/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2021 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see .
* =======================================================================================
*/
#include
#include
#include
#include
#include
extern "C" {
#include
#include
#include
#include
#include
}
// cuda kernel
__global__ void calc_force(
Atom *atom,
MD_FLOAT xtmp, MD_FLOAT ytmp, MD_FLOAT ztmp,
MD_FLOAT *fix, MD_FLOAT *fiy, MD_FLOAT *fiz,
int i, int numneighs, int *neighs) {
// Calculate idx k from thread information
const long long k = blockIdx.x * blockDim.x + threadIdx.x;
if( k >= numneighs ) {
return;
}
int j = neighs[k];
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
const int type_i = atom->type[i];
const int type_j = atom->type[j];
const int type_ij = type_i * atom->ntypes + type_j;
const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
const MD_FLOAT sigma6 = atom->sigma6[type_ij];
const MD_FLOAT epsilon = atom->epsilon[type_ij];
if(rsq < cutforcesq) {
MD_FLOAT sr2 = 1.0 / rsq;
MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
fix[j] = delx * force;
fiy[j] = dely * force;
fiz[j] = delz * force;
}
}
extern "C" {
double computeForce(
Parameter *param,
Atom *atom,
Neighbor *neighbor
)
{
int Nlocal = atom->Nlocal;
int* neighs;
MD_FLOAT* fx = atom->fx;
MD_FLOAT* fy = atom->fy;
MD_FLOAT* fz = atom->fz;
#ifndef EXPLICIT_TYPES
MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
#endif
for(int i = 0; i < Nlocal; i++) {
fx[i] = 0.0;
fy[i] = 0.0;
fz[i] = 0.0;
}
double S = getTimeStamp();
LIKWID_MARKER_START("force");
#pragma omp parallel for
for(int i = 0; i < Nlocal; i++) {
neighs = &neighbor->neighbors[i * neighbor->maxneighs];
int numneighs = neighbor->numneigh[i];
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
#ifdef EXPLICIT_TYPES
const int type_i = atom->type[i];
#endif
Atom *c_atom;
cudaMalloc((void**)&c_atom, sizeof(Atom));
cudaMemcpy(c_atom, atom, sizeof(Atom), cudaMemcpyHostToDevice);
cudaMalloc((void**)&c_atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3);
cudaMemcpy(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice);
cudaMalloc((void**)&c_atom->y, sizeof(MD_FLOAT) * atom->Nmax * 3);
cudaMemcpy(c_atom->y, atom->y, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice);
cudaMalloc((void**)&c_atom->z, sizeof(MD_FLOAT) * atom->Nmax * 3);
cudaMemcpy(c_atom->z, atom->z, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice);
cudaMalloc((void**)&c_atom->type, sizeof(int) * atom->Nmax);
cudaMemcpy(c_atom->type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice);
cudaMalloc((void**)&c_atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
cudaMemcpy(c_atom->epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice);
cudaMalloc((void**)&c_atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
cudaMemcpy(c_atom->sigma6, atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice);
cudaMalloc((void**)&c_atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
cudaMemcpy(c_atom->cutforcesq, atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice);
int *c_neighs;
cudaMalloc((void**)&c_neighs, sizeof(int) * numneighs);
cudaMemcpy(c_neighs, neighs, sizeof(int) * numneighs, cudaMemcpyHostToDevice);
MD_FLOAT *c_fix, *c_fiy, *c_fiz;
cudaMalloc((void**)&c_fix, sizeof(MD_FLOAT) * numneighs);
cudaMalloc((void**)&c_fiy, sizeof(MD_FLOAT) * numneighs);
cudaMalloc((void**)&c_fiz, sizeof(MD_FLOAT) * numneighs);
const int num_blocks = 64;
const int num_threads_per_block = numneighs / num_blocks;
printf("numneighs: %d => num-blocks: %d, num_threads => %d\r\n", numneighs, num_blocks, num_threads_per_block);
// launch cuda kernel
calc_force <<< num_blocks, num_threads_per_block >>> (c_atom, xtmp, ytmp, ztmp, c_fix, c_fiy, c_fiz, i, numneighs, c_neighs);
cudaDeviceSynchronize();
// sum result
MD_FLOAT *d_fix, *d_fiy, *d_fiz;
d_fix = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs);
d_fiy = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs);
d_fiz = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs);
cudaMemcpy((void**)d_fix, c_fix, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost);
cudaMemcpy((void**)d_fiy, c_fiy, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost);
cudaMemcpy((void**)d_fiz, c_fiz, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost);
for(int k = 0; k < numneighs; k++) {
fx[i] += d_fix[k];
fy[i] += d_fiy[k];
fz[i] += d_fiz[k];
}
cudaFree(c_fix); cudaFree(c_fiy); cudaFree(c_fiz);
cudaFree(c_atom); cudaFree(c_neighs);
}
LIKWID_MARKER_STOP("force");
double E = getTimeStamp();
return E-S;
return 0;
}
}