/* * ======================================================================================= * * Author: Jan Eitzinger (je), jan.eitzinger@fau.de * Copyright (c) 2021 RRZE, University Erlangen-Nuremberg * * This file is part of MD-Bench. * * MD-Bench is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License along * with MD-Bench. If not, see . * ======================================================================================= */ #include #include #include #include #include #include #include // TODO: Joint common files for gromacs and lammps variants #include "../gromacs/includes/simd.h" double computeForceDEMFullNeigh_plain_c(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { int Nlocal = atom->Nlocal; int* neighs; MD_FLOAT k_s = param->k_s; MD_FLOAT k_dn = param->k_dn; #ifndef EXPLICIT_TYPES MD_FLOAT cutforcesq = param->cutforce * param->cutforce; #endif for(int i = 0; i < Nlocal; i++) { atom_fx(i) = 0.0; atom_fy(i) = 0.0; atom_fz(i) = 0.0; } double S = getTimeStamp(); LIKWID_MARKER_START("force"); #pragma omp parallel for for(int i = 0; i < Nlocal; i++) { neighs = &neighbor->neighbors[i * neighbor->maxneighs]; int numneighs = neighbor->numneigh[i]; MD_FLOAT irad = atom->radius[i]; MD_FLOAT xtmp = atom_x(i); MD_FLOAT ytmp = atom_y(i); MD_FLOAT ztmp = atom_z(i); MD_FLOAT fix = 0; MD_FLOAT fiy = 0; MD_FLOAT fiz = 0; #ifdef EXPLICIT_TYPES const int type_i = atom->type[i]; #endif for(int k = 0; k < numneighs; k++) { int j = neighs[k]; MD_FLOAT jrad = atom->radius[j]; MD_FLOAT xj = atom_x(j); MD_FLOAT yj = atom_y(j); MD_FLOAT zj = atom_z(j); MD_FLOAT delx = xtmp - xj; MD_FLOAT dely = ytmp - yj; MD_FLOAT delz = ztmp - zj; MD_FLOAT rsq = delx * delx + dely * dely + delz * delz; #ifdef EXPLICIT_TYPES const int type_j = atom->type[j]; const int type_ij = type_i * atom->ntypes + type_j; const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij]; #endif if(rsq < cutforcesq) { MD_FLOAT r = sqrt(rsq); // penetration depth MD_FLOAT p = irad + jrad - r; if(p >= 0) { // contact position //MD_FLOAT cterm = jrad / (irad + jrad); //MD_FLOAT cx = xj + cterm * delx; //MD_FLOAT cy = yj + cterm * dely; //MD_FLOAT cz = zj + cterm * delz; // delta contact and particle position //MD_FLOAT delcx = cx - xtmp; //MD_FLOAT delcy = cy - ytmp; //MD_FLOAT delcz = cz - ztmp; // contact velocity //MD_FLOAT cvx = (atom_vx(i) + atom_avx(i) * delcx) - (atom_vx(j) + atom_avx(j) * (cx - xj)); //MD_FLOAT cvy = (atom_vy(i) + atom_avy(i) * delcy) - (atom_vy(j) + atom_avy(j) * (cy - yj)); //MD_FLOAT cvz = (atom_vz(i) + atom_avz(i) * delcz) - (atom_vz(j) + atom_avz(j) * (cz - zj)); MD_FLOAT delvx = atom_vx(i) - atom_vx(j); MD_FLOAT delvy = atom_vy(i) - atom_vy(j); MD_FLOAT delvz = atom_vz(i) - atom_vz(j); MD_FLOAT vr = sqrt(delvx * delvx + delvy * delvy + delvz * delvz); // normal distance MD_FLOAT nx = delx / r; MD_FLOAT ny = dely / r; MD_FLOAT nz = delz / r; // normal contact velocity MD_FLOAT nvx = delvx / vr; MD_FLOAT nvy = delvy / vr; MD_FLOAT nvz = delvz / vr; // forces fix += k_s * p * nx - k_dn * nvx; fiy += k_s * p * ny - k_dn * nvy; fiz += k_s * p * nz - k_dn * nvz; // tangential force //fix += MIN(kdt * vtsq, kf * fnx) * tx; //fiy += MIN(kdt * vtsq, kf * fny) * ty; //fiz += MIN(kdt * vtsq, kf * fnz) * tz; // torque //MD_FLOAT taux = delcx * ftx; //MD_FLOAT tauy = delcy * fty; //MD_FLOAT tauz = delcz * ftz; } #ifdef USE_REFERENCE_VERSION addStat(stats->atoms_within_cutoff, 1); } else { addStat(stats->atoms_outside_cutoff, 1); #endif } } atom_fx(i) += fix; atom_fy(i) += fiy; atom_fz(i) += fiz; addStat(stats->total_force_neighs, numneighs); addStat(stats->total_force_iters, (numneighs + VECTOR_WIDTH - 1) / VECTOR_WIDTH); } LIKWID_MARKER_STOP("force"); double E = getTimeStamp(); return E-S; } double computeForceDEMHalfNeigh(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { int Nlocal = atom->Nlocal; int* neighs; #ifndef EXPLICIT_TYPES MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; #endif for(int i = 0; i < Nlocal; i++) { atom_fx(i) = 0.0; atom_fy(i) = 0.0; atom_fz(i) = 0.0; } double S = getTimeStamp(); LIKWID_MARKER_START("forceLJ-halfneigh"); for(int i = 0; i < Nlocal; i++) { neighs = &neighbor->neighbors[i * neighbor->maxneighs]; int numneighs = neighbor->numneigh[i]; MD_FLOAT xtmp = atom_x(i); MD_FLOAT ytmp = atom_y(i); MD_FLOAT ztmp = atom_z(i); MD_FLOAT fix = 0; MD_FLOAT fiy = 0; MD_FLOAT fiz = 0; #ifdef EXPLICIT_TYPES const int type_i = atom->type[i]; #endif // Pragma required to vectorize the inner loop #ifdef ENABLE_OMP_SIMD #pragma omp simd reduction(+: fix,fiy,fiz) #endif for(int k = 0; k < numneighs; k++) { int j = neighs[k]; MD_FLOAT delx = xtmp - atom_x(j); MD_FLOAT dely = ytmp - atom_y(j); MD_FLOAT delz = ztmp - atom_z(j); MD_FLOAT rsq = delx * delx + dely * dely + delz * delz; #ifdef EXPLICIT_TYPES const int type_j = atom->type[j]; const int type_ij = type_i * atom->ntypes + type_j; const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij]; const MD_FLOAT sigma6 = atom->sigma6[type_ij]; const MD_FLOAT epsilon = atom->epsilon[type_ij]; #endif if(rsq < cutforcesq) { MD_FLOAT sr2 = 1.0 / rsq; MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6; MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon; fix += delx * force; fiy += dely * force; fiz += delz * force; // We do not need to update forces for ghost atoms if(j < Nlocal) { atom_fx(j) -= delx * force; atom_fy(j) -= dely * force; atom_fz(j) -= delz * force; } } } atom_fx(i) += fix; atom_fy(i) += fiy; atom_fz(i) += fiz; addStat(stats->total_force_neighs, numneighs); addStat(stats->total_force_iters, (numneighs + VECTOR_WIDTH - 1) / VECTOR_WIDTH); } LIKWID_MARKER_STOP("forceLJ-halfneigh"); double E = getTimeStamp(); return E-S; }