/* * ======================================================================================= * * Author: Jan Eitzinger (je), jan.eitzinger@fau.de * Copyright (c) 2021 RRZE, University Erlangen-Nuremberg * * This file is part of MD-Bench. * * MD-Bench is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License along * with MD-Bench. If not, see . * ======================================================================================= */ #include #include #include #include #include #include #include #include double computeForce( Parameter *param, Atom *atom, Neighbor *neighbor ) { int Nlocal = atom->Nlocal; int* neighs; MD_FLOAT* fx = atom->fx; MD_FLOAT* fy = atom->fy; MD_FLOAT* fz = atom->fz; #ifndef EXPLICIT_TYPES MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; #endif for(int i = 0; i < Nlocal; i++) { fx[i] = 0.0; fy[i] = 0.0; fz[i] = 0.0; } double S = getTimeStamp(); LIKWID_MARKER_START("force"); #pragma omp parallel for for(int i = 0; i < Nlocal; i++) { neighs = &neighbor->neighbors[i * neighbor->maxneighs]; int numneighs = neighbor->numneigh[i]; MD_FLOAT xtmp = atom_x(i); MD_FLOAT ytmp = atom_y(i); MD_FLOAT ztmp = atom_z(i); MD_FLOAT fix = 0; MD_FLOAT fiy = 0; MD_FLOAT fiz = 0; #ifdef EXPLICIT_TYPES const int type_i = atom->type[i]; #endif /* atom->x = (MD_FLOAT*) reallocate(atom->x, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT) * 3, nold * sizeof(MD_FLOAT) * 3); atom->epsilon = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->sigma6 = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->cutforcesq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->cutneighsq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); */ MD_FLOAT *c_xtmp; cudaMalloc((void**)&c_xtmp, sizeof(MD_FLOAT)); cudaMemcpy(c_xtmp, &xtmp, sizeof(MD_FLOAT), cudaMemcpyHostToDevice); MD_FLOAT *c_ytmp; cudaMalloc((void**)&c_ytmp, sizeof(MD_FLOAT)); cudaMemcpy(c_ytmp, &ytmp, sizeof(MD_FLOAT), cudaMemcpyHostToDevice); MD_FLOAT *c_ztmp; cudaMalloc((void**)&c_ztmp, sizeof(MD_FLOAT)); cudaMemcpy(c_ztmp, &ztmp, sizeof(MD_FLOAT), cudaMemcpyHostToDevice); int *c_atom_ntypes; cudaMalloc((void**)&c_atom_ntypes, sizeof(int)); cudaMemcpy(c_atom_ntypes, &(atom->ntypes), sizeof(int), cudaMemcpyHostToDevice); int *c_neighbors; cudaMalloc((void**)&c_neighbors, sizeof(int) * numneighs); cudaMemcpy(c_neighbors, neighs, sizeof(int) * numneighs, cudaMemcpyHostToDevice); MD_FLOAT *c_atom_x; cudaMalloc((void**)&c_atom_x, sizeof(MD_FLOAT) * atom->Nmax * 3); cudaMemcpy(c_atom_x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice); MD_FLOAT *c_atom_y; cudaMalloc((void**)&c_atom_y, sizeof(MD_FLOAT) * atom->Nmax * 3); cudaMemcpy(c_atom_y, atom->y, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice); MD_FLOAT *c_atom_z; cudaMalloc((void**)&c_atom_z, sizeof(MD_FLOAT) * atom->Nmax * 3); cudaMemcpy(c_atom_z, atom->z, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice); MD_FLOAT *c_atom_epsilon; cudaMalloc((void**)&c_atom_epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes); cudaMemcpy(c_atom_epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice); MD_FLOAT *c_sigma6; cudaMalloc((void**)&c_sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes); cudaMemcpy(c_sigma6, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice); MD_FLOAT *c_cutforcesq; cudaMalloc((void**)&c_cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes); cudaMemcpy(c_cutforcesq, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice); for(int k = 0; k < numneighs; k++) { int j = neighs[k]; MD_FLOAT delx = xtmp - atom_x(j); MD_FLOAT dely = ytmp - atom_y(j); MD_FLOAT delz = ztmp - atom_z(j); MD_FLOAT rsq = delx * delx + dely * dely + delz * delz; #ifdef EXPLICIT_TYPES const int type_j = atom->type[j]; const int type_ij = type_i * atom->ntypes + type_j; const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij]; const MD_FLOAT sigma6 = atom->sigma6[type_ij]; const MD_FLOAT epsilon = atom->epsilon[type_ij]; #endif if(rsq < cutforcesq) { MD_FLOAT sr2 = 1.0 / rsq; MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6; MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon; fix += delx * force; fiy += dely * force; fiz += delz * force; } } fx[i] += fix; fy[i] += fiy; fz[i] += fiz; } LIKWID_MARKER_STOP("force"); double E = getTimeStamp(); return E-S; }