigh) { ADDGHOST(0,-1,+1); } if (bbmaxy >= (yprd-Cutneigh) && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(0,-1,-1); } if (bbminy < Cutneigh && bbminx < Cutneigh) { ADDGHOST(+1,+1,0); } if (bbminy < Cutneigh && bbmaxx >= (xprd-Cutneigh)) { ADDGHOST(-1,+1,0); } if (bbmaxy >= (yprd-Cutneigh) && bbminx < Cutneigh) { ADDGHOST(+1,-1,0); } if (bbmaxy >= (yprd-Cutneigh) && bbmaxx >= (xprd-Cutneigh)) { ADDGHOST(-1,-1,0); } } if(atom->Nclusters_local + Nghost + 1 >= atom->Nclusters_max) { growClusters(atom); } // Add dummy cluster at the end MD_FLOAT *cptr = cluster_pos_ptr(atom->Nclusters_local + Nghost + 1); for(int cii = 0; cii < CLUSTER_DIM_M; cii++) { cluster_x(cptr, cii) = INFINITY; cluster_y(cptr, cii) = INFINITY; cluster_z(cptr, cii) = INFINITY; } // increase by one to make it the ghost atom count atom->Nghost = Nghost_atoms; atom->Nclusters_ghost = Nghost + 1; atom->Nclusters = atom->Nclusters_local + Nghost + 1; // Update created ghost clusters positions updatePbc(atom, param, 1); }