/* * ======================================================================================= * * Author: Jan Eitzinger (je), jan.eitzinger@fau.de * Copyright (c) 2020 RRZE, University Erlangen-Nuremberg * * This file is part of MD-Bench. * * MD-Bench is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License along * with MD-Bench. If not, see . * ======================================================================================= */ #include #include #include #define SIMD_PRINT_REAL(a) simd_print_real(#a, a); #define SIMD_PRINT_MASK(a) simd_print_mask(#a, a); #if VECTOR_WIDTH == 8 // AVX512 #define MD_SIMD_FLOAT __m512d #define MD_SIMD_MASK __mmask8 static inline MD_SIMD_FLOAT simd_broadcast(double scalar) { return _mm512_set1_pd(scalar); } static inline MD_SIMD_FLOAT simd_zero() { return _mm512_set1_pd(0.0); } static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_add_pd(a, b); } static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_sub_pd(a, b); } static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_mul_pd(a, b); } static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm512_fmadd_pd(a, b, c); } static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm512_rcp14_pd(a); } static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm512_mask_add_pd(a, m, a, b); } static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); } static inline MD_SIMD_MASK simd_mask_to_u32(unsigned int a) { return _cvtmask8_u32(a); } static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); } static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_cmp_pd_mask(a, b, _CMP_LT_OQ); } static MD_SIMD_FLOAT simd_load2(MD_FLOAT *c0, MD_FLOAT *c1, int d) { MD_SIMD_FLOAT x; #ifdef CLUSTER_AOS __m256i aos_gather_vindex = _mm256_set_epi32(9, 6, 3, 0, 9, 6, 3, 0); __m256i vindex = _mm256_add_epi32(aos_gather_vindex, _mm256_set1_epi32(d)); x = _mm512_mask_i32gather_pd(simd_zero(), simd_mask_from_u32(0x0f), vindex, c0, sizeof(double)); x = _mm512_mask_i32gather_pd(x, simd_mask_from_u32(0xf0), vindex, c1, sizeof(double)); #else x = _mm512_load_pd(&c0[d * CLUSTER_DIM_M]); x = _mm512_insertf64x4(x, _mm256_load_pd(&c1[d * CLUSTER_DIM_M]), 1); #endif return x; } static inline MD_FLOAT simd_horizontal_sum(MD_SIMD_FLOAT a) { MD_SIMD_FLOAT x = _mm512_add_pd(a, _mm512_shuffle_f64x2(a, a, 0xee)); x = _mm512_add_pd(x, _mm512_shuffle_f64x2(x, x, 0x11)); x = _mm512_add_pd(x, _mm512_permute_pd(x, 0x01)); return *((double *) &x); } #else // AVX2 #define MD_SIMD_FLOAT __m256d #define MD_SIMD_MASK __mmask8 static inline MD_SIMD_FLOAT simd_broadcast(double scalar) { return _mm256_set1_pd(scalar); } static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_pd(0.0); } static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_add_pd(a, b); } static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_sub_pd(a, b); } static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_mul_pd(a, b); } static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_pd(a, b, c); } static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_pd(a); } static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm256_mask_add_pd(a, m, a, b); } static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); } static inline MD_SIMD_MASK simd_mask_to_u32(unsigned int a) { return _cvtmask8_u32(a); } static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); } static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd_mask(a, b, _CMP_LT_OQ); } static MD_SIMD_FLOAT simd_load(MD_FLOAT *c0, int d) { MD_SIMD_FLOAT x; #ifdef CLUSTER_AOS __m128i aos_gather_vindex = _mm128_set_epi32(9, 6, 3, 0); __m128i vindex = _mm128_add_epi32(aos_gather_vindex, _mm128_set1_epi32(d)); x = _mm256_i32gather_pd(c0, vindex, sizeof(double)); #else x = _mm256_load_pd(&c0[d * CLUSTER_DIM_M]); #endif return x; } static inline MD_FLOAT simd_horizontal_sum(MD_SIMD_FLOAT a) { __m128d a0, a1; // test with shuffle & add as an alternative to hadd later a = _mm256_hadd_pd(a, a); a0 = _mm256_castpd256_pd128(a); a1 = _mm256_extractf128_pd(a, 0x1); a0 = _mm_add_sd(a0, a1); return *((double *) &a0); } #endif static inline void simd_print_real(const char *ref, MD_SIMD_FLOAT a) { double x[VECTOR_WIDTH]; memcpy(x, &a, sizeof(x)); fprintf(stdout, "%s: ", ref); for(int i = 0; i < VECTOR_WIDTH; i++) { fprintf(stdout, "%f ", x[i]); } fprintf(stdout, "\n"); } static inline void simd_print_mask(const char *ref, MD_SIMD_MASK a) { fprintf(stdout, "%s: %x\n", ref, simd_mask_to_u32(a)); }