/* * Copyright (C) NHR@FAU, University Erlangen-Nuremberg. * All rights reserved. This file is part of MD-Bench. * Use of this source code is governed by a LGPL-3.0 * license that can be found in the LICENSE file. */ #include #include #include #include #include #include #include void initAtom(Atom *atom) { atom->x = NULL; atom->y = NULL; atom->z = NULL; atom->vx = NULL; atom->vy = NULL; atom->vz = NULL; atom->cl_x = NULL; atom->cl_v = NULL; atom->cl_f = NULL; atom->cl_type = NULL; atom->Natoms = 0; atom->Nlocal = 0; atom->Nghost = 0; atom->Nmax = 0; atom->Nclusters = 0; atom->Nclusters_local = 0; atom->Nclusters_ghost = 0; atom->Nclusters_max = 0; atom->type = NULL; atom->ntypes = 0; atom->epsilon = NULL; atom->sigma6 = NULL; atom->cutforcesq = NULL; atom->cutneighsq = NULL; atom->iclusters = NULL; atom->jclusters = NULL; atom->icluster_bin = NULL; initMasks(atom); } void createAtom(Atom *atom, Parameter *param) { MD_FLOAT xlo = 0.0; MD_FLOAT xhi = param->xprd; MD_FLOAT ylo = 0.0; MD_FLOAT yhi = param->yprd; MD_FLOAT zlo = 0.0; MD_FLOAT zhi = param->zprd; atom->Natoms = 4 * param->nx * param->ny * param->nz; atom->Nlocal = 0; atom->ntypes = param->ntypes; atom->epsilon = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->sigma6 = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->cutforcesq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->cutneighsq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); for(int i = 0; i < atom->ntypes * atom->ntypes; i++) { atom->epsilon[i] = param->epsilon; atom->sigma6[i] = param->sigma6; atom->cutneighsq[i] = param->cutneigh * param->cutneigh; atom->cutforcesq[i] = param->cutforce * param->cutforce; } MD_FLOAT alat = pow((4.0 / param->rho), (1.0 / 3.0)); int ilo = (int) (xlo / (0.5 * alat) - 1); int ihi = (int) (xhi / (0.5 * alat) + 1); int jlo = (int) (ylo / (0.5 * alat) - 1); int jhi = (int) (yhi / (0.5 * alat) + 1); int klo = (int) (zlo / (0.5 * alat) - 1); int khi = (int) (zhi / (0.5 * alat) + 1); ilo = MAX(ilo, 0); ihi = MIN(ihi, 2 * param->nx - 1); jlo = MAX(jlo, 0); jhi = MIN(jhi, 2 * param->ny - 1); klo = MAX(klo, 0); khi = MIN(khi, 2 * param->nz - 1); MD_FLOAT xtmp, ytmp, ztmp, vxtmp, vytmp, vztmp; int i, j, k, m, n; int sx = 0; int sy = 0; int sz = 0; int ox = 0; int oy = 0; int oz = 0; int subboxdim = 8; while(oz * subboxdim <= khi) { k = oz * subboxdim + sz; j = oy * subboxdim + sy; i = ox * subboxdim + sx; if(((i + j + k) % 2 == 0) && (i >= ilo) && (i <= ihi) && (j >= jlo) && (j <= jhi) && (k >= klo) && (k <= khi)) { xtmp = 0.5 * alat * i; ytmp = 0.5 * alat * j; ztmp = 0.5 * alat * k; if(xtmp >= xlo && xtmp < xhi && ytmp >= ylo && ytmp < yhi && ztmp >= zlo && ztmp < zhi ) { n = k * (2 * param->ny) * (2 * param->nx) + j * (2 * param->nx) + i + 1; for(m = 0; m < 5; m++) { myrandom(&n); } vxtmp = myrandom(&n); for(m = 0; m < 5; m++){ myrandom(&n); } vytmp = myrandom(&n); for(m = 0; m < 5; m++) { myrandom(&n); } vztmp = myrandom(&n); if(atom->Nlocal == atom->Nmax) { growAtom(atom); } atom_x(atom->Nlocal) = xtmp; atom_y(atom->Nlocal) = ytmp; atom_z(atom->Nlocal) = ztmp; atom->vx[atom->Nlocal] = vxtmp; atom->vy[atom->Nlocal] = vytmp; atom->vz[atom->Nlocal] = vztmp; atom->type[atom->Nlocal] = rand() % atom->ntypes; atom->Nlocal++; } } sx++; if(sx == subboxdim) { sx = 0; sy++; } if(sy == subboxdim) { sy = 0; sz++; } if(sz == subboxdim) { sz = 0; ox++; } if(ox * subboxdim > ihi) { ox = 0; oy++; } if(oy * subboxdim > jhi) { oy = 0; oz++; } } } int type_str2int(const char *type) { if(strncmp(type, "Ar", 2) == 0) { return 0; } // Argon fprintf(stderr, "Invalid atom type: %s\n", type); exit(-1); return -1; } int readAtom(Atom* atom, Parameter* param) { int len = strlen(param->input_file); if(strncmp(¶m->input_file[len - 4], ".pdb", 4) == 0) { return readAtom_pdb(atom, param); } if(strncmp(¶m->input_file[len - 4], ".gro", 4) == 0) { return readAtom_gro(atom, param); } if(strncmp(¶m->input_file[len - 4], ".dmp", 4) == 0) { return readAtom_dmp(atom, param); } fprintf(stderr, "Invalid input file extension: %s\nValid choices are: pdb, gro, dmp\n", param->input_file); exit(-1); return -1; } int readAtom_pdb(Atom* atom, Parameter* param) { FILE *fp = fopen(param->input_file, "r"); char line[MAXLINE]; int read_atoms = 0; if(!fp) { fprintf(stderr, "Could not open input file: %s\n", param->input_file); exit(-1); return -1; } while(!feof(fp)) { readline(line, fp); char *item = strtok(line, " "); if(strncmp(item, "CRYST1", 6) == 0) { param->xlo = 0.0; param->xhi = atof(strtok(NULL, " ")); param->ylo = 0.0; param->yhi = atof(strtok(NULL, " ")); param->zlo = 0.0; param->zhi = atof(strtok(NULL, " ")); param->xprd = param->xhi - param->xlo; param->yprd = param->yhi - param->ylo; param->zprd = param->zhi - param->zlo; // alpha, beta, gamma, sGroup, z } else if(strncmp(item, "ATOM", 4) == 0) { char *label; int atom_id, comp_id; MD_FLOAT occupancy, charge; atom_id = atoi(strtok(NULL, " ")) - 1; while(atom_id + 1 >= atom->Nmax) { growAtom(atom); } atom->type[atom_id] = type_str2int(strtok(NULL, " ")); label = strtok(NULL, " "); comp_id = atoi(strtok(NULL, " ")); atom_x(atom_id) = atof(strtok(NULL, " ")); atom_y(atom_id) = atof(strtok(NULL, " ")); atom_z(atom_id) = atof(strtok(NULL, " ")); atom->vx[atom_id] = 0.0; atom->vy[atom_id] = 0.0; atom->vz[atom_id] = 0.0; occupancy = atof(strtok(NULL, " ")); charge = atof(strtok(NULL, " ")); atom->ntypes = MAX(atom->type[atom_id] + 1, atom->ntypes); atom->Natoms++; atom->Nlocal++; read_atoms++; } else if(strncmp(item, "HEADER", 6) == 0 || strncmp(item, "REMARK", 6) == 0 || strncmp(item, "MODEL", 5) == 0 || strncmp(item, "TER", 3) == 0 || strncmp(item, "ENDMDL", 6) == 0) { // Do nothing } else { fprintf(stderr, "Invalid item: %s\n", item); exit(-1); return -1; } } if(!read_atoms) { fprintf(stderr, "Input error: No atoms read!\n"); exit(-1); return -1; } atom->epsilon = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->sigma6 = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->cutforcesq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->cutneighsq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); for(int i = 0; i < atom->ntypes * atom->ntypes; i++) { atom->epsilon[i] = param->epsilon; atom->sigma6[i] = param->sigma6; atom->cutneighsq[i] = param->cutneigh * param->cutneigh; atom->cutforcesq[i] = param->cutforce * param->cutforce; } fprintf(stdout, "Read %d atoms from %s\n", read_atoms, param->input_file); fclose(fp); return read_atoms; } int readAtom_gro(Atom* atom, Parameter* param) { FILE *fp = fopen(param->input_file, "r"); char line[MAXLINE]; char desc[MAXLINE]; int read_atoms = 0; int atoms_to_read = 0; int i = 0; if(!fp) { fprintf(stderr, "Could not open input file: %s\n", param->input_file); exit(-1); return -1; } readline(desc, fp); for(i = 0; desc[i] != '\n'; i++); desc[i] = '\0'; readline(line, fp); atoms_to_read = atoi(strtok(line, " ")); fprintf(stdout, "System: %s with %d atoms\n", desc, atoms_to_read); while(!feof(fp) && read_atoms < atoms_to_read) { readline(line, fp); char *label = strtok(line, " "); int type = type_str2int(strtok(NULL, " ")); int atom_id = atoi(strtok(NULL, " ")) - 1; atom_id = read_atoms; while(atom_id + 1 >= atom->Nmax) { growAtom(atom); } atom->type[atom_id] = type; atom_x(atom_id) = atof(strtok(NULL, " ")); atom_y(atom_id) = atof(strtok(NULL, " ")); atom_z(atom_id) = atof(strtok(NULL, " ")); atom->vx[atom_id] = atof(strtok(NULL, " ")); atom->vy[atom_id] = atof(strtok(NULL, " ")); atom->vz[atom_id] = atof(strtok(NULL, " ")); atom->ntypes = MAX(atom->type[atom_id] + 1, atom->ntypes); atom->Natoms++; atom->Nlocal++; read_atoms++; } if(!feof(fp)) { readline(line, fp); param->xlo = 0.0; param->xhi = atof(strtok(line, " ")); param->ylo = 0.0; param->yhi = atof(strtok(NULL, " ")); param->zlo = 0.0; param->zhi = atof(strtok(NULL, " ")); param->xprd = param->xhi - param->xlo; param->yprd = param->yhi - param->ylo; param->zprd = param->zhi - param->zlo; } if(read_atoms != atoms_to_read) { fprintf(stderr, "Input error: Number of atoms read do not match (%d/%d).\n", read_atoms, atoms_to_read); exit(-1); return -1; } atom->epsilon = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->sigma6 = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->cutforcesq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->cutneighsq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); for(int i = 0; i < atom->ntypes * atom->ntypes; i++) { atom->epsilon[i] = param->epsilon; atom->sigma6[i] = param->sigma6; atom->cutneighsq[i] = param->cutneigh * param->cutneigh; atom->cutforcesq[i] = param->cutforce * param->cutforce; } fprintf(stdout, "Read %d atoms from %s\n", read_atoms, param->input_file); fclose(fp); return read_atoms; } int readAtom_dmp(Atom* atom, Parameter* param) { FILE *fp = fopen(param->input_file, "r"); char line[MAXLINE]; int natoms = 0; int read_atoms = 0; int atom_id = -1; int ts = -1; if(!fp) { fprintf(stderr, "Could not open input file: %s\n", param->input_file); exit(-1); return -1; } while(!feof(fp) && ts < 1 && !read_atoms) { readline(line, fp); if(strncmp(line, "ITEM: ", 6) == 0) { char *item = &line[6]; if(strncmp(item, "TIMESTEP", 8) == 0) { readline(line, fp); ts = atoi(line); } else if(strncmp(item, "NUMBER OF ATOMS", 15) == 0) { readline(line, fp); natoms = atoi(line); atom->Natoms = natoms; atom->Nlocal = natoms; while(atom->Nlocal >= atom->Nmax) { growAtom(atom); } } else if(strncmp(item, "BOX BOUNDS pp pp pp", 19) == 0) { readline(line, fp); param->xlo = atof(strtok(line, " ")); param->xhi = atof(strtok(NULL, " ")); param->xprd = param->xhi - param->xlo; readline(line, fp); param->ylo = atof(strtok(line, " ")); param->yhi = atof(strtok(NULL, " ")); param->yprd = param->yhi - param->ylo; readline(line, fp); param->zlo = atof(strtok(line, " ")); param->zhi = atof(strtok(NULL, " ")); param->zprd = param->zhi - param->zlo; } else if(strncmp(item, "ATOMS id type x y z vx vy vz", 28) == 0) { for(int i = 0; i < natoms; i++) { readline(line, fp); atom_id = atoi(strtok(line, " ")) - 1; atom->type[atom_id] = atoi(strtok(NULL, " ")); atom_x(atom_id) = atof(strtok(NULL, " ")); atom_y(atom_id) = atof(strtok(NULL, " ")); atom_z(atom_id) = atof(strtok(NULL, " ")); atom->vx[atom_id] = atof(strtok(NULL, " ")); atom->vy[atom_id] = atof(strtok(NULL, " ")); atom->vz[atom_id] = atof(strtok(NULL, " ")); atom->ntypes = MAX(atom->type[atom_id], atom->ntypes); read_atoms++; } } else { fprintf(stderr, "Invalid item: %s\n", item); exit(-1); return -1; } } else { fprintf(stderr, "Invalid input from file, expected item reference but got:\n%s\n", line); exit(-1); return -1; } } if(ts < 0 || !natoms || !read_atoms) { fprintf(stderr, "Input error: atom data was not read!\n"); exit(-1); return -1; } atom->epsilon = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->sigma6 = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->cutforcesq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->cutneighsq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); for(int i = 0; i < atom->ntypes * atom->ntypes; i++) { atom->epsilon[i] = param->epsilon; atom->sigma6[i] = param->sigma6; atom->cutneighsq[i] = param->cutneigh * param->cutneigh; atom->cutforcesq[i] = param->cutforce * param->cutforce; } fprintf(stdout, "Read %d atoms from %s\n", natoms, param->input_file); fclose(fp); return natoms; } void initMasks(Atom *atom) { const unsigned int half_mask_bits = VECTOR_WIDTH >> 1; unsigned int mask0, mask1, mask2, mask3; atom->exclusion_filter = allocate(ALIGNMENT, CLUSTER_M * VECTOR_WIDTH * sizeof(MD_UINT)); atom->diagonal_4xn_j_minus_i = allocate(ALIGNMENT, MAX(CLUSTER_M, VECTOR_WIDTH) * sizeof(MD_UINT)); atom->diagonal_2xnn_j_minus_i = allocate(ALIGNMENT, VECTOR_WIDTH * sizeof(MD_UINT)); //atom->masks_2xnn = allocate(ALIGNMENT, 8 * sizeof(unsigned int)); for(int j = 0; j < MAX(CLUSTER_M, VECTOR_WIDTH); j++) { atom->diagonal_4xn_j_minus_i[j] = (MD_FLOAT)(j) - 0.5; } for(int j = 0; j < VECTOR_WIDTH / 2; j++) { atom->diagonal_2xnn_j_minus_i[j] = (MD_FLOAT)(j) - 0.5; atom->diagonal_2xnn_j_minus_i[VECTOR_WIDTH / 2 + j] = (MD_FLOAT)(j - 1) - 0.5; } for(int i = 0; i < CLUSTER_M * VECTOR_WIDTH; i++) { atom->exclusion_filter[i] = (1U << i); } #if CLUSTER_M == CLUSTER_N for(unsigned int cond0 = 0; cond0 < 2; cond0++) { mask0 = (unsigned int)(0xf - 0x1 * cond0); mask1 = (unsigned int)(0xf - 0x3 * cond0); mask2 = (unsigned int)(0xf - 0x7 * cond0); mask3 = (unsigned int)(0xf - 0xf * cond0); atom->masks_2xnn_hn[cond0 * 2 + 0] = (mask1 << half_mask_bits) | mask0; atom->masks_2xnn_hn[cond0 * 2 + 1] = (mask3 << half_mask_bits) | mask2; mask0 = (unsigned int)(0xf - 0x1 * cond0); mask1 = (unsigned int)(0xf - 0x2 * cond0); mask2 = (unsigned int)(0xf - 0x4 * cond0); mask3 = (unsigned int)(0xf - 0x8 * cond0); atom->masks_2xnn_fn[cond0 * 2 + 0] = (mask1 << half_mask_bits) | mask0; atom->masks_2xnn_fn[cond0 * 2 + 1] = (mask3 << half_mask_bits) | mask2; atom->masks_4xn_hn[cond0 * 4 + 0] = (unsigned int)(0xf - 0x1 * cond0); atom->masks_4xn_hn[cond0 * 4 + 1] = (unsigned int)(0xf - 0x3 * cond0); atom->masks_4xn_hn[cond0 * 4 + 2] = (unsigned int)(0xf - 0x7 * cond0); atom->masks_4xn_hn[cond0 * 4 + 3] = (unsigned int)(0xf - 0xf * cond0); atom->masks_4xn_fn[cond0 * 4 + 0] = (unsigned int)(0xf - 0x1 * cond0); atom->masks_4xn_fn[cond0 * 4 + 1] = (unsigned int)(0xf - 0x2 * cond0); atom->masks_4xn_fn[cond0 * 4 + 2] = (unsigned int)(0xf - 0x4 * cond0); atom->masks_4xn_fn[cond0 * 4 + 3] = (unsigned int)(0xf - 0x8 * cond0); } #else for(unsigned int cond0 = 0; cond0 < 2; cond0++) { for(unsigned int cond1 = 0; cond1 < 2; cond1++) { #if CLUSTER_M < CLUSTER_N mask0 = (unsigned int)(0xff - 0x1 * cond0 - 0x1f * cond1); mask1 = (unsigned int)(0xff - 0x3 * cond0 - 0x3f * cond1); mask2 = (unsigned int)(0xff - 0x7 * cond0 - 0x7f * cond1); mask3 = (unsigned int)(0xff - 0xf * cond0 - 0xff * cond1); #else mask0 = (unsigned int)(0x3 - 0x1 * cond0); mask1 = (unsigned int)(0x3 - 0x3 * cond0); mask2 = (unsigned int)(0x3 - cond0 * 0x3 - 0x1 * cond1); mask3 = (unsigned int)(0x3 - cond0 * 0x3 - 0x3 * cond1); #endif atom->masks_2xnn_hn[cond0 * 4 + cond1 * 2 + 0] = (mask1 << half_mask_bits) | mask0; atom->masks_2xnn_hn[cond0 * 4 + cond1 * 2 + 1] = (mask3 << half_mask_bits) | mask2; #if CLUSTER_M < CLUSTER_N mask0 = (unsigned int)(0xff - 0x1 * cond0 - 0x10 * cond1); mask1 = (unsigned int)(0xff - 0x2 * cond0 - 0x20 * cond1); mask2 = (unsigned int)(0xff - 0x4 * cond0 - 0x40 * cond1); mask3 = (unsigned int)(0xff - 0x8 * cond0 - 0x80 * cond1); #else mask0 = (unsigned int)(0x3 - 0x1 * cond0); mask1 = (unsigned int)(0x3 - 0x2 * cond0); mask2 = (unsigned int)(0x3 - 0x1 * cond1); mask3 = (unsigned int)(0x3 - 0x2 * cond1); #endif atom->masks_2xnn_fn[cond0 * 4 + cond1 * 2 + 0] = (mask1 << half_mask_bits) | mask0; atom->masks_2xnn_fn[cond0 * 4 + cond1 * 2 + 1] = (mask3 << half_mask_bits) | mask2; #if CLUSTER_M < CLUSTER_N atom->masks_4xn_hn[cond0 * 8 + cond1 * 4 + 0] = (unsigned int)(0xff - 0x1 * cond0 - 0x1f * cond1); atom->masks_4xn_hn[cond0 * 8 + cond1 * 4 + 1] = (unsigned int)(0xff - 0x3 * cond0 - 0x3f * cond1); atom->masks_4xn_hn[cond0 * 8 + cond1 * 4 + 2] = (unsigned int)(0xff - 0x7 * cond0 - 0x7f * cond1); atom->masks_4xn_hn[cond0 * 8 + cond1 * 4 + 3] = (unsigned int)(0xff - 0xf * cond0 - 0xff * cond1); atom->masks_4xn_fn[cond0 * 8 + cond1 * 4 + 0] = (unsigned int)(0xff - 0x1 * cond0 - 0x10 * cond1); atom->masks_4xn_fn[cond0 * 8 + cond1 * 4 + 1] = (unsigned int)(0xff - 0x2 * cond0 - 0x20 * cond1); atom->masks_4xn_fn[cond0 * 8 + cond1 * 4 + 2] = (unsigned int)(0xff - 0x4 * cond0 - 0x40 * cond1); atom->masks_4xn_fn[cond0 * 8 + cond1 * 4 + 3] = (unsigned int)(0xff - 0x8 * cond0 - 0x80 * cond1); #else atom->masks_4xn_hn[cond0 * 8 + cond1 * 4 + 0] = (unsigned int)(0x3 - 0x1 * cond0); atom->masks_4xn_hn[cond0 * 8 + cond1 * 4 + 1] = (unsigned int)(0x3 - 0x3 * cond0); atom->masks_4xn_hn[cond0 * 8 + cond1 * 4 + 2] = (unsigned int)(0x3 - 0x3 * cond0 - 0x1 * cond1); atom->masks_4xn_hn[cond0 * 8 + cond1 * 4 + 3] = (unsigned int)(0x3 - 0x3 * cond0 - 0x3 * cond1); atom->masks_4xn_fn[cond0 * 8 + cond1 * 4 + 0] = (unsigned int)(0x3 - 0x1 * cond0); atom->masks_4xn_fn[cond0 * 8 + cond1 * 4 + 0] = (unsigned int)(0x3 - 0x2 * cond0); atom->masks_4xn_fn[cond0 * 8 + cond1 * 4 + 0] = (unsigned int)(0x3 - 0x1 * cond1); atom->masks_4xn_fn[cond0 * 8 + cond1 * 4 + 0] = (unsigned int)(0x3 - 0x2 * cond1); #endif } } #endif } void growAtom(Atom *atom) { int nold = atom->Nmax; atom->Nmax += DELTA; #ifdef AOS atom->x = (MD_FLOAT*) reallocate(atom->x, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT) * 3, nold * sizeof(MD_FLOAT) * 3); #else atom->x = (MD_FLOAT*) reallocate(atom->x, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); atom->y = (MD_FLOAT*) reallocate(atom->y, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); atom->z = (MD_FLOAT*) reallocate(atom->z, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); #endif atom->vx = (MD_FLOAT*) reallocate(atom->vx, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); atom->vy = (MD_FLOAT*) reallocate(atom->vy, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); atom->vz = (MD_FLOAT*) reallocate(atom->vz, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); atom->type = (int *) reallocate(atom->type, ALIGNMENT, atom->Nmax * sizeof(int), nold * sizeof(int)); } void growClusters(Atom *atom) { int nold = atom->Nclusters_max; int jterm = MAX(1, CLUSTER_M / CLUSTER_N); // If M>N, we need to allocate more j-clusters atom->Nclusters_max += DELTA; atom->iclusters = (Cluster*) reallocate(atom->iclusters, ALIGNMENT, atom->Nclusters_max * sizeof(Cluster), nold * sizeof(Cluster)); atom->jclusters = (Cluster*) reallocate(atom->jclusters, ALIGNMENT, atom->Nclusters_max * jterm * sizeof(Cluster), nold * jterm * sizeof(Cluster)); atom->icluster_bin = (int*) reallocate(atom->icluster_bin, ALIGNMENT, atom->Nclusters_max * sizeof(int), nold * sizeof(int)); atom->cl_x = (MD_FLOAT*) reallocate(atom->cl_x, ALIGNMENT, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT), nold * CLUSTER_M * 3 * sizeof(MD_FLOAT)); atom->cl_f = (MD_FLOAT*) reallocate(atom->cl_f, ALIGNMENT, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT), nold * CLUSTER_M * 3 * sizeof(MD_FLOAT)); atom->cl_v = (MD_FLOAT*) reallocate(atom->cl_v, ALIGNMENT, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT), nold * CLUSTER_M * 3 * sizeof(MD_FLOAT)); atom->cl_type = (int*) reallocate(atom->cl_type, ALIGNMENT, atom->Nclusters_max * CLUSTER_M * sizeof(int), nold * CLUSTER_M * sizeof(int)); }