/* * ======================================================================================= * * Author: Jan Eitzinger (je), jan.eitzinger@fau.de * Copyright (c) 2021 RRZE, University Erlangen-Nuremberg * * This file is part of MD-Bench. * * MD-Bench is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License along * with MD-Bench. If not, see . * ======================================================================================= */ #include #include #include #include #include #include #if defined(MEM_TRACER) || defined(INDEX_TRACER) #include #include #endif #ifndef VECTOR_WIDTH # define VECTOR_WIDTH 8 #endif #ifndef TRACER_CONDITION # define TRACER_CONDITION (!(timestep % param->every)) #endif #ifdef MEM_TRACER # define MEM_TRACER_INIT FILE *mem_tracer_fp; \ if(TRACER_CONDITION) { \ char mem_tracer_fn[128]; \ snprintf(mem_tracer_fn, sizeof mem_tracer_fn, "mem_tracer_%d.out", timestep); \ mem_tracer_fp = fopen(mem_tracer_fn, "w"); } # define MEM_TRACER_END if(TRACER_CONDITION) { fclose(mem_tracer_fp); } # define MEM_TRACE(addr, op) if(TRACER_CONDITION) { fprintf(mem_tracer_fp, "%c: %p\n", op, (void *)(&(addr))); } #else # define MEM_TRACER_INIT # define MEM_TRACER_END # define MEM_TRACE(addr, op) #endif #ifdef INDEX_TRACER # define INDEX_TRACER_INIT FILE *index_tracer_fp; \ if(TRACER_CONDITION) { \ char index_tracer_fn[128]; \ snprintf(index_tracer_fn, sizeof index_tracer_fn, "index_tracer_%d.out", timestep); \ index_tracer_fp = fopen(index_tracer_fn, "w"); \ } # define INDEX_TRACER_END if(TRACER_CONDITION) { fclose(index_tracer_fp); } # define INDEX_TRACE_NATOMS(nl, ng, mn) if(TRACER_CONDITION) { fprintf(index_tracer_fp, "N: %d %d %d\n", nl, ng, mn); } # define INDEX_TRACE_ATOM(a) if(TRACER_CONDITION) { fprintf(index_tracer_fp, "A: %d\n", a); } # define INDEX_TRACE(l, e) if(TRACER_CONDITION) { \ for(int __i = 0; __i < (e); __i += VECTOR_WIDTH) { \ int __e = (((e) - __i) < VECTOR_WIDTH) ? ((e) - __i) : VECTOR_WIDTH; \ fprintf(index_tracer_fp, "I: "); \ for(int __j = 0; __j < __e; ++__j) { \ fprintf(index_tracer_fp, "%d ", l[__i + __j]); \ } \ fprintf(index_tracer_fp, "\n"); \ } \ } # define DIST_TRACE_SORT(l, e) if(TRACER_CONDITION) { \ for(int __i = 0; __i < (e); __i += VECTOR_WIDTH) { \ int __e = (((e) - __i) < VECTOR_WIDTH) ? ((e) - __i) : VECTOR_WIDTH; \ if(__e > 1) { \ for(int __j = __i; __j < __i + __e - 1; ++__j) { \ for(int __k = __i; __k < __i + __e - (__j - __i) - 1; ++__k) { \ if(l[__k] > l[__k + 1]) { \ int __t = l[__k]; \ l[__k] = l[__k + 1]; \ l[__k + 1] = __t; \ } \ } \ } \ } \ } \ } # define DIST_TRACE(l, e) if(TRACER_CONDITION) { \ for(int __i = 0; __i < (e); __i += VECTOR_WIDTH) { \ int __e = (((e) - __i) < VECTOR_WIDTH) ? ((e) - __i) : VECTOR_WIDTH; \ if(__e > 1) { \ fprintf(index_tracer_fp, "D: "); \ for(int __j = 0; __j < __e - 1; ++__j) { \ int __dist = abs(l[__i + __j + 1] - l[__i + __j]); \ fprintf(index_tracer_fp, "%d ", __dist); \ } \ fprintf(index_tracer_fp, "\n"); \ } \ } \ } #else # define INDEX_TRACER_INIT # define INDEX_TRACER_END # define INDEX_TRACE_NATOMS(nl, ng, mn) # define INDEX_TRACE_ATOM(a) # define INDEX_TRACE(l, e) # define DIST_TRACE_SORT(l, e) # define DIST_TRACE(l, e) #endif double computeForceTracing(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats, int first_exec, int timestep) { MEM_TRACER_INIT; INDEX_TRACER_INIT; int Nlocal = atom->Nlocal; int* neighs; MD_FLOAT* fx = atom->fx; MD_FLOAT* fy = atom->fy; MD_FLOAT* fz = atom->fz; #ifndef EXPLICIT_TYPES MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; #endif for(int i = 0; i < Nlocal; i++) { fx[i] = 0.0; fy[i] = 0.0; fz[i] = 0.0; } INDEX_TRACE_NATOMS(Nlocal, atom->Nghost, neighbor->maxneighs); double S = getTimeStamp(); LIKWID_MARKER_START("force"); for(int na = 0; na < (first_exec ? 1 : ATOMS_LOOP_RUNS); na++) { #pragma omp parallel for for(int i = 0; i < Nlocal; i++) { neighs = &neighbor->neighbors[i * neighbor->maxneighs]; int numneighs = neighbor->numneigh[i]; MD_FLOAT xtmp = atom_x(i); MD_FLOAT ytmp = atom_y(i); MD_FLOAT ztmp = atom_z(i); MD_FLOAT fix = 0; MD_FLOAT fiy = 0; MD_FLOAT fiz = 0; MEM_TRACE(atom_x(i), 'R'); MEM_TRACE(atom_y(i), 'R'); MEM_TRACE(atom_z(i), 'R'); INDEX_TRACE_ATOM(i); #ifdef EXPLICIT_TYPES const int type_i = atom->type[i]; MEM_TRACE(atom->type(i), 'R'); #endif #if defined(VARIANT) && VARIANT == stub && defined(NEIGHBORS_LOOP_RUNS) && NEIGHBORS_LOOP_RUNS > 1 #define REPEAT_NEIGHBORS_LOOP int nmax = first_exec ? 1 : NEIGHBORS_LOOP_RUNS; for(int nn = 0; nn < (first_exec ? 1 : NEIGHBORS_LOOP_RUNS); nn++) { #endif //DIST_TRACE_SORT(neighs, numneighs); INDEX_TRACE(neighs, numneighs); //DIST_TRACE(neighs, numneighs); for(int k = 0; k < numneighs; k++) { int j = neighs[k]; MD_FLOAT delx = xtmp - atom_x(j); MD_FLOAT dely = ytmp - atom_y(j); MD_FLOAT delz = ztmp - atom_z(j); MD_FLOAT rsq = delx * delx + dely * dely + delz * delz; MEM_TRACE(neighs[k], 'R'); MEM_TRACE(atom_x(j), 'R'); MEM_TRACE(atom_y(j), 'R'); MEM_TRACE(atom_z(j), 'R'); #ifdef EXPLICIT_TYPES const int type_j = atom->type[j]; const int type_ij = type_i * atom->ntypes + type_j; const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij]; const MD_FLOAT sigma6 = atom->sigma6[type_ij]; const MD_FLOAT epsilon = atom->epsilon[type_ij]; MEM_TRACE(atom->type(j), 'R'); #endif if(rsq < cutforcesq) { MD_FLOAT sr2 = 1.0 / rsq; MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6; MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon; fix += delx * force; fiy += dely * force; fiz += delz * force; } } #ifdef REPEAT_NEIGHBORS_LOOP } #endif fx[i] += fix; fy[i] += fiy; fz[i] += fiz; addStat(stats->total_force_neighs, numneighs); addStat(stats->total_force_iters, (numneighs + VECTOR_WIDTH - 1) / VECTOR_WIDTH); MEM_TRACE(fx[i], 'R'); MEM_TRACE(fx[i], 'W'); MEM_TRACE(fy[i], 'R'); MEM_TRACE(fy[i], 'W'); MEM_TRACE(fz[i], 'R'); MEM_TRACE(fz[i], 'W'); } } LIKWID_MARKER_STOP("force"); double E = getTimeStamp(); INDEX_TRACER_END; MEM_TRACER_END; return E-S; }