/* * Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg. * All rights reserved. This file is part of MD-Bench. * Use of this source code is governed by a LGPL-3.0 * license that can be found in the LICENSE file. */ #include #include //--- #include #include #include #include #include #include #ifdef __SIMD_KERNEL__ #include #endif double computeForceLJFullNeigh_plain_c(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { int Nlocal = atom->Nlocal; int* neighs; #ifndef EXPLICIT_TYPES MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; #endif const MD_FLOAT num1 = 1.0; const MD_FLOAT num48 = 48.0; const MD_FLOAT num05 = 0.5; for(int i = 0; i < Nlocal; i++) { atom_fx(i) = 0.0; atom_fy(i) = 0.0; atom_fz(i) = 0.0; } double S = getTimeStamp(); #pragma omp parallel { LIKWID_MARKER_START("force"); #pragma omp for for(int i = 0; i < Nlocal; i++) { neighs = &neighbor->neighbors[i * neighbor->maxneighs]; int numneighs = neighbor->numneigh[i]; MD_FLOAT xtmp = atom_x(i); MD_FLOAT ytmp = atom_y(i); MD_FLOAT ztmp = atom_z(i); MD_FLOAT fix = 0; MD_FLOAT fiy = 0; MD_FLOAT fiz = 0; #ifdef EXPLICIT_TYPES const int type_i = atom->type[i]; #endif for(int k = 0; k < numneighs; k++) { int j = neighs[k]; MD_FLOAT delx = xtmp - atom_x(j); MD_FLOAT dely = ytmp - atom_y(j); MD_FLOAT delz = ztmp - atom_z(j); MD_FLOAT rsq = delx * delx + dely * dely + delz * delz; #ifdef EXPLICIT_TYPES const int type_j = atom->type[j]; const int type_ij = type_i * atom->ntypes + type_j; const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij]; const MD_FLOAT sigma6 = atom->sigma6[type_ij]; const MD_FLOAT epsilon = atom->epsilon[type_ij]; #endif if(rsq < cutforcesq) { MD_FLOAT sr2 = num1 / rsq; MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6; MD_FLOAT force = num48 * sr6 * (sr6 - num05) * sr2 * epsilon; fix += delx * force; fiy += dely * force; fiz += delz * force; #ifdef USE_REFERENCE_VERSION addStat(stats->atoms_within_cutoff, 1); } else { addStat(stats->atoms_outside_cutoff, 1); #endif } } atom_fx(i) += fix; atom_fy(i) += fiy; atom_fz(i) += fiz; #ifdef USE_REFERENCE_VERSION if(numneighs % VECTOR_WIDTH > 0) { addStat(stats->atoms_outside_cutoff, VECTOR_WIDTH - (numneighs % VECTOR_WIDTH)); } #endif addStat(stats->total_force_neighs, numneighs); addStat(stats->total_force_iters, (numneighs + VECTOR_WIDTH - 1) / VECTOR_WIDTH); } LIKWID_MARKER_STOP("force"); } double E = getTimeStamp(); return E-S; } double computeForceLJHalfNeigh(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { int Nlocal = atom->Nlocal; int* neighs; #ifndef EXPLICIT_TYPES MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; #endif const MD_FLOAT num1 = 1.0; const MD_FLOAT num48 = 48.0; const MD_FLOAT num05 = 0.5; for(int i = 0; i < Nlocal; i++) { atom_fx(i) = 0.0; atom_fy(i) = 0.0; atom_fz(i) = 0.0; } double S = getTimeStamp(); #pragma omp parallel { LIKWID_MARKER_START("forceLJ-halfneigh"); #pragma omp for for(int i = 0; i < Nlocal; i++) { neighs = &neighbor->neighbors[i * neighbor->maxneighs]; int numneighs = neighbor->numneigh[i]; MD_FLOAT xtmp = atom_x(i); MD_FLOAT ytmp = atom_y(i); MD_FLOAT ztmp = atom_z(i); MD_FLOAT fix = 0; MD_FLOAT fiy = 0; MD_FLOAT fiz = 0; #ifdef EXPLICIT_TYPES const int type_i = atom->type[i]; #endif // Pragma required to vectorize the inner loop #ifdef ENABLE_OMP_SIMD #pragma omp simd reduction(+: fix,fiy,fiz) #endif for(int k = 0; k < numneighs; k++) { int j = neighs[k]; MD_FLOAT delx = xtmp - atom_x(j); MD_FLOAT dely = ytmp - atom_y(j); MD_FLOAT delz = ztmp - atom_z(j); MD_FLOAT rsq = delx * delx + dely * dely + delz * delz; #ifdef EXPLICIT_TYPES const int type_j = atom->type[j]; const int type_ij = type_i * atom->ntypes + type_j; const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij]; const MD_FLOAT sigma6 = atom->sigma6[type_ij]; const MD_FLOAT epsilon = atom->epsilon[type_ij]; #endif if(rsq < cutforcesq) { MD_FLOAT sr2 = num1 / rsq; MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6; MD_FLOAT force = num48 * sr6 * (sr6 - num05) * sr2 * epsilon; fix += delx * force; fiy += dely * force; fiz += delz * force; // We do not need to update forces for ghost atoms if(j < Nlocal) { atom_fx(j) -= delx * force; atom_fy(j) -= dely * force; atom_fz(j) -= delz * force; } } } atom_fx(i) += fix; atom_fy(i) += fiy; atom_fz(i) += fiz; addStat(stats->total_force_neighs, numneighs); addStat(stats->total_force_iters, (numneighs + VECTOR_WIDTH - 1) / VECTOR_WIDTH); } LIKWID_MARKER_STOP("forceLJ-halfneigh"); } double E = getTimeStamp(); return E-S; } double computeForceLJFullNeigh_simd(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { int Nlocal = atom->Nlocal; int* neighs; MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; for(int i = 0; i < Nlocal; i++) { atom_fx(i) = 0.0; atom_fy(i) = 0.0; atom_fz(i) = 0.0; } double S = getTimeStamp(); #ifndef __SIMD_KERNEL__ fprintf(stderr, "Error: SIMD kernel not implemented for specified instruction set!"); exit(-1); #else MD_SIMD_FLOAT cutforcesq_vec = simd_broadcast(cutforcesq); MD_SIMD_FLOAT sigma6_vec = simd_broadcast(sigma6); MD_SIMD_FLOAT eps_vec = simd_broadcast(epsilon); MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0); MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5); #pragma omp parallel { LIKWID_MARKER_START("force"); #pragma omp for for(int i = 0; i < Nlocal; i++) { neighs = &neighbor->neighbors[i * neighbor->maxneighs]; int numneighs = neighbor->numneigh[i]; MD_SIMD_INT numneighs_vec = simd_int_broadcast(numneighs); MD_SIMD_FLOAT xtmp = simd_broadcast(atom_x(i)); MD_SIMD_FLOAT ytmp = simd_broadcast(atom_y(i)); MD_SIMD_FLOAT ztmp = simd_broadcast(atom_z(i)); MD_SIMD_FLOAT fix = simd_zero(); MD_SIMD_FLOAT fiy = simd_zero(); MD_SIMD_FLOAT fiz = simd_zero(); for(int k = 0; k < numneighs; k += VECTOR_WIDTH) { // If the last iteration of this loop is separated from the rest, this mask can be set only there MD_SIMD_MASK mask_numneighs = simd_mask_int_cond_lt(simd_int_add(simd_int_broadcast(k), simd_int_seq()), numneighs_vec); MD_SIMD_INT j = simd_int_mask_load(&neighs[k], mask_numneighs); #ifdef AOS MD_SIMD_INT j3 = simd_int_add(simd_int_add(j, j), j); // j * 3 MD_SIMD_FLOAT delx = xtmp - simd_gather(j3, &(atom->x[0]), sizeof(MD_FLOAT)); MD_SIMD_FLOAT dely = ytmp - simd_gather(j3, &(atom->x[1]), sizeof(MD_FLOAT)); MD_SIMD_FLOAT delz = ztmp - simd_gather(j3, &(atom->x[2]), sizeof(MD_FLOAT)); #else MD_SIMD_FLOAT delx = xtmp - simd_gather(j, atom->x, sizeof(MD_FLOAT)); MD_SIMD_FLOAT dely = ytmp - simd_gather(j, atom->y, sizeof(MD_FLOAT)); MD_SIMD_FLOAT delz = ztmp - simd_gather(j, atom->z, sizeof(MD_FLOAT)); #endif MD_SIMD_FLOAT rsq = simd_fma(delx, delx, simd_fma(dely, dely, simd_mul(delz, delz))); MD_SIMD_MASK cutoff_mask = simd_mask_and(mask_numneighs, simd_mask_cond_lt(rsq, cutforcesq_vec)); MD_SIMD_FLOAT sr2 = simd_reciprocal(rsq); MD_SIMD_FLOAT sr6 = simd_mul(sr2, simd_mul(sr2, simd_mul(sr2, sigma6_vec))); MD_SIMD_FLOAT force = simd_mul(c48_vec, simd_mul(sr6, simd_mul(simd_sub(sr6, c05_vec), simd_mul(sr2, eps_vec)))); fix = simd_masked_add(fix, simd_mul(delx, force), cutoff_mask); fiy = simd_masked_add(fiy, simd_mul(dely, force), cutoff_mask); fiz = simd_masked_add(fiz, simd_mul(delz, force), cutoff_mask); } atom_fx(i) += simd_h_reduce_sum(fix); atom_fy(i) += simd_h_reduce_sum(fiy); atom_fz(i) += simd_h_reduce_sum(fiz); } LIKWID_MARKER_STOP("force"); } #endif double E = getTimeStamp(); return E-S; }