/* * ======================================================================================= * * Author: Jan Eitzinger (je), jan.eitzinger@fau.de * Copyright (c) 2021 RRZE, University Erlangen-Nuremberg * * This file is part of MD-Bench. * * MD-Bench is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License along * with MD-Bench. If not, see . * ======================================================================================= */ #include #include #include #include #include #include extern "C" { #include #include #include #include #include } // cuda kernel __global__ void calc_force( Atom a, MD_FLOAT xtmp, MD_FLOAT ytmp, MD_FLOAT ztmp, MD_FLOAT *fix, MD_FLOAT *fiy, MD_FLOAT *fiz, int i, int numneighs, int *neighs) { // Calculate idx k from thread information const long long k = blockIdx.x * blockDim.x + threadIdx.x; if( k >= numneighs ) { return; } Atom *atom = &a; int j = neighs[k]; MD_FLOAT delx = xtmp - atom_x(j); MD_FLOAT dely = ytmp - atom_y(j); MD_FLOAT delz = ztmp - atom_z(j); MD_FLOAT rsq = delx * delx + dely * dely + delz * delz; const int type_i = atom->type[i]; const int type_j = atom->type[j]; const int type_ij = type_i * atom->ntypes + type_j; const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij]; const MD_FLOAT sigma6 = atom->sigma6[type_ij]; const MD_FLOAT epsilon = atom->epsilon[type_ij]; if(rsq < cutforcesq) { MD_FLOAT sr2 = 1.0 / rsq; MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6; MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon; fix[j] = delx * force; fiy[j] = dely * force; fiz[j] = delz * force; } } extern "C" { double computeForce( Parameter *param, Atom *atom, Neighbor *neighbor ) { int Nlocal = atom->Nlocal; int* neighs; MD_FLOAT* fx = atom->fx; MD_FLOAT* fy = atom->fy; MD_FLOAT* fz = atom->fz; #ifndef EXPLICIT_TYPES MD_FLOAT cutforcesq = param->cutforce * param->cutforce; #endif for(int i = 0; i < Nlocal; i++) { fx[i] = 0.0; fy[i] = 0.0; fz[i] = 0.0; } double S = getTimeStamp(); LIKWID_MARKER_START("force"); #pragma omp parallel for for(int i = 0; i < Nlocal; i++) { neighs = &neighbor->neighbors[i * neighbor->maxneighs]; int numneighs = neighbor->numneigh[i]; MD_FLOAT xtmp = atom_x(i); MD_FLOAT ytmp = atom_y(i); MD_FLOAT ztmp = atom_z(i); #ifdef EXPLICIT_TYPES const int type_i = atom->type[i]; #endif Atom c_atom; memcpy(&c_atom, atom, sizeof(Atom)); cudaMalloc((void**)&(&c_atom)->x, sizeof(MD_FLOAT) * atom->Nmax * 3); cudaMemcpy(c_atom.x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice); cudaMalloc((void**)&(&c_atom)->y, sizeof(MD_FLOAT) * atom->Nmax * 3); cudaMemcpy(c_atom.y, atom->y, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice); cudaMalloc((void**)&(&c_atom)->z, sizeof(MD_FLOAT) * atom->Nmax * 3); cudaMemcpy(c_atom.z, atom->z, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice); cudaMalloc((void**)&(&c_atom)->type, sizeof(int) * atom->Nmax); cudaMemcpy(c_atom.type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice); cudaMalloc((void**)&(&c_atom)->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes); cudaMemcpy(c_atom.epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice); cudaMalloc((void**)&(&c_atom)->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes); cudaMemcpy(c_atom.sigma6, atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice); cudaMalloc((void**)&(&c_atom)->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes); cudaMemcpy(c_atom.cutforcesq, atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice); int *c_neighs; cudaMalloc((void**)&c_neighs, sizeof(int) * numneighs); cudaMemcpy(c_neighs, neighs, sizeof(int) * numneighs, cudaMemcpyHostToDevice); MD_FLOAT *c_fix, *c_fiy, *c_fiz; cudaMalloc((void**)&c_fix, sizeof(MD_FLOAT) * numneighs); cudaMalloc((void**)&c_fiy, sizeof(MD_FLOAT) * numneighs); cudaMalloc((void**)&c_fiz, sizeof(MD_FLOAT) * numneighs); const int num_blocks = 64; const int num_threads_per_block = ceil((float)numneighs / (float)num_blocks); // printf("numneighs: %d => num-blocks: %d, num_threads_per_block => %d\r\n", numneighs, num_blocks, num_threads_per_block); // launch cuda kernel calc_force <<< num_blocks, num_threads_per_block >>> (c_atom, xtmp, ytmp, ztmp, c_fix, c_fiy, c_fiz, i, numneighs, c_neighs); cudaDeviceSynchronize(); // sum result MD_FLOAT *d_fix, *d_fiy, *d_fiz; d_fix = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs); d_fiy = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs); d_fiz = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs); cudaMemcpy((void**)&d_fix, c_fix, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost); cudaMemcpy((void**)&d_fiy, c_fiy, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost); cudaMemcpy((void**)&d_fiz, c_fiz, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost); for(int k = 0; k < numneighs; k++) { fx[i] += d_fix[k]; fy[i] += d_fiy[k]; fz[i] += d_fiz[k]; } cudaFree(c_fix); cudaFree(c_fiy); cudaFree(c_fiz); cudaFree(c_neighs); cudaFree(c_atom.x); cudaFree(c_atom.y); cudaFree(c_atom.z); cudaFree(c_atom.type); cudaFree(c_atom.epsilon); cudaFree(c_atom.sigma6); cudaFree(c_atom.cutforcesq); free(d_fix); free(d_fiy); free(d_fiz); } LIKWID_MARKER_STOP("force"); double E = getTimeStamp(); return E-S; } }