/* * ======================================================================================= * * Author: Jan Eitzinger (je), jan.eitzinger@fau.de * Copyright (c) 2020 RRZE, University Erlangen-Nuremberg * * This file is part of MD-Bench. * * MD-Bench is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License along * with MD-Bench. If not, see . * ======================================================================================= */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define HLINE "----------------------------------------------------------------------------\n" typedef enum { TOTAL = 0, NEIGH, FORCE, NUMTIMER } timertype; void init(Parameter *param) { param->epsilon = 1.0; param->sigma6 = 1.0; param->rho = 0.8442; param->ntimes = 200; param->dt = 0.005; param->nx = 32; param->ny = 32; param->nz = 32; param->cutforce = 2.5; param->cutneigh = param->cutforce + 0.30; param->temp = 1.44; param->nstat = 100; param->mass = 1.0; param->dtforce = 0.5 * param->dt; param->every = 20; } double setup( Parameter *param, Atom *atom, Neighbor *neighbor) { double S, E; double lattice = pow((4.0 / param->rho), (1.0 / 3.0)); param->xprd = param->nx * lattice; param->yprd = param->ny * lattice; param->zprd = param->nz * lattice; S = getTimeStamp(); initAtom(atom); initNeighbor(neighbor, param); initPbc(); setupNeighbor(); createAtom(atom, param); setupThermo(param, atom->Natoms); adjustThermo(param, atom); setupPbc(atom, param); updatePbc(atom, param); buildNeighbor(atom, neighbor); E = getTimeStamp(); return E-S; } double reneighbour( Parameter *param, Atom *atom, Neighbor *neighbor) { double S, E; S = getTimeStamp(); LIKWID_MARKER_START("reneighbour"); updateAtomsPbc(atom, param); setupPbc(atom, param); updatePbc(atom, param); /* sortAtom(); */ buildNeighbor(atom, neighbor); LIKWID_MARKER_STOP("reneighbour"); E = getTimeStamp(); return E-S; } void initialIntegrate(Parameter *param, Atom *atom) { MD_FLOAT* x = atom->x; MD_FLOAT* y = atom->y; MD_FLOAT* z = atom->z; MD_FLOAT* fx = atom->fx; MD_FLOAT* fy = atom->fy; MD_FLOAT* fz = atom->fz; MD_FLOAT* vx = atom->vx; MD_FLOAT* vy = atom->vy; MD_FLOAT* vz = atom->vz; for(int i = 0; i < atom->Nlocal; i++) { vx[i] += param->dtforce * fx[i]; vy[i] += param->dtforce * fy[i]; vz[i] += param->dtforce * fz[i]; x[i] += param->dt * vx[i]; y[i] += param->dt * vy[i]; z[i] += param->dt * vz[i]; } } void finalIntegrate(Parameter *param, Atom *atom) { MD_FLOAT* fx = atom->fx; MD_FLOAT* fy = atom->fy; MD_FLOAT* fz = atom->fz; MD_FLOAT* vx = atom->vx; MD_FLOAT* vy = atom->vy; MD_FLOAT* vz = atom->vz; for(int i = 0; i < atom->Nlocal; i++) { vx[i] += param->dtforce * fx[i]; vy[i] += param->dtforce * fy[i]; vz[i] += param->dtforce * fz[i]; } } double computeForce(Parameter *param, Atom *atom, Neighbor *neighbor) { int Nlocal = atom->Nlocal; int* neighs; MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; MD_FLOAT* x = atom->x; MD_FLOAT* y = atom->y; MD_FLOAT* z = atom->z; MD_FLOAT* fx = atom->fx; MD_FLOAT* fy = atom->fy; MD_FLOAT* fz = atom->fz; MD_FLOAT S, E; S = getTimeStamp(); for(int i = 0; i < Nlocal; i++) { fx[i] = 0.0; fy[i] = 0.0; fz[i] = 0.0; } LIKWID_MARKER_START("force"); #pragma omp parallel for for(int i = 0; i < Nlocal; i++) { neighs = &neighbor->neighbors[i * neighbor->maxneighs]; int numneighs = neighbor->numneigh[i]; MD_FLOAT xtmp = x[i]; MD_FLOAT ytmp = y[i]; MD_FLOAT ztmp = z[i]; MD_FLOAT fix = 0; MD_FLOAT fiy = 0; MD_FLOAT fiz = 0; for(int k = 0; k < numneighs; k++) { int j = neighs[k]; MD_FLOAT delx = xtmp - x[j]; MD_FLOAT dely = ytmp - y[j]; MD_FLOAT delz = ztmp - z[j]; MD_FLOAT rsq = delx * delx + dely * dely + delz * delz; if(rsq < cutforcesq) { MD_FLOAT sr2 = 1.0 / rsq; MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6; MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon; fix += delx * force; fiy += dely * force; fiz += delz * force; } } fx[i] += fix; fy[i] += fiy; fz[i] += fiz; } LIKWID_MARKER_STOP("force"); E = getTimeStamp(); return E-S; } void printAtomState(Atom *atom) { printf("Atom counts: Natoms=%d Nlocal=%d Nghost=%d Nmax=%d\n", atom->Natoms, atom->Nlocal, atom->Nghost, atom->Nmax); /* int nall = atom->Nlocal + atom->Nghost; */ /* for (int i=0; ix[i], atom->y[i], atom->z[i]); */ /* } */ } int main (int argc, char** argv) { double timer[NUMTIMER]; Atom atom; Neighbor neighbor; Parameter param; LIKWID_MARKER_INIT; #pragma omp parallel { LIKWID_MARKER_REGISTER("force"); LIKWID_MARKER_REGISTER("reneighbour"); LIKWID_MARKER_REGISTER("pbc"); } init(¶m); for(int i = 0; i < argc; i++) { if((strcmp(argv[i], "-n") == 0) || (strcmp(argv[i], "--nsteps") == 0)) { param.ntimes = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-nx") == 0)) { param.nx = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-ny") == 0)) { param.ny = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-nz") == 0)) { param.nz = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-h") == 0) || (strcmp(argv[i], "--help") == 0)) { printf("MD Bench: A minimalistic re-implementation of miniMD\n"); printf(HLINE); printf("-n / --nsteps : set number of timesteps for simulation\n"); printf("-nx/-ny/-nz : set linear dimension of systembox in x/y/z direction\n"); printf(HLINE); exit(EXIT_SUCCESS); } } setup(¶m, &atom, &neighbor); computeThermo(0, ¶m, &atom); computeForce(¶m, &atom, &neighbor); timer[FORCE] = 0.0; timer[NEIGH] = 0.0; timer[TOTAL] = getTimeStamp(); for(int n = 0; n < param.ntimes; n++) { initialIntegrate(¶m, &atom); if((n + 1) % param.every) { updatePbc(&atom, ¶m); } else { timer[NEIGH] += reneighbour(¶m, &atom, &neighbor); } timer[FORCE] += computeForce(¶m, &atom, &neighbor); finalIntegrate(¶m, &atom); if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) { computeThermo(n + 1, ¶m, &atom); } } timer[TOTAL] = getTimeStamp() - timer[TOTAL]; computeThermo(-1, ¶m, &atom); printf(HLINE); #if PRECISION == 1 printf("Using single precision floating point.\n"); #else printf("Using double precision floating point.\n"); #endif printf(HLINE); printf("System: %d atoms %d ghost atoms, Steps: %d\n", atom.Natoms, atom.Nghost, param.ntimes); printf("TOTAL %.2fs FORCE %.2fs NEIGH %.2fs REST %.2fs\n", timer[TOTAL], timer[FORCE], timer[NEIGH], timer[TOTAL]-timer[FORCE]-timer[NEIGH]); printf(HLINE); printf("Performance: %.2f million atom updates per second\n", 1e-6 * (double) atom.Natoms * param.ntimes / timer[TOTAL]); LIKWID_MARKER_CLOSE; return EXIT_SUCCESS; }