/* * ======================================================================================= * * Author: Jan Eitzinger (je), jan.eitzinger@fau.de * Copyright (c) 2020 RRZE, University Erlangen-Nuremberg * * This file is part of MD-Bench. * * MD-Bench is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License along * with MD-Bench. If not, see . * ======================================================================================= */ #include #include //--- extern "C" { #include #include #include #include #include } static int NmaxGhost; static int *PBCx, *PBCy, *PBCz; static int c_NmaxGhost = 0; static int *c_PBCx = NULL, *c_PBCy = NULL, *c_PBCz = NULL; __global__ void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){ const int i = blockIdx.x * blockDim.x + threadIdx.x; Atom* atom = &a; if( i >= atom->Nlocal ){ return; } if (atom_x(i) < 0.0) { atom_x(i) += xprd; } else if (atom_x(i) >= xprd) { atom_x(i) -= xprd; } if (atom_y(i) < 0.0) { atom_y(i) += yprd; } else if (atom_y(i) >= yprd) { atom_y(i) -= yprd; } if (atom_z(i) < 0.0) { atom_z(i) += zprd; } else if (atom_z(i) >= zprd) { atom_z(i) -= zprd; } } __global__ void computePbcUpdate(Atom a, int* PBCx, int* PBCy, int* PBCz, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){ const int i = blockIdx.x * blockDim.x + threadIdx.x; const int Nghost = a.Nghost; if( i >= Nghost ) { return; } Atom* atom = &a; int *border_map = atom->border_map; int nlocal = atom->Nlocal; atom_x(nlocal + i) = atom_x(border_map[i]) + PBCx[i] * xprd; atom_y(nlocal + i) = atom_y(border_map[i]) + PBCy[i] * yprd; atom_z(nlocal + i) = atom_z(border_map[i]) + PBCz[i] * zprd; } /* update coordinates of ghost atoms */ /* uses mapping created in setupPbc */ void updatePbc_cuda(Atom *atom, Atom *c_atom, Parameter *param, bool doReneighbor) { const int num_threads_per_block = get_num_threads(); if (doReneighbor){ c_atom->Natoms = atom->Natoms; c_atom->Nlocal = atom->Nlocal; c_atom->Nghost = atom->Nghost; c_atom->ntypes = atom->ntypes; if (atom->Nmax > c_atom->Nmax){ // the number of ghost atoms has increased -> more space is needed c_atom->Nmax = atom->Nmax; if(c_atom->x != NULL){ cudaFree(c_atom->x); } if(c_atom->type != NULL){ cudaFree(c_atom->type); } checkCUDAError( "updatePbc c_atom->x malloc", cudaMalloc((void**)&(c_atom->x), sizeof(MD_FLOAT) * atom->Nmax * 3) ); checkCUDAError( "updatePbc c_atom->type malloc", cudaMalloc((void**)&(c_atom->type), sizeof(int) * atom->Nmax) ); } // TODO if the sort is reactivated the atom->vx needs to be copied to GPU as well checkCUDAError( "updatePbc c_atom->x memcpy", cudaMemcpy(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) ); checkCUDAError( "updatePbc c_atom->type memcpy", cudaMemcpy(c_atom->type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice) ); if(c_NmaxGhost < NmaxGhost){ c_NmaxGhost = NmaxGhost; if(c_PBCx != NULL){ cudaFree(c_PBCx); } if(c_PBCy != NULL){ cudaFree(c_PBCy); } if(c_PBCz != NULL){ cudaFree(c_PBCz); } if(c_atom->border_map != NULL){ cudaFree(c_atom->border_map); } checkCUDAError( "updatePbc c_PBCx malloc", cudaMalloc((void**)&c_PBCx, NmaxGhost * sizeof(int)) ); checkCUDAError( "updatePbc c_PBCy malloc", cudaMalloc((void**)&c_PBCy, NmaxGhost * sizeof(int)) ); checkCUDAError( "updatePbc c_PBCz malloc", cudaMalloc((void**)&c_PBCz, NmaxGhost * sizeof(int)) ); checkCUDAError( "updatePbc c_atom->border_map malloc", cudaMalloc((void**)&(c_atom->border_map), NmaxGhost * sizeof(int)) ); } checkCUDAError( "updatePbc c_PBCx memcpy", cudaMemcpy(c_PBCx, PBCx, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) ); checkCUDAError( "updatePbc c_PBCy memcpy", cudaMemcpy(c_PBCy, PBCy, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) ); checkCUDAError( "updatePbc c_PBCz memcpy", cudaMemcpy(c_PBCz, PBCz, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) ); checkCUDAError( "updatePbc c_atom->border_map memcpy", cudaMemcpy(c_atom->border_map, atom->border_map, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) ); } MD_FLOAT xprd = param->xprd; MD_FLOAT yprd = param->yprd; MD_FLOAT zprd = param->zprd; const int num_blocks = ceil((float)atom->Nghost / (float)num_threads_per_block); /*__global__ void computePbcUpdate(Atom a, int* PBCx, int* PBCy, int* PBCz, * MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd) * */ computePbcUpdate<<>>(*c_atom, c_PBCx, c_PBCy, c_PBCz, xprd, yprd, zprd); checkCUDAError( "PeekAtLastError UpdatePbc", cudaPeekAtLastError() ); checkCUDAError( "DeviceSync UpdatePbc", cudaDeviceSynchronize() ); } void updateAtomsPbc_cuda(Atom* atom, Atom *c_atom, Parameter *param){ const int num_threads_per_block = get_num_threads(); MD_FLOAT xprd = param->xprd; MD_FLOAT yprd = param->yprd; MD_FLOAT zprd = param->zprd; const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block); /*void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd)*/ computeAtomsPbcUpdate<<>>(*c_atom, xprd, yprd, zprd); checkCUDAError( "PeekAtLastError UpdateAtomsPbc", cudaPeekAtLastError() ); checkCUDAError( "DeviceSync UpdateAtomsPbc", cudaDeviceSynchronize() ); checkCUDAError( "updateAtomsPbc position memcpy back", cudaMemcpy(atom->x, c_atom->x, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) ); }