/* * Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg. * All rights reserved. This file is part of MD-Bench. * Use of this source code is governed by a LGPL-3.0 * license that can be found in the LICENSE file. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define HLINE "----------------------------------------------------------------------------\n" extern double computeForceLJFullNeigh_plain_c(Parameter*, Atom*, Neighbor*, Stats*); extern double computeForceLJFullNeigh_simd(Parameter*, Atom*, Neighbor*, Stats*); extern double computeForceLJHalfNeigh(Parameter*, Atom*, Neighbor*, Stats*); extern double computeForceEam(Eam*, Parameter*, Atom*, Neighbor*, Stats*); extern double computeForceDemFullNeigh(Parameter*, Atom*, Neighbor*, Stats*); #ifdef CUDA_TARGET extern double computeForceLJFullNeigh_cuda(Parameter*, Atom*, Neighbor*); #endif double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Stats *stats) { if(param->force_field == FF_EAM) { initEam(eam, param); } double S, E; param->lattice = pow((4.0 / param->rho), (1.0 / 3.0)); param->xprd = param->nx * param->lattice; param->yprd = param->ny * param->lattice; param->zprd = param->nz * param->lattice; S = getTimeStamp(); initAtom(atom); initPbc(atom); initStats(stats); initNeighbor(neighbor, param); if(param->input_file == NULL) { createAtom(atom, param); } else { readAtom(atom, param); } setupNeighbor(param); setupThermo(param, atom->Natoms); if(param->input_file == NULL) { adjustThermo(param, atom); } #ifdef SORT_ATOMS atom->Nghost = 0; sortAtom(atom); #endif setupPbc(atom, param); initDevice(atom, neighbor); updatePbc(atom, param, true); buildNeighbor(atom, neighbor); E = getTimeStamp(); return E-S; } double reneighbour(Parameter *param, Atom *atom, Neighbor *neighbor) { double S, E; S = getTimeStamp(); LIKWID_MARKER_START("reneighbour"); updateAtomsPbc(atom, param); #ifdef SORT_ATOMS atom->Nghost = 0; sortAtom(atom); #endif setupPbc(atom, param); updatePbc(atom, param, true); buildNeighbor(atom, neighbor); LIKWID_MARKER_STOP("reneighbour"); E = getTimeStamp(); return E-S; } void printAtomState(Atom *atom) { printf("Atom counts: Natoms=%d Nlocal=%d Nghost=%d Nmax=%d\n", atom->Natoms, atom->Nlocal, atom->Nghost, atom->Nmax); // int nall = atom->Nlocal + atom->Nghost; // for (int i=0; ix[i], atom->y[i], atom->z[i]); // } } double computeForce(Eam *eam, Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { if(param->force_field == FF_EAM) { return computeForceEam(eam, param, atom, neighbor, stats); } else if(param->force_field == FF_DEM) { if(param->half_neigh) { fprintf(stderr, "Error: DEM cannot use half neighbor-lists!\n"); return 0.0; } else { return computeForceDemFullNeigh(param, atom, neighbor, stats); } } if(param->half_neigh) { return computeForceLJHalfNeigh(param, atom, neighbor, stats); } #ifdef CUDA_TARGET return computeForceLJFullNeigh(param, atom, neighbor); #else return computeForceLJFullNeigh(param, atom, neighbor, stats); #endif } void writeInput(Parameter *param, Atom *atom) { FILE *fpin = fopen("input.in", "w"); fprintf(fpin, "0,%f,0,%f,0,%f\n", param->xprd, param->yprd, param->zprd); for(int i = 0; i < atom->Nlocal; i++) { fprintf(fpin, "1,%f,%f,%f,%f,%f,%f\n", atom_x(i), atom_y(i), atom_z(i), atom_vx(i), atom_vy(i), atom_vz(i)); } fclose(fpin); } int main(int argc, char** argv) { double timer[NUMTIMER]; Eam eam; Atom atom; Neighbor neighbor; Stats stats; Parameter param; LIKWID_MARKER_INIT; #pragma omp parallel { LIKWID_MARKER_REGISTER("force"); //LIKWID_MARKER_REGISTER("reneighbour"); //LIKWID_MARKER_REGISTER("pbc"); } initParameter(¶m); for(int i = 0; i < argc; i++) { if((strcmp(argv[i], "-p") == 0) || strcmp(argv[i], "--params") == 0) { readParameter(¶m, argv[++i]); continue; } if((strcmp(argv[i], "-f") == 0)) { if((param.force_field = str2ff(argv[++i])) < 0) { fprintf(stderr, "Invalid force field!\n"); exit(-1); } continue; } if((strcmp(argv[i], "-i") == 0)) { param.input_file = strdup(argv[++i]); continue; } if((strcmp(argv[i], "-e") == 0)) { param.eam_file = strdup(argv[++i]); continue; } if((strcmp(argv[i], "-n") == 0) || (strcmp(argv[i], "--nsteps") == 0)) { param.ntimes = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-nx") == 0)) { param.nx = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-ny") == 0)) { param.ny = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-nz") == 0)) { param.nz = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-half") == 0)) { param.half_neigh = atoi(argv[++i]); continue; } if((strcmp(argv[i], "-r") == 0) || (strcmp(argv[i], "--radius") == 0)) { param.cutforce = atof(argv[++i]); continue; } if((strcmp(argv[i], "-s") == 0) || (strcmp(argv[i], "--skin") == 0)) { param.skin = atof(argv[++i]); continue; } if((strcmp(argv[i], "--freq") == 0)) { param.proc_freq = atof(argv[++i]); continue; } if((strcmp(argv[i], "--vtk") == 0)) { param.vtk_file = strdup(argv[++i]); continue; } if((strcmp(argv[i], "-w") == 0)) { param.write_atom_file = strdup(argv[++i]); continue; } if((strcmp(argv[i], "-h") == 0) || (strcmp(argv[i], "--help") == 0)) { printf("MD Bench: A minimalistic re-implementation of miniMD\n"); printf(HLINE); printf("-p / --params : file to read parameters from (can be specified more than once)\n"); printf("-f : force field (lj, eam or dem), default lj\n"); printf("-i : input file with atom positions (dump)\n"); printf("-e : input file for EAM\n"); printf("-n / --nsteps : set number of timesteps for simulation\n"); printf("-nx/-ny/-nz : set linear dimension of systembox in x/y/z direction\n"); printf("-half : use half (1) or full (0) neighbor lists\n"); printf("-r / --radius : set cutoff radius\n"); printf("-s / --skin : set skin (verlet buffer)\n"); printf("-w : write input atoms to file\n"); printf("--freq : processor frequency (GHz)\n"); printf("--vtk : VTK file for visualization\n"); printf(HLINE); exit(EXIT_SUCCESS); } } param.cutneigh = param.cutforce + param.skin; setup(¶m, &eam, &atom, &neighbor, &stats); printParameter(¶m); printf(HLINE); printf("step\ttemp\t\tpressure\n"); computeThermo(0, ¶m, &atom); #if defined(MEM_TRACER) || defined(INDEX_TRACER) traceAddresses(¶m, &atom, &neighbor, n + 1); #endif if(param.write_atom_file != NULL) { writeAtom(&atom, ¶m); } //writeInput(¶m, &atom); timer[FORCE] = computeForce(&eam, ¶m, &atom, &neighbor, &stats); timer[NEIGH] = 0.0; timer[TOTAL] = getTimeStamp(); if(param.vtk_file != NULL) { write_atoms_to_vtk_file(param.vtk_file, &atom, 0); } for(int n = 0; n < param.ntimes; n++) { bool reneigh = (n + 1) % param.reneigh_every == 0; initialIntegrate(reneigh, ¶m, &atom); if((n + 1) % param.reneigh_every) { updatePbc(&atom, ¶m, false); } else { timer[NEIGH] += reneighbour(¶m, &atom, &neighbor); } #if defined(MEM_TRACER) || defined(INDEX_TRACER) traceAddresses(¶m, &atom, &neighbor, n + 1); #endif timer[FORCE] += computeForce(&eam, ¶m, &atom, &neighbor, &stats); finalIntegrate(reneigh, ¶m, &atom); if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) { #ifdef CUDA_TARGET memcpyFromGPU(atom.x, atom.d_atom.x, atom.Nmax * sizeof(MD_FLOAT) * 3); #endif computeThermo(n + 1, ¶m, &atom); } if(param.vtk_file != NULL) { write_atoms_to_vtk_file(param.vtk_file, &atom, n + 1); } } timer[TOTAL] = getTimeStamp() - timer[TOTAL]; computeThermo(-1, ¶m, &atom); printf(HLINE); printf("System: %d atoms %d ghost atoms, Steps: %d\n", atom.Natoms, atom.Nghost, param.ntimes); printf("TOTAL %.2fs FORCE %.2fs NEIGH %.2fs REST %.2fs\n", timer[TOTAL], timer[FORCE], timer[NEIGH], timer[TOTAL]-timer[FORCE]-timer[NEIGH]); printf(HLINE); int nthreads = 0; int chunkSize = 0; omp_sched_t schedKind; char schedType[10]; #pragma omp parallel #pragma omp master { omp_get_schedule(&schedKind, &chunkSize); switch (schedKind) { case omp_sched_static: strcpy(schedType, "static"); break; case omp_sched_dynamic: strcpy(schedType, "dynamic"); break; case omp_sched_guided: strcpy(schedType, "guided"); break; case omp_sched_auto: strcpy(schedType, "auto"); break; } nthreads = omp_get_num_threads(); } printf("Num threads: %d\n", nthreads); printf("Schedule: (%s,%d)\n", schedType, chunkSize); printf("Performance: %.2f million atom updates per second\n", 1e-6 * (double) atom.Natoms * param.ntimes / timer[TOTAL]); #ifdef COMPUTE_STATS displayStatistics(&atom, ¶m, &stats, timer); #endif LIKWID_MARKER_CLOSE; return EXIT_SUCCESS; }