/* * ======================================================================================= * * Author: Jan Eitzinger (je), jan.eitzinger@fau.de * Copyright (c) 2021 RRZE, University Erlangen-Nuremberg * * This file is part of MD-Bench. * * MD-Bench is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License along * with MD-Bench. If not, see . * ======================================================================================= */ #include #include #include #include #include #include #include #include #include double computeForceLJ_ref(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { DEBUG_MESSAGE("computeForceLJ begin\n"); int Nlocal = atom->Nlocal; int* neighs; MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; for(int ci = 0; ci < atom->Nclusters_local; ci++) { MD_FLOAT *fptr = cluster_force_ptr(ci); for(int cii = 0; cii < atom->clusters[ci].natoms; cii++) { cluster_x(fptr, cii) = 0.0; cluster_y(fptr, cii) = 0.0; cluster_z(fptr, cii) = 0.0; } } double S = getTimeStamp(); LIKWID_MARKER_START("force"); #pragma omp parallel for for(int ci = 0; ci < atom->Nclusters_local; ci++) { MD_FLOAT *ciptr = cluster_pos_ptr(ci); MD_FLOAT *cifptr = cluster_force_ptr(ci); neighs = &neighbor->neighbors[ci * neighbor->maxneighs]; int numneighs = neighbor->numneigh[ci]; for(int k = 0; k < numneighs; k++) { int cj = neighs[k]; MD_FLOAT *cjptr = cluster_pos_ptr(cj); for(int cii = 0; cii < CLUSTER_DIM_M; cii++) { MD_FLOAT xtmp = cluster_x(ciptr, cii); MD_FLOAT ytmp = cluster_y(ciptr, cii); MD_FLOAT ztmp = cluster_z(ciptr, cii); MD_FLOAT fix = 0; MD_FLOAT fiy = 0; MD_FLOAT fiz = 0; for(int cjj = 0; cjj < CLUSTER_DIM_M; cjj++) { if(ci != cj || cii != cjj) { MD_FLOAT delx = xtmp - cluster_x(cjptr, cjj); MD_FLOAT dely = ytmp - cluster_y(cjptr, cjj); MD_FLOAT delz = ztmp - cluster_z(cjptr, cjj); MD_FLOAT rsq = delx * delx + dely * dely + delz * delz; if(rsq < cutforcesq) { MD_FLOAT sr2 = 1.0 / rsq; MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6; MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon; fix += delx * force; fiy += dely * force; fiz += delz * force; } } } cluster_x(cifptr, cii) += fix; cluster_y(cifptr, cii) += fiy; cluster_z(cifptr, cii) += fiz; } } addStat(stats->total_force_neighs, numneighs); addStat(stats->total_force_iters, (numneighs + VECTOR_WIDTH - 1) / VECTOR_WIDTH); } LIKWID_MARKER_STOP("force"); double E = getTimeStamp(); DEBUG_MESSAGE("computeForceLJ end\n"); return E-S; } double computeForceLJ_4xn(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { DEBUG_MESSAGE("computeForceLJ_4xn begin\n"); int Nlocal = atom->Nlocal; int* neighs; MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; MD_SIMD_FLOAT cutforcesq_vec = simd_broadcast(cutforcesq); MD_SIMD_FLOAT sigma6_vec = simd_broadcast(sigma6); MD_SIMD_FLOAT epsilon_vec = simd_broadcast(epsilon); MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0); MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5); const int unroll_j = CLUSTER_DIM_N / CLUSTER_DIM_M; double S = getTimeStamp(); LIKWID_MARKER_START("force"); #pragma omp parallel for for(int ci = 0; ci < atom->Nclusters_local; ci++) { MD_FLOAT *ciptr = cluster_pos_ptr(ci); MD_FLOAT *cifptr = cluster_force_ptr(ci); neighs = &neighbor->neighbors[ci * neighbor->maxneighs]; int numneighs = neighbor->numneigh[ci]; MD_SIMD_FLOAT xi0_tmp = simd_broadcast(cluster_x(ciptr, 0)); MD_SIMD_FLOAT yi0_tmp = simd_broadcast(cluster_y(ciptr, 0)); MD_SIMD_FLOAT zi0_tmp = simd_broadcast(cluster_z(ciptr, 0)); MD_SIMD_FLOAT xi1_tmp = simd_broadcast(cluster_x(ciptr, 1)); MD_SIMD_FLOAT yi1_tmp = simd_broadcast(cluster_y(ciptr, 1)); MD_SIMD_FLOAT zi1_tmp = simd_broadcast(cluster_z(ciptr, 1)); MD_SIMD_FLOAT xi2_tmp = simd_broadcast(cluster_x(ciptr, 2)); MD_SIMD_FLOAT yi2_tmp = simd_broadcast(cluster_y(ciptr, 2)); MD_SIMD_FLOAT zi2_tmp = simd_broadcast(cluster_z(ciptr, 2)); MD_SIMD_FLOAT xi3_tmp = simd_broadcast(cluster_x(ciptr, 3)); MD_SIMD_FLOAT yi3_tmp = simd_broadcast(cluster_y(ciptr, 3)); MD_SIMD_FLOAT zi3_tmp = simd_broadcast(cluster_z(ciptr, 3)); MD_SIMD_FLOAT fix0 = simd_zero(); MD_SIMD_FLOAT fiy0 = simd_zero(); MD_SIMD_FLOAT fiz0 = simd_zero(); MD_SIMD_FLOAT fix1 = simd_zero(); MD_SIMD_FLOAT fiy1 = simd_zero(); MD_SIMD_FLOAT fiz1 = simd_zero(); MD_SIMD_FLOAT fix2 = simd_zero(); MD_SIMD_FLOAT fiy2 = simd_zero(); MD_SIMD_FLOAT fiz2 = simd_zero(); MD_SIMD_FLOAT fix3 = simd_zero(); MD_SIMD_FLOAT fiy3 = simd_zero(); MD_SIMD_FLOAT fiz3 = simd_zero(); for(int k = 0; k < numneighs; k += unroll_j) { int cj0 = neighs[k + 0]; int cj1 = neighs[k + 1]; unsigned int cond0 = (unsigned int)(ci == cj0); unsigned int cond1 = (unsigned int)(ci == cj1); MD_FLOAT *cj0_ptr = cluster_pos_ptr(cj0); MD_FLOAT *cj1_ptr = cluster_pos_ptr(cj1); MD_SIMD_FLOAT xj_tmp = simd_gather2(cj0_ptr, cj1_ptr, 0); MD_SIMD_FLOAT yj_tmp = simd_gather2(cj0_ptr, cj1_ptr, 1); MD_SIMD_FLOAT zj_tmp = simd_gather2(cj0_ptr, cj1_ptr, 2); MD_SIMD_FLOAT delx0 = simd_sub(xi0_tmp, xj_tmp); MD_SIMD_FLOAT dely0 = simd_sub(yi0_tmp, yj_tmp); MD_SIMD_FLOAT delz0 = simd_sub(zi0_tmp, zj_tmp); MD_SIMD_FLOAT delx1 = simd_sub(xi1_tmp, xj_tmp); MD_SIMD_FLOAT dely1 = simd_sub(yi1_tmp, yj_tmp); MD_SIMD_FLOAT delz1 = simd_sub(zi1_tmp, zj_tmp); MD_SIMD_FLOAT delx2 = simd_sub(xi2_tmp, xj_tmp); MD_SIMD_FLOAT dely2 = simd_sub(yi2_tmp, yj_tmp); MD_SIMD_FLOAT delz2 = simd_sub(zi2_tmp, zj_tmp); MD_SIMD_FLOAT delx3 = simd_sub(xi3_tmp, xj_tmp); MD_SIMD_FLOAT dely3 = simd_sub(yi3_tmp, yj_tmp); MD_SIMD_FLOAT delz3 = simd_sub(zi3_tmp, zj_tmp); MD_SIMD_MASK excl_mask0 = simd_mask_from_u32((unsigned int)(0xff - 0x1 * cond0 - 0x10 * cond1)); MD_SIMD_MASK excl_mask1 = simd_mask_from_u32((unsigned int)(0xff - 0x2 * cond0 - 0x20 * cond1)); MD_SIMD_MASK excl_mask2 = simd_mask_from_u32((unsigned int)(0xff - 0x4 * cond0 - 0x40 * cond1)); MD_SIMD_MASK excl_mask3 = simd_mask_from_u32((unsigned int)(0xff - 0x8 * cond0 - 0x80 * cond1)); MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, simd_mul(delz0, delz0))); MD_SIMD_FLOAT rsq1 = simd_fma(delx1, delx1, simd_fma(dely1, dely1, simd_mul(delz1, delz1))); MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, simd_mul(delz2, delz2))); MD_SIMD_FLOAT rsq3 = simd_fma(delx3, delx3, simd_fma(dely3, dely3, simd_mul(delz3, delz3))); MD_SIMD_MASK cutoff_mask0 = simd_mask_and(excl_mask0, simd_mask_cond_lt(rsq0, cutforcesq_vec)); MD_SIMD_MASK cutoff_mask1 = simd_mask_and(excl_mask1, simd_mask_cond_lt(rsq1, cutforcesq_vec)); MD_SIMD_MASK cutoff_mask2 = simd_mask_and(excl_mask2, simd_mask_cond_lt(rsq2, cutforcesq_vec)); MD_SIMD_MASK cutoff_mask3 = simd_mask_and(excl_mask3, simd_mask_cond_lt(rsq3, cutforcesq_vec)); MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0); MD_SIMD_FLOAT sr2_1 = simd_reciprocal(rsq1); MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2); MD_SIMD_FLOAT sr2_3 = simd_reciprocal(rsq3); MD_SIMD_FLOAT sr6_0 = simd_mul(sr2_0, simd_mul(sr2_0, simd_mul(sr2_0, sigma6_vec))); MD_SIMD_FLOAT sr6_1 = simd_mul(sr2_1, simd_mul(sr2_1, simd_mul(sr2_1, sigma6_vec))); MD_SIMD_FLOAT sr6_2 = simd_mul(sr2_2, simd_mul(sr2_2, simd_mul(sr2_2, sigma6_vec))); MD_SIMD_FLOAT sr6_3 = simd_mul(sr2_3, simd_mul(sr2_3, simd_mul(sr2_3, sigma6_vec))); MD_SIMD_FLOAT force0 = simd_mul(c48_vec, simd_mul(sr6_0, simd_mul(simd_sub(sr6_0, c05_vec), simd_mul(sr2_0, epsilon_vec)))); MD_SIMD_FLOAT force1 = simd_mul(c48_vec, simd_mul(sr6_1, simd_mul(simd_sub(sr6_1, c05_vec), simd_mul(sr2_1, epsilon_vec)))); MD_SIMD_FLOAT force2 = simd_mul(c48_vec, simd_mul(sr6_2, simd_mul(simd_sub(sr6_2, c05_vec), simd_mul(sr2_2, epsilon_vec)))); MD_SIMD_FLOAT force3 = simd_mul(c48_vec, simd_mul(sr6_3, simd_mul(simd_sub(sr6_3, c05_vec), simd_mul(sr2_3, epsilon_vec)))); fix0 = simd_masked_add(fix0, simd_mul(delx0, force0), cutoff_mask0); fiy0 = simd_masked_add(fiy0, simd_mul(dely0, force0), cutoff_mask0); fiz0 = simd_masked_add(fiz0, simd_mul(delz0, force0), cutoff_mask0); fix1 = simd_masked_add(fix1, simd_mul(delx1, force1), cutoff_mask1); fiy1 = simd_masked_add(fiy1, simd_mul(dely1, force1), cutoff_mask1); fiz1 = simd_masked_add(fiz1, simd_mul(delz1, force1), cutoff_mask1); fix2 = simd_masked_add(fix2, simd_mul(delx2, force2), cutoff_mask2); fiy2 = simd_masked_add(fiy2, simd_mul(dely2, force2), cutoff_mask2); fiz2 = simd_masked_add(fiz2, simd_mul(delz2, force2), cutoff_mask2); fix3 = simd_masked_add(fix3, simd_mul(delx3, force3), cutoff_mask3); fiy3 = simd_masked_add(fiy3, simd_mul(dely3, force3), cutoff_mask3); fiz3 = simd_masked_add(fiz3, simd_mul(delz3, force3), cutoff_mask3); } cluster_x(cifptr, 0) = simd_horizontal_sum(fix0); cluster_y(cifptr, 0) = simd_horizontal_sum(fiy0); cluster_z(cifptr, 0) = simd_horizontal_sum(fiz0); cluster_x(cifptr, 1) = simd_horizontal_sum(fix1); cluster_y(cifptr, 1) = simd_horizontal_sum(fiy1); cluster_z(cifptr, 1) = simd_horizontal_sum(fiz1); cluster_x(cifptr, 2) = simd_horizontal_sum(fix2); cluster_y(cifptr, 2) = simd_horizontal_sum(fiy2); cluster_z(cifptr, 2) = simd_horizontal_sum(fiz2); cluster_x(cifptr, 3) = simd_horizontal_sum(fix3); cluster_y(cifptr, 3) = simd_horizontal_sum(fiy3); cluster_z(cifptr, 3) = simd_horizontal_sum(fiz3); addStat(stats->total_force_neighs, numneighs * CLUSTER_DIM_M * CLUSTER_DIM_N); addStat(stats->total_force_iters, numneighs / 2); } LIKWID_MARKER_STOP("force"); double E = getTimeStamp(); DEBUG_MESSAGE("computeForceLJ_4xn end\n"); return E-S; }