/* * Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg. * All rights reserved. This file is part of MD-Bench. * Use of this source code is governed by a LGPL-3.0 * license that can be found in the LICENSE file. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define HLINE "----------------------------------------------------------------------------\n" #ifdef CUDA_TARGET extern double computeForceLJFullNeigh_cuda(Parameter*, Atom*, Neighbor*); #endif extern double computeForceLJFullNeigh_plain_c(Parameter*, Atom*, Neighbor*, Stats*); extern double computeForceLJFullNeigh_simd(Parameter*, Atom*, Neighbor*, Stats*); extern double computeForceLJHalfNeigh(Parameter*, Atom*, Neighbor*, Stats*); extern double computeForceEam(Eam*, Parameter*, Atom*, Neighbor*, Stats*); extern double computeForceDemFullNeigh(Parameter*, Atom*, Neighbor*, Stats*); double computeForce(Eam *eam, Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { if(param->force_field == FF_EAM) { return computeForceEam(eam, param, atom, neighbor, stats); } else if(param->force_field == FF_DEM) { if(param->half_neigh) { fprintf(stderr, "Error: DEM cannot use half neighbor-lists!\n"); return 0.0; } else { return computeForceDemFullNeigh(param, atom, neighbor, stats); } } if(param->half_neigh || param->method) { return computeForceLJHalfNeigh(param, atom, neighbor, stats); } #ifdef CUDA_TARGET return computeForceLJFullNeigh(param, atom, neighbor); #else return computeForceLJFullNeigh(param, atom, neighbor, stats); #endif } double dynamicBalance(Comm* comm, Grid* grid, Atom* atom, Parameter* param, double time){ double S, E; int dims = 3; //TODO: Adjust to do in 3d and 2d S = getTimeStamp(); if(param->balance == RCB) { rcbBalance(grid, atom, param, meanBisect,dims,0); neighComm(comm, param, grid); }else if(param->balance == meanTimeRCB){ rcbBalance(grid, atom, param, meanTimeBisect,dims,time); neighComm(comm, param, grid); }else if(param->balance == Staggered) { staggeredBalance(grid, atom, param, time); neighComm(comm, param, grid); exchangeComm(comm,atom); }else { } //Do nothing //printGrid(grid); E = getTimeStamp(); return E-S; } double initialBalance(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Stats *stats, Comm *comm, Grid *grid) { double E,S,time; int me; MPI_Comm_rank(world,&me); S = getTimeStamp(); if(param->balance == meanTimeRCB || param->balance == RCB){ rcbBalance(grid, atom, param, meanBisect,3,0); neighComm(comm, param, grid); } MPI_Allreduce(&atom->Nlocal, &atom->Natoms, 1, MPI_INT, MPI_SUM, world); printf("Processor:%i, Local atoms:%i, Total atoms:%i\n",me, atom->Nlocal,atom->Natoms); MPI_Barrier(world); E = getTimeStamp(); return E-S; } double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Stats *stats, Comm *comm, Grid *grid) { if(param->force_field == FF_EAM) { initEam(eam, param); } double S, E; param->lattice = pow((4.0 / param->rho), (1.0 / 3.0)); param->xprd = param->nx * param->lattice; param->yprd = param->ny * param->lattice; param->zprd = param->nz * param->lattice; S = getTimeStamp(); initAtom(atom); initStats(stats); initNeighbor(neighbor, param); if(param->input_file == NULL) { createAtom(atom, param); } else { readAtom(atom, param); } setupGrid(grid,atom,param); setupNeighbor(param); setupComm(comm, param, grid); if(param->balance){ initialBalance(param, eam, atom, neighbor, stats, comm, grid); } setupThermo(param, atom->Natoms); if(param->input_file == NULL) { adjustThermo(param, atom); } #ifdef SORT_ATOMS atom->Nghost = 0; sortAtom(atom); #endif initDevice(atom, neighbor); ghostNeighbor(comm, atom, param); buildNeighbor(atom, neighbor); E = getTimeStamp(); return E-S; } double reneighbour(Comm* comm, Parameter *param, Atom *atom, Neighbor *neighbor) { double S, E; S = getTimeStamp(); LIKWID_MARKER_START("reneighbour"); #ifdef SORT_ATOMS atom->Nghost = 0; sortAtom(atom); #endif ghostNeighbor(comm, atom, param); buildNeighbor(atom, neighbor); LIKWID_MARKER_STOP("reneighbour"); E = getTimeStamp(); return E-S; } double updateAtoms(Comm* comm, Atom* atom){ double S,E; S = getTimeStamp(); exchangeComm(comm, atom); E = getTimeStamp(); return E-S; } void writeInput(Parameter *param, Atom *atom) { FILE *fpin = fopen("input.in", "w"); fprintf(fpin, "0,%f,0,%f,0,%f\n", param->xprd, param->yprd, param->zprd); for(int i = 0; i < atom->Nlocal; i++) { fprintf(fpin, "1,%f,%f,%f,%f,%f,%f\n", atom_x(i), atom_y(i), atom_z(i), atom_vx(i), atom_vy(i), atom_vz(i)); } fclose(fpin); } int main(int argc, char** argv) { double timer[NUMTIMER]; Eam eam; Atom atom; Neighbor neighbor; Stats stats; Parameter param; Comm comm; Grid grid; LIKWID_MARKER_INIT; #pragma omp parallel { LIKWID_MARKER_REGISTER("force"); //LIKWID_MARKER_REGISTER("reneighbour"); //LIKWID_MARKER_REGISTER("pbc"); } initComm(&argc, &argv, &comm); initParameter(¶m); for(int i = 0; i < argc; i++) { if((strcmp(argv[i], "-p") == 0)) { readParameter(¶m, argv[++i]); continue; } if((strcmp(argv[i], "-f") == 0)) { if((param.force_field = str2ff(argv[++i])) < 0) { fprintf(stderr, "Invalid force field!\n"); exit(-1); } continue; } if((strcmp(argv[i], "-i") == 0)) { param.input_file = strdup(argv[++i]); continue; } if((strcmp(argv[i], "-e") == 0)) { param.eam_file = strdup(argv[++i]); continue; } if((strcmp(argv[i], "-n") == 0) || (strcmp(argv[i], "--nsteps") == 0)) { param.ntimes = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-nx") == 0)) { param.nx = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-ny") == 0)) { param.ny = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-nz") == 0)) { param.nz = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-half") == 0)) { param.half_neigh = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-method") == 0)) { param.method = atoi(argv[++i]); if (param.method>3 || param.method< 0){ if(comm.myproc == 0) fprintf(stderr, "Method does not exist!\n"); endComm(&comm); exit(0); } continue; } if((strcmp(argv[i], "-bal") == 0)) { param.balance = atoi(argv[++i]); if (param.balance>3 || param.balance< 0){ if(comm.myproc == 0) fprintf(stderr, "Load Balance does not exist!\n"); endComm(&comm); exit(0); } continue; } if((strcmp(argv[i], "-r") == 0) || (strcmp(argv[i], "--radius") == 0)) { param.cutforce = atof(argv[++i]); continue; } if((strcmp(argv[i], "-s") == 0) || (strcmp(argv[i], "--skin") == 0)) { param.skin = atof(argv[++i]); continue; } if((strcmp(argv[i], "--freq") == 0)) { param.proc_freq = atof(argv[++i]); continue; } if((strcmp(argv[i], "--vtk") == 0)) { param.vtk_file = strdup(argv[++i]); continue; } if((strcmp(argv[i], "-h") == 0) || (strcmp(argv[i], "--help") == 0)) { if(comm.myproc ==0 ){ printf("MD Bench: A minimalistic re-implementation of miniMD\n"); printf(HLINE); printf("-p : file to read parameters from (can be specified more than once)\n"); printf("-f : force field (lj, eam or dem), default lj\n"); printf("-i : input file with atom positions (dump)\n"); printf("-e : input file for EAM\n"); printf("-n / --nsteps : set number of timesteps for simulation\n"); printf("-nx/-ny/-nz : set linear dimension of systembox in x/y/z direction\n"); printf("-r / --radius : set cutoff radius\n"); printf("-s / --skin : set skin (verlet buffer)\n"); printf("--freq : processor frequency (GHz)\n"); printf("--vtk : VTK file for visualization\n"); printf(HLINE); } exit(EXIT_SUCCESS); } } if(param.balance>0 && param.method == 1){ if(comm.myproc == 0) fprintf(stderr, "Half Shell is not supported by load balance!\n"); endComm(&comm); exit(0); } param.cutneigh = param.cutforce + param.skin; timer[SETUP]=setup(¶m, &eam, &atom, &neighbor, &stats, &comm, &grid); if(comm.myproc == 0)printParameter(¶m); if(comm.myproc == 0)printf(HLINE); if(comm.myproc == 0) printf("step\ttemp\t\tpressure\n"); computeThermo(0, ¶m, &atom); #if defined(MEM_TRACER) || defined(INDEX_TRACER) traceAddresses(¶m, &atom, &neighbor, n + 1);// TODO: trace adress #endif //writeInput(¶m, &atom); timer[FORCE] = computeForce(&eam, ¶m, &atom, &neighbor, &stats); timer[NEIGH] = 0.0; timer[FORWARD] = 0.0; timer[UPDATE] = 0.0; timer[BALANCE] = 0.0; timer[REVERSE] = reverse(&comm, &atom, ¶m); MPI_Barrier(world); timer[TOTAL] = getTimeStamp(); if(param.vtk_file != NULL) { printvtk(param.vtk_file, &comm, &atom, ¶m, 0); } for(int n = 0; n < param.ntimes; n++) { bool reneigh = (n + 1) % param.reneigh_every == 0; initialIntegrate(reneigh, ¶m, &atom); if(reneigh) { timer[UPDATE] +=updateAtoms(&comm,&atom); if(param.balance && !((n+1)%param.balance_every)) timer[BALANCE] +=dynamicBalance(&comm, &grid, &atom , ¶m, timer[FORCE]); timer[NEIGH] += reneighbour(&comm, ¶m, &atom, &neighbor); } else { timer[FORWARD] += forward(&comm, &atom, ¶m); } #if defined(MEM_TRACER) || defined(INDEX_TRACER) traceAddresses(¶m, &atom, &neighbor, n + 1); #endif timer[FORCE] += computeForce(&eam, ¶m, &atom, &neighbor, &stats); timer[REVERSE] += reverse(&comm, &atom, ¶m); finalIntegrate(reneigh, ¶m, &atom); if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) { #ifdef CUDA_TARGET memcpyFromGPU(atom.x, atom.d_atom.x, atom.Nmax * sizeof(MD_FLOAT) * 3); #endif computeThermo(n + 1, ¶m, &atom); } if(param.vtk_file != NULL) { printvtk(param.vtk_file, &comm, &atom ,¶m, n+1); } } MPI_Barrier(world); timer[TOTAL] = getTimeStamp() - timer[TOTAL]; computeThermo(-1, ¶m, &atom); double mint[NUMTIMER]; double maxt[NUMTIMER]; double sumt[NUMTIMER]; timer[REST] = timer[TOTAL]-timer[FORCE]-timer[NEIGH]-timer[BALANCE]-timer[FORWARD]-timer[REVERSE]; MPI_Reduce(timer,mint,NUMTIMER,MPI_DOUBLE,MPI_MIN,0,world); MPI_Reduce(timer,maxt,NUMTIMER,MPI_DOUBLE,MPI_MAX,0,world); MPI_Reduce(timer,sumt,NUMTIMER,MPI_DOUBLE,MPI_SUM,0,world); int Nghost; MPI_Reduce(&atom.Nghost,&Nghost,1,MPI_INT,MPI_SUM,0,world); if(comm.myproc == 0){ int n = comm.numproc; printf(HLINE); printf("System: %d atoms %d ghost atoms, Steps: %d\n", atom.Natoms, Nghost, param.ntimes); printf("TOTAL %.2fs\n\n",timer[TOTAL]); printf("%4s|%7s|%7s|%7s|%7s|%7s|%7s|%7s|%7s|\n","","FORCE ", "NEIGH ", "BALANCE", "FORWARD", "REVERSE","UPDATE","REST ","SETUP"); printf("----|-------|-------|-------|-------|-------|-------|-------|-------|\n"); printf("%4s|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|\n", "AVG", sumt[FORCE]/n,sumt[NEIGH]/n,sumt[BALANCE]/n,sumt[FORWARD]/n,sumt[REVERSE]/n,sumt[UPDATE]/n,sumt[REST]/n,sumt[SETUP]/n); printf("%4s|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|\n", "MIN", mint[FORCE],mint[NEIGH],mint[BALANCE],mint[FORWARD],mint[REVERSE],mint[UPDATE],mint[REST],mint[SETUP]); printf("%4s|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|%7.2f|\n", "MAX", maxt[FORCE],maxt[NEIGH],maxt[BALANCE],maxt[FORWARD],maxt[REVERSE],maxt[UPDATE],maxt[REST],maxt[SETUP]); printf(HLINE); printf("Performance: %.2f million atom updates per second\n", 1e-6 * (double) atom.Natoms * param.ntimes / timer[TOTAL]); #ifdef COMPUTE_STATS displayStatistics(&atom, ¶m, &stats, timer); #endif } endComm(&comm); LIKWID_MARKER_CLOSE; return EXIT_SUCCESS; }