/* * Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg. * All rights reserved. This file is part of MD-Bench. * Use of this source code is governed by a LGPL-3.0 * license that can be found in the LICENSE file. */ #include #include #include #include #include #include #include #include #include /* static inline void gmx_load_simd_2xnn_interactions( int excl, MD_SIMD_BITMASK filter0, MD_SIMD_BITMASK filter2, MD_SIMD_MASK *interact0, MD_SIMD_MASK *interact2) { //SimdInt32 mask_pr_S(excl); MD_SIMD_INT32 mask_pr_S = simd_int32_broadcast(excl); *interact0 = cvtIB2B(simd_test_bits(mask_pr_S & filter0)); *interact2 = cvtIB2B(simd_test_bits(mask_pr_S & filter2)); } static inline void gmx_load_simd_4xn_interactions( int excl, MD_SIMD_BITMASK filter0, MD_SIMD_BITMASK filter1, MD_SIMD_BITMASK filter2, MD_SIMD_BITMASK filter3, MD_SIMD_MASK *interact0, MD_SIMD_MASK *interact1, MD_SIMD_MASK *interact2, MD_SIMD_MASK *interact3) { //SimdInt32 mask_pr_S(excl); MD_SIMD_INT32 mask_pr_S = simd_int32_broadcast(excl); *interact0 = cvtIB2B(simd_test_bits(mask_pr_S & filter0)); *interact1 = cvtIB2B(simd_test_bits(mask_pr_S & filter1)); *interact2 = cvtIB2B(simd_test_bits(mask_pr_S & filter2)); *interact3 = cvtIB2B(simd_test_bits(mask_pr_S & filter3)); } */ double computeForceLJ_ref(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { DEBUG_MESSAGE("computeForceLJ begin\n"); int Nlocal = atom->Nlocal; NeighborCluster* neighs; MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; for(int ci = 0; ci < atom->Nclusters_local; ci++) { int ci_vec_base = CI_VECTOR_BASE_INDEX(ci); MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base]; for(int cii = 0; cii < atom->iclusters[ci].natoms; cii++) { ci_f[CL_X_OFFSET + cii] = 0.0; ci_f[CL_Y_OFFSET + cii] = 0.0; ci_f[CL_Z_OFFSET + cii] = 0.0; } } double S = getTimeStamp(); #pragma omp parallel { LIKWID_MARKER_START("force"); #pragma omp for for(int ci = 0; ci < atom->Nclusters_local; ci++) { int ci_cj0 = CJ0_FROM_CI(ci); int ci_cj1 = CJ1_FROM_CI(ci); int ci_vec_base = CI_VECTOR_BASE_INDEX(ci); MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base]; MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base]; neighs = &neighbor->neighbors[ci * neighbor->maxneighs]; int numneighs = neighbor->numneigh[ci]; for(int k = 0; k < numneighs; k++) { int cj = neighs[k].cj; int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj); int any = 0; MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base]; MD_FLOAT *cj_f = &atom->cl_f[cj_vec_base]; for(int cii = 0; cii < CLUSTER_M; cii++) { MD_FLOAT xtmp = ci_x[CL_X_OFFSET + cii]; MD_FLOAT ytmp = ci_x[CL_Y_OFFSET + cii]; MD_FLOAT ztmp = ci_x[CL_Z_OFFSET + cii]; MD_FLOAT fix = 0; MD_FLOAT fiy = 0; MD_FLOAT fiz = 0; for(int cjj = 0; cjj < CLUSTER_N; cjj++) { int cond; #if CLUSTER_M == CLUSTER_N cond = neighbor->half_neigh ? (ci_cj0 != cj || cii < cjj) : (ci_cj0 != cj || cii != cjj); #elif CLUSTER_M < CLUSTER_N cond = neighbor->half_neigh ? (ci_cj0 != cj || cii + CLUSTER_M * (ci & 0x1) < cjj) : (ci_cj0 != cj || cii + CLUSTER_M * (ci & 0x1) != cjj); #else cond = neighbor->half_neigh ? (ci_cj0 != cj || cii < cjj) && (ci_cj1 != cj || cii < cjj + CLUSTER_N) : (ci_cj0 != cj || cii != cjj) && (ci_cj1 != cj || cii != cjj + CLUSTER_N); #endif if(cond) { MD_FLOAT delx = xtmp - cj_x[CL_X_OFFSET + cjj]; MD_FLOAT dely = ytmp - cj_x[CL_Y_OFFSET + cjj]; MD_FLOAT delz = ztmp - cj_x[CL_Z_OFFSET + cjj]; MD_FLOAT rsq = delx * delx + dely * dely + delz * delz; if(rsq < cutforcesq) { MD_FLOAT sr2 = 1.0 / rsq; MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6; MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon; if(neighbor->half_neigh) { cj_f[CL_X_OFFSET + cjj] -= delx * force; cj_f[CL_Y_OFFSET + cjj] -= dely * force; cj_f[CL_Z_OFFSET + cjj] -= delz * force; } fix += delx * force; fiy += dely * force; fiz += delz * force; any = 1; addStat(stats->atoms_within_cutoff, 1); } else { addStat(stats->atoms_outside_cutoff, 1); } } } if(any != 0) { addStat(stats->clusters_within_cutoff, 1); } else { addStat(stats->clusters_outside_cutoff, 1); } ci_f[CL_X_OFFSET + cii] += fix; ci_f[CL_Y_OFFSET + cii] += fiy; ci_f[CL_Z_OFFSET + cii] += fiz; } } addStat(stats->calculated_forces, 1); addStat(stats->num_neighs, numneighs); addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_M / CLUSTER_N)); } LIKWID_MARKER_STOP("force"); } double E = getTimeStamp(); DEBUG_MESSAGE("computeForceLJ end\n"); return E-S; } double computeForceLJ_2xnn_half(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { DEBUG_MESSAGE("computeForceLJ_2xnn begin\n"); int Nlocal = atom->Nlocal; NeighborCluster* neighs; MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; MD_SIMD_FLOAT cutforcesq_vec = simd_broadcast(cutforcesq); MD_SIMD_FLOAT sigma6_vec = simd_broadcast(sigma6); MD_SIMD_FLOAT eps_vec = simd_broadcast(epsilon); MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0); MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5); for(int ci = 0; ci < atom->Nclusters_local; ci++) { int ci_vec_base = CI_VECTOR_BASE_INDEX(ci); MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base]; for(int cii = 0; cii < atom->iclusters[ci].natoms; cii++) { ci_f[CL_X_OFFSET + cii] = 0.0; ci_f[CL_Y_OFFSET + cii] = 0.0; ci_f[CL_Z_OFFSET + cii] = 0.0; } } double S = getTimeStamp(); #pragma omp parallel { LIKWID_MARKER_START("force"); /* MD_SIMD_BITMASK filter0 = simd_load_bitmask((const int *) &atom->exclusion_filter[0 * (VECTOR_WIDTH / UNROLL_J)]); MD_SIMD_BITMASK filter2 = simd_load_bitmask((const int *) &atom->exclusion_filter[2 * (VECTOR_WIDTH / UNROLL_J)]); MD_SIMD_FLOAT diagonal_jmi_S = simd_load(atom->diagonal_2xnn_j_minus_i); MD_SIMD_FLOAT zero_S = simd_broadcast(0.0); MD_SIMD_FLOAT one_S = simd_broadcast(1.0); #if CLUSTER_M <= CLUSTER_N MD_SIMD_MASK diagonal_mask0, diagonal_mask2; diagonal_mask0 = simd_mask_cond_lt(zero_S, diagonal_jmi_S); diagonal_jmi_S = diagonal_jmi_S - one_S; diagonal_jmi_S = diagonal_jmi_S - one_S; diagonal_mask2 = simd_mask_cond_lt(zero_S, diagonal_jmi_S); #else MD_SIMD_MASK diagonal_mask00, diagonal_mask02, diagonal_mask10, diagonal_mask12; diagonal_mask00 = simd_mask_cond_lt(zero_S, diagonal_jmi_S); diagonal_jmi_S = diagonal_jmi_S - one_S; diagonal_jmi_S = diagonal_jmi_S - one_S; diagonal_mask02 = simd_mask_cond_lt(zero_S, diagonal_jmi_S); diagonal_jmi_S = diagonal_jmi_S - one_S; diagonal_jmi_S = diagonal_jmi_S - one_S; diagonal_mask10 = simd_mask_cond_lt(zero_S, diagonal_jmi_S); diagonal_jmi_S = diagonal_jmi_S - one_S; diagonal_jmi_S = diagonal_jmi_S - one_S; diagonal_mask12 = simd_mask_cond_lt(zero_S, diagonal_jmi_S); #endif */ #pragma omp for for(int ci = 0; ci < atom->Nclusters_local; ci++) { int ci_cj0 = CJ0_FROM_CI(ci); #if CLUSTER_M > CLUSTER_N int ci_cj1 = CJ1_FROM_CI(ci); #endif int ci_vec_base = CI_VECTOR_BASE_INDEX(ci); MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base]; MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base]; neighs = &neighbor->neighbors[ci * neighbor->maxneighs]; int numneighs = neighbor->numneigh[ci]; int numneighs_masked = neighbor->numneigh_masked[ci]; MD_SIMD_FLOAT xi0_tmp = simd_load_h_dual(&ci_x[CL_X_OFFSET + 0]); MD_SIMD_FLOAT xi2_tmp = simd_load_h_dual(&ci_x[CL_X_OFFSET + 2]); MD_SIMD_FLOAT yi0_tmp = simd_load_h_dual(&ci_x[CL_Y_OFFSET + 0]); MD_SIMD_FLOAT yi2_tmp = simd_load_h_dual(&ci_x[CL_Y_OFFSET + 2]); MD_SIMD_FLOAT zi0_tmp = simd_load_h_dual(&ci_x[CL_Z_OFFSET + 0]); MD_SIMD_FLOAT zi2_tmp = simd_load_h_dual(&ci_x[CL_Z_OFFSET + 2]); MD_SIMD_FLOAT fix0 = simd_zero(); MD_SIMD_FLOAT fiy0 = simd_zero(); MD_SIMD_FLOAT fiz0 = simd_zero(); MD_SIMD_FLOAT fix2 = simd_zero(); MD_SIMD_FLOAT fiy2 = simd_zero(); MD_SIMD_FLOAT fiz2 = simd_zero(); for(int k = 0; k < numneighs_masked; k++) { int cj = neighs[k].cj; int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj); //int imask = neighs[k].imask; MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base]; MD_FLOAT *cj_f = &atom->cl_f[cj_vec_base]; //MD_SIMD_MASK interact0; //MD_SIMD_MASK interact2; //gmx_load_simd_2xnn_interactions((int)imask, filter0, filter2, &interact0, &interact2); MD_SIMD_FLOAT xj_tmp = simd_load_h_duplicate(&cj_x[CL_X_OFFSET]); MD_SIMD_FLOAT yj_tmp = simd_load_h_duplicate(&cj_x[CL_Y_OFFSET]); MD_SIMD_FLOAT zj_tmp = simd_load_h_duplicate(&cj_x[CL_Z_OFFSET]); MD_SIMD_FLOAT delx0 = xi0_tmp - xj_tmp; MD_SIMD_FLOAT dely0 = yi0_tmp - yj_tmp; MD_SIMD_FLOAT delz0 = zi0_tmp - zj_tmp; MD_SIMD_FLOAT delx2 = xi2_tmp - xj_tmp; MD_SIMD_FLOAT dely2 = yi2_tmp - yj_tmp; MD_SIMD_FLOAT delz2 = zi2_tmp - zj_tmp; MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, delz0 * delz0)); MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, delz2 * delz2)); #if CLUSTER_M == CLUSTER_N unsigned int cond0 = (unsigned int)(cj == ci_cj0); MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_2xnn_hn[cond0 * 2 + 0]); MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_2xnn_hn[cond0 * 2 + 1]); #else #if CLUSTER_M < CLUSTER_N unsigned int cond0 = (unsigned int)((cj << 1) + 0 == ci); unsigned int cond1 = (unsigned int)((cj << 1) + 1 == ci); #else unsigned int cond0 = (unsigned int)(cj == ci_cj0); unsigned int cond1 = (unsigned int)(cj == ci_cj1); #endif MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_2xnn_hn[cond0 * 4 + cond1 * 2 + 0]); MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_2xnn_hn[cond0 * 4 + cond1 * 2 + 1]); #endif MD_SIMD_MASK cutoff_mask0 = simd_mask_cond_lt(rsq0, cutforcesq_vec); MD_SIMD_MASK cutoff_mask2 = simd_mask_cond_lt(rsq2, cutforcesq_vec); cutoff_mask0 = simd_mask_and(cutoff_mask0, excl_mask0); cutoff_mask2 = simd_mask_and(cutoff_mask2, excl_mask2); /* #if CLUSTER_M <= CLUSTER_N if(ci == ci_cj0) { cutoff_mask0 = simd_mask_and(cutoff_mask0, diagonal_mask0); cutoff_mask2 = simd_mask_and(cutoff_mask2, diagonal_mask2); } #else if(ci == ci_cj0) { cutoff_mask0 = cutoff_mask0 && diagonal_mask00; cutoff_mask2 = cutoff_mask2 && diagonal_mask02; } else if(ci == ci_cj1) { cutoff_mask0 = cutoff_mask0 && diagonal_mask10; cutoff_mask2 = cutoff_mask2 && diagonal_mask12; } #endif */ MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0); MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2); MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec; MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec; MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec; MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec; MD_SIMD_FLOAT tx0 = select_by_mask(delx0 * force0, cutoff_mask0); MD_SIMD_FLOAT ty0 = select_by_mask(dely0 * force0, cutoff_mask0); MD_SIMD_FLOAT tz0 = select_by_mask(delz0 * force0, cutoff_mask0); MD_SIMD_FLOAT tx2 = select_by_mask(delx2 * force2, cutoff_mask2); MD_SIMD_FLOAT ty2 = select_by_mask(dely2 * force2, cutoff_mask2); MD_SIMD_FLOAT tz2 = select_by_mask(delz2 * force2, cutoff_mask2); fix0 += tx0; fiy0 += ty0; fiz0 += tz0; fix2 += tx2; fiy2 += ty2; fiz2 += tz2; #ifdef HALF_NEIGHBOR_LISTS_CHECK_CJ if(cj < CJ1_FROM_CI(atom->Nlocal)) { simd_h_decr3(cj_f, tx0 + tx2, ty0 + ty2, tz0 + tz2); } #else simd_h_decr3(cj_f, tx0 + tx2, ty0 + ty2, tz0 + tz2); #endif } for(int k = numneighs_masked; k < numneighs; k++) { int cj = neighs[k].cj; int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj); MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base]; MD_FLOAT *cj_f = &atom->cl_f[cj_vec_base]; MD_SIMD_FLOAT xj_tmp = simd_load_h_duplicate(&cj_x[CL_X_OFFSET]); MD_SIMD_FLOAT yj_tmp = simd_load_h_duplicate(&cj_x[CL_Y_OFFSET]); MD_SIMD_FLOAT zj_tmp = simd_load_h_duplicate(&cj_x[CL_Z_OFFSET]); MD_SIMD_FLOAT delx0 = xi0_tmp - xj_tmp; MD_SIMD_FLOAT dely0 = yi0_tmp - yj_tmp; MD_SIMD_FLOAT delz0 = zi0_tmp - zj_tmp; MD_SIMD_FLOAT delx2 = xi2_tmp - xj_tmp; MD_SIMD_FLOAT dely2 = yi2_tmp - yj_tmp; MD_SIMD_FLOAT delz2 = zi2_tmp - zj_tmp; MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, delz0 * delz0)); MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, delz2 * delz2)); MD_SIMD_MASK cutoff_mask0 = simd_mask_cond_lt(rsq0, cutforcesq_vec); MD_SIMD_MASK cutoff_mask2 = simd_mask_cond_lt(rsq2, cutforcesq_vec); MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0); MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2); MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec; MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec; MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec; MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec; MD_SIMD_FLOAT tx0 = select_by_mask(delx0 * force0, cutoff_mask0); MD_SIMD_FLOAT ty0 = select_by_mask(dely0 * force0, cutoff_mask0); MD_SIMD_FLOAT tz0 = select_by_mask(delz0 * force0, cutoff_mask0); MD_SIMD_FLOAT tx2 = select_by_mask(delx2 * force2, cutoff_mask2); MD_SIMD_FLOAT ty2 = select_by_mask(dely2 * force2, cutoff_mask2); MD_SIMD_FLOAT tz2 = select_by_mask(delz2 * force2, cutoff_mask2); fix0 += tx0; fiy0 += ty0; fiz0 += tz0; fix2 += tx2; fiy2 += ty2; fiz2 += tz2; #ifdef HALF_NEIGHBOR_LISTS_CHECK_CJ if(cj < CJ1_FROM_CI(atom->Nlocal)) { simd_h_decr3(cj_f, tx0 + tx2, ty0 + ty2, tz0 + tz2); } #else simd_h_decr3(cj_f, tx0 + tx2, ty0 + ty2, tz0 + tz2); #endif } simd_h_dual_incr_reduced_sum(&ci_f[CL_X_OFFSET], fix0, fix2); simd_h_dual_incr_reduced_sum(&ci_f[CL_Y_OFFSET], fiy0, fiy2); simd_h_dual_incr_reduced_sum(&ci_f[CL_Z_OFFSET], fiz0, fiz2); addStat(stats->calculated_forces, 1); addStat(stats->num_neighs, numneighs); addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_M / CLUSTER_N)); } LIKWID_MARKER_STOP("force"); } double E = getTimeStamp(); DEBUG_MESSAGE("computeForceLJ_2xnn end\n"); return E-S; } double computeForceLJ_2xnn_full(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { DEBUG_MESSAGE("computeForceLJ_2xnn begin\n"); int Nlocal = atom->Nlocal; NeighborCluster* neighs; MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; MD_SIMD_FLOAT cutforcesq_vec = simd_broadcast(cutforcesq); MD_SIMD_FLOAT sigma6_vec = simd_broadcast(sigma6); MD_SIMD_FLOAT eps_vec = simd_broadcast(epsilon); MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0); MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5); for(int ci = 0; ci < atom->Nclusters_local; ci++) { int ci_vec_base = CI_VECTOR_BASE_INDEX(ci); MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base]; for(int cii = 0; cii < atom->iclusters[ci].natoms; cii++) { ci_f[CL_X_OFFSET + cii] = 0.0; ci_f[CL_Y_OFFSET + cii] = 0.0; ci_f[CL_Z_OFFSET + cii] = 0.0; } } double S = getTimeStamp(); #pragma omp parallel { LIKWID_MARKER_START("force"); #pragma omp for for(int ci = 0; ci < atom->Nclusters_local; ci++) { int ci_cj0 = CJ0_FROM_CI(ci); #if CLUSTER_M > CLUSTER_N int ci_cj1 = CJ1_FROM_CI(ci); #endif int ci_vec_base = CI_VECTOR_BASE_INDEX(ci); MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base]; MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base]; neighs = &neighbor->neighbors[ci * neighbor->maxneighs]; int numneighs = neighbor->numneigh[ci]; int numneighs_masked = neighbor->numneigh_masked[ci]; MD_SIMD_FLOAT xi0_tmp = simd_load_h_dual(&ci_x[CL_X_OFFSET + 0]); MD_SIMD_FLOAT xi2_tmp = simd_load_h_dual(&ci_x[CL_X_OFFSET + 2]); MD_SIMD_FLOAT yi0_tmp = simd_load_h_dual(&ci_x[CL_Y_OFFSET + 0]); MD_SIMD_FLOAT yi2_tmp = simd_load_h_dual(&ci_x[CL_Y_OFFSET + 2]); MD_SIMD_FLOAT zi0_tmp = simd_load_h_dual(&ci_x[CL_Z_OFFSET + 0]); MD_SIMD_FLOAT zi2_tmp = simd_load_h_dual(&ci_x[CL_Z_OFFSET + 2]); MD_SIMD_FLOAT fix0 = simd_zero(); MD_SIMD_FLOAT fiy0 = simd_zero(); MD_SIMD_FLOAT fiz0 = simd_zero(); MD_SIMD_FLOAT fix2 = simd_zero(); MD_SIMD_FLOAT fiy2 = simd_zero(); MD_SIMD_FLOAT fiz2 = simd_zero(); for(int k = 0; k < numneighs_masked; k++) { int cj = neighs[k].cj; int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj); int imask = neighs[k].imask; MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base]; unsigned int mask0, mask1, mask2, mask3; MD_SIMD_FLOAT xj_tmp = simd_load_h_duplicate(&cj_x[CL_X_OFFSET]); MD_SIMD_FLOAT yj_tmp = simd_load_h_duplicate(&cj_x[CL_Y_OFFSET]); MD_SIMD_FLOAT zj_tmp = simd_load_h_duplicate(&cj_x[CL_Z_OFFSET]); MD_SIMD_FLOAT delx0 = xi0_tmp - xj_tmp; MD_SIMD_FLOAT dely0 = yi0_tmp - yj_tmp; MD_SIMD_FLOAT delz0 = zi0_tmp - zj_tmp; MD_SIMD_FLOAT delx2 = xi2_tmp - xj_tmp; MD_SIMD_FLOAT dely2 = yi2_tmp - yj_tmp; MD_SIMD_FLOAT delz2 = zi2_tmp - zj_tmp; MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, delz0 * delz0)); MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, delz2 * delz2)); #if CLUSTER_M == CLUSTER_N unsigned int cond0 = (unsigned int)(cj == ci_cj0); MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_2xnn_fn[cond0 * 2 + 0]); MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_2xnn_fn[cond0 * 2 + 1]); #else #if CLUSTER_M < CLUSTER_N unsigned int cond0 = (unsigned int)((cj << 1) + 0 == ci); unsigned int cond1 = (unsigned int)((cj << 1) + 1 == ci); #else unsigned int cond0 = (unsigned int)(cj == ci_cj0); unsigned int cond1 = (unsigned int)(cj == ci_cj1); #endif MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_2xnn_fn[cond0 * 4 + cond1 * 2 + 0]); MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_2xnn_fn[cond0 * 4 + cond1 * 2 + 1]); #endif MD_SIMD_MASK cutoff_mask0 = simd_mask_and(excl_mask0, simd_mask_cond_lt(rsq0, cutforcesq_vec)); MD_SIMD_MASK cutoff_mask2 = simd_mask_and(excl_mask2, simd_mask_cond_lt(rsq2, cutforcesq_vec)); MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0); MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2); MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec; MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec; MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec; MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec; fix0 = simd_masked_add(fix0, simd_mul(delx0, force0), cutoff_mask0); fiy0 = simd_masked_add(fiy0, simd_mul(dely0, force0), cutoff_mask0); fiz0 = simd_masked_add(fiz0, simd_mul(delz0, force0), cutoff_mask0); fix2 = simd_masked_add(fix2, simd_mul(delx2, force2), cutoff_mask2); fiy2 = simd_masked_add(fiy2, simd_mul(dely2, force2), cutoff_mask2); fiz2 = simd_masked_add(fiz2, simd_mul(delz2, force2), cutoff_mask2); } for(int k = numneighs_masked; k < numneighs; k++) { int cj = neighs[k].cj; int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj); MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base]; MD_SIMD_FLOAT xj_tmp = simd_load_h_duplicate(&cj_x[CL_X_OFFSET]); MD_SIMD_FLOAT yj_tmp = simd_load_h_duplicate(&cj_x[CL_Y_OFFSET]); MD_SIMD_FLOAT zj_tmp = simd_load_h_duplicate(&cj_x[CL_Z_OFFSET]); MD_SIMD_FLOAT delx0 = xi0_tmp - xj_tmp; MD_SIMD_FLOAT dely0 = yi0_tmp - yj_tmp; MD_SIMD_FLOAT delz0 = zi0_tmp - zj_tmp; MD_SIMD_FLOAT delx2 = xi2_tmp - xj_tmp; MD_SIMD_FLOAT dely2 = yi2_tmp - yj_tmp; MD_SIMD_FLOAT delz2 = zi2_tmp - zj_tmp; MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, delz0 * delz0)); MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, delz2 * delz2)); MD_SIMD_MASK cutoff_mask0 = simd_mask_cond_lt(rsq0, cutforcesq_vec); MD_SIMD_MASK cutoff_mask2 = simd_mask_cond_lt(rsq2, cutforcesq_vec); MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0); MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2); MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec; MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec; MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec; MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec; fix0 = simd_masked_add(fix0, simd_mul(delx0, force0), cutoff_mask0); fiy0 = simd_masked_add(fiy0, simd_mul(dely0, force0), cutoff_mask0); fiz0 = simd_masked_add(fiz0, simd_mul(delz0, force0), cutoff_mask0); fix2 = simd_masked_add(fix2, simd_mul(delx2, force2), cutoff_mask2); fiy2 = simd_masked_add(fiy2, simd_mul(dely2, force2), cutoff_mask2); fiz2 = simd_masked_add(fiz2, simd_mul(delz2, force2), cutoff_mask2); } simd_h_dual_incr_reduced_sum(&ci_f[CL_X_OFFSET], fix0, fix2); simd_h_dual_incr_reduced_sum(&ci_f[CL_Y_OFFSET], fiy0, fiy2); simd_h_dual_incr_reduced_sum(&ci_f[CL_Z_OFFSET], fiz0, fiz2); addStat(stats->calculated_forces, 1); addStat(stats->num_neighs, numneighs); addStat(stats->force_iters, (long long int)((double)numneighs)); //addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_M / CLUSTER_N)); } LIKWID_MARKER_STOP("force"); } double E = getTimeStamp(); DEBUG_MESSAGE("computeForceLJ_2xnn end\n"); return E-S; } double computeForceLJ_2xnn(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { if(neighbor->half_neigh) { return computeForceLJ_2xnn_half(param, atom, neighbor, stats); } return computeForceLJ_2xnn_full(param, atom, neighbor, stats); } double computeForceLJ_4xn_half(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { DEBUG_MESSAGE("computeForceLJ_4xn begin\n"); int Nlocal = atom->Nlocal; NeighborCluster* neighs; MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; MD_SIMD_FLOAT cutforcesq_vec = simd_broadcast(cutforcesq); MD_SIMD_FLOAT sigma6_vec = simd_broadcast(sigma6); MD_SIMD_FLOAT eps_vec = simd_broadcast(epsilon); MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0); MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5); for(int ci = 0; ci < atom->Nclusters_local; ci++) { int ci_vec_base = CI_VECTOR_BASE_INDEX(ci); MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base]; for(int cii = 0; cii < atom->iclusters[ci].natoms; cii++) { ci_f[CL_X_OFFSET + cii] = 0.0; ci_f[CL_Y_OFFSET + cii] = 0.0; ci_f[CL_Z_OFFSET + cii] = 0.0; } } double S = getTimeStamp(); #pragma omp parallel { LIKWID_MARKER_START("force"); #pragma omp for for(int ci = 0; ci < atom->Nclusters_local; ci++) { int ci_cj0 = CJ0_FROM_CI(ci); #if CLUSTER_M > CLUSTER_N int ci_cj1 = CJ1_FROM_CI(ci); #endif int ci_vec_base = CI_VECTOR_BASE_INDEX(ci); MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base]; MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base]; neighs = &neighbor->neighbors[ci * neighbor->maxneighs]; int numneighs = neighbor->numneigh[ci]; int numneighs_masked = neighbor->numneigh_masked[ci]; MD_SIMD_FLOAT xi0_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 0]); MD_SIMD_FLOAT xi1_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 1]); MD_SIMD_FLOAT xi2_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 2]); MD_SIMD_FLOAT xi3_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 3]); MD_SIMD_FLOAT yi0_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 0]); MD_SIMD_FLOAT yi1_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 1]); MD_SIMD_FLOAT yi2_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 2]); MD_SIMD_FLOAT yi3_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 3]); MD_SIMD_FLOAT zi0_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 0]); MD_SIMD_FLOAT zi1_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 1]); MD_SIMD_FLOAT zi2_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 2]); MD_SIMD_FLOAT zi3_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 3]); MD_SIMD_FLOAT fix0 = simd_zero(); MD_SIMD_FLOAT fiy0 = simd_zero(); MD_SIMD_FLOAT fiz0 = simd_zero(); MD_SIMD_FLOAT fix1 = simd_zero(); MD_SIMD_FLOAT fiy1 = simd_zero(); MD_SIMD_FLOAT fiz1 = simd_zero(); MD_SIMD_FLOAT fix2 = simd_zero(); MD_SIMD_FLOAT fiy2 = simd_zero(); MD_SIMD_FLOAT fiz2 = simd_zero(); MD_SIMD_FLOAT fix3 = simd_zero(); MD_SIMD_FLOAT fiy3 = simd_zero(); MD_SIMD_FLOAT fiz3 = simd_zero(); for(int k = 0; k < numneighs_masked; k++) { int cj = neighs[k].cj; int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj); int imask = neighs[k].imask; MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base]; MD_FLOAT *cj_f = &atom->cl_f[cj_vec_base]; MD_SIMD_FLOAT xj_tmp = simd_load(&cj_x[CL_X_OFFSET]); MD_SIMD_FLOAT yj_tmp = simd_load(&cj_x[CL_Y_OFFSET]); MD_SIMD_FLOAT zj_tmp = simd_load(&cj_x[CL_Z_OFFSET]); MD_SIMD_FLOAT delx0 = xi0_tmp - xj_tmp; MD_SIMD_FLOAT dely0 = yi0_tmp - yj_tmp; MD_SIMD_FLOAT delz0 = zi0_tmp - zj_tmp; MD_SIMD_FLOAT delx1 = xi1_tmp - xj_tmp; MD_SIMD_FLOAT dely1 = yi1_tmp - yj_tmp; MD_SIMD_FLOAT delz1 = zi1_tmp - zj_tmp; MD_SIMD_FLOAT delx2 = xi2_tmp - xj_tmp; MD_SIMD_FLOAT dely2 = yi2_tmp - yj_tmp; MD_SIMD_FLOAT delz2 = zi2_tmp - zj_tmp; MD_SIMD_FLOAT delx3 = xi3_tmp - xj_tmp; MD_SIMD_FLOAT dely3 = yi3_tmp - yj_tmp; MD_SIMD_FLOAT delz3 = zi3_tmp - zj_tmp; #if CLUSTER_M == CLUSTER_N unsigned int cond0 = (unsigned int)(cj == ci_cj0); MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_4xn_hn[cond0 * 4 + 0]); MD_SIMD_MASK excl_mask1 = simd_mask_from_u32(atom->masks_4xn_hn[cond0 * 4 + 1]); MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_4xn_hn[cond0 * 4 + 2]); MD_SIMD_MASK excl_mask3 = simd_mask_from_u32(atom->masks_4xn_hn[cond0 * 4 + 3]); #else #if CLUSTER_M < CLUSTER_N unsigned int cond0 = (unsigned int)((cj << 1) + 0 == ci); unsigned int cond1 = (unsigned int)((cj << 1) + 1 == ci); #else unsigned int cond0 = (unsigned int)(cj == ci_cj0); unsigned int cond1 = (unsigned int)(cj == ci_cj1); #endif MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_4xn_hn[cond0 * 8 + cond1 * 4 + 0]); MD_SIMD_MASK excl_mask1 = simd_mask_from_u32(atom->masks_4xn_hn[cond0 * 8 + cond1 * 4 + 1]); MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_4xn_hn[cond0 * 8 + cond1 * 4 + 2]); MD_SIMD_MASK excl_mask3 = simd_mask_from_u32(atom->masks_4xn_hn[cond0 * 8 + cond1 * 4 + 3]); #endif MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, delz0 * delz0)); MD_SIMD_FLOAT rsq1 = simd_fma(delx1, delx1, simd_fma(dely1, dely1, delz1 * delz1)); MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, delz2 * delz2)); MD_SIMD_FLOAT rsq3 = simd_fma(delx3, delx3, simd_fma(dely3, dely3, delz3 * delz3)); MD_SIMD_MASK cutoff_mask0 = simd_mask_and(excl_mask0, simd_mask_cond_lt(rsq0, cutforcesq_vec)); MD_SIMD_MASK cutoff_mask1 = simd_mask_and(excl_mask1, simd_mask_cond_lt(rsq1, cutforcesq_vec)); MD_SIMD_MASK cutoff_mask2 = simd_mask_and(excl_mask2, simd_mask_cond_lt(rsq2, cutforcesq_vec)); MD_SIMD_MASK cutoff_mask3 = simd_mask_and(excl_mask3, simd_mask_cond_lt(rsq3, cutforcesq_vec)); MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0); MD_SIMD_FLOAT sr2_1 = simd_reciprocal(rsq1); MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2); MD_SIMD_FLOAT sr2_3 = simd_reciprocal(rsq3); MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec; MD_SIMD_FLOAT sr6_1 = sr2_1 * sr2_1 * sr2_1 * sigma6_vec; MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec; MD_SIMD_FLOAT sr6_3 = sr2_3 * sr2_3 * sr2_3 * sigma6_vec; MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec; MD_SIMD_FLOAT force1 = c48_vec * sr6_1 * (sr6_1 - c05_vec) * sr2_1 * eps_vec; MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec; MD_SIMD_FLOAT force3 = c48_vec * sr6_3 * (sr6_3 - c05_vec) * sr2_3 * eps_vec; MD_SIMD_FLOAT tx0 = select_by_mask(delx0 * force0, cutoff_mask0); MD_SIMD_FLOAT ty0 = select_by_mask(dely0 * force0, cutoff_mask0); MD_SIMD_FLOAT tz0 = select_by_mask(delz0 * force0, cutoff_mask0); MD_SIMD_FLOAT tx1 = select_by_mask(delx1 * force1, cutoff_mask1); MD_SIMD_FLOAT ty1 = select_by_mask(dely1 * force1, cutoff_mask1); MD_SIMD_FLOAT tz1 = select_by_mask(delz1 * force1, cutoff_mask1); MD_SIMD_FLOAT tx2 = select_by_mask(delx2 * force2, cutoff_mask2); MD_SIMD_FLOAT ty2 = select_by_mask(dely2 * force2, cutoff_mask2); MD_SIMD_FLOAT tz2 = select_by_mask(delz2 * force2, cutoff_mask2); MD_SIMD_FLOAT tx3 = select_by_mask(delx3 * force3, cutoff_mask3); MD_SIMD_FLOAT ty3 = select_by_mask(dely3 * force3, cutoff_mask3); MD_SIMD_FLOAT tz3 = select_by_mask(delz3 * force3, cutoff_mask3); fix0 = simd_add(fix0, tx0); fiy0 = simd_add(fiy0, ty0); fiz0 = simd_add(fiz0, tz0); fix1 = simd_add(fix1, tx1); fiy1 = simd_add(fiy1, ty1); fiz1 = simd_add(fiz1, tz1); fix2 = simd_add(fix2, tx2); fiy2 = simd_add(fiy2, ty2); fiz2 = simd_add(fiz2, tz2); fix3 = simd_add(fix3, tx3); fiy3 = simd_add(fiy3, ty3); fiz3 = simd_add(fiz3, tz3); #ifdef HALF_NEIGHBOR_LISTS_CHECK_CJ if(cj < CJ1_FROM_CI(atom->Nlocal)) { simd_store(&cj_f[CL_X_OFFSET], simd_load(&cj_f[CL_X_OFFSET]) - (tx0 + tx1 + tx2 + tx3)); simd_store(&cj_f[CL_Y_OFFSET], simd_load(&cj_f[CL_Y_OFFSET]) - (ty0 + ty1 + ty2 + ty3)); simd_store(&cj_f[CL_Z_OFFSET], simd_load(&cj_f[CL_Z_OFFSET]) - (tz0 + tz1 + tz2 + tz3)); } #else simd_store(&cj_f[CL_X_OFFSET], simd_load(&cj_f[CL_X_OFFSET]) - (tx0 + tx1 + tx2 + tx3)); simd_store(&cj_f[CL_Y_OFFSET], simd_load(&cj_f[CL_Y_OFFSET]) - (ty0 + ty1 + ty2 + ty3)); simd_store(&cj_f[CL_Z_OFFSET], simd_load(&cj_f[CL_Z_OFFSET]) - (tz0 + tz1 + tz2 + tz3)); #endif } for(int k = numneighs_masked; k < numneighs; k++) { int cj = neighs[k].cj; int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj); int imask = neighs[k].imask; MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base]; MD_FLOAT *cj_f = &atom->cl_f[cj_vec_base]; MD_SIMD_FLOAT xj_tmp = simd_load(&cj_x[CL_X_OFFSET]); MD_SIMD_FLOAT yj_tmp = simd_load(&cj_x[CL_Y_OFFSET]); MD_SIMD_FLOAT zj_tmp = simd_load(&cj_x[CL_Z_OFFSET]); MD_SIMD_FLOAT delx0 = xi0_tmp - xj_tmp; MD_SIMD_FLOAT dely0 = yi0_tmp - yj_tmp; MD_SIMD_FLOAT delz0 = zi0_tmp - zj_tmp; MD_SIMD_FLOAT delx1 = xi1_tmp - xj_tmp; MD_SIMD_FLOAT dely1 = yi1_tmp - yj_tmp; MD_SIMD_FLOAT delz1 = zi1_tmp - zj_tmp; MD_SIMD_FLOAT delx2 = xi2_tmp - xj_tmp; MD_SIMD_FLOAT dely2 = yi2_tmp - yj_tmp; MD_SIMD_FLOAT delz2 = zi2_tmp - zj_tmp; MD_SIMD_FLOAT delx3 = xi3_tmp - xj_tmp; MD_SIMD_FLOAT dely3 = yi3_tmp - yj_tmp; MD_SIMD_FLOAT delz3 = zi3_tmp - zj_tmp; MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, delz0 * delz0)); MD_SIMD_FLOAT rsq1 = simd_fma(delx1, delx1, simd_fma(dely1, dely1, delz1 * delz1)); MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, delz2 * delz2)); MD_SIMD_FLOAT rsq3 = simd_fma(delx3, delx3, simd_fma(dely3, dely3, delz3 * delz3)); MD_SIMD_MASK cutoff_mask0 = simd_mask_cond_lt(rsq0, cutforcesq_vec); MD_SIMD_MASK cutoff_mask1 = simd_mask_cond_lt(rsq1, cutforcesq_vec); MD_SIMD_MASK cutoff_mask2 = simd_mask_cond_lt(rsq2, cutforcesq_vec); MD_SIMD_MASK cutoff_mask3 = simd_mask_cond_lt(rsq3, cutforcesq_vec); MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0); MD_SIMD_FLOAT sr2_1 = simd_reciprocal(rsq1); MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2); MD_SIMD_FLOAT sr2_3 = simd_reciprocal(rsq3); MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec; MD_SIMD_FLOAT sr6_1 = sr2_1 * sr2_1 * sr2_1 * sigma6_vec; MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec; MD_SIMD_FLOAT sr6_3 = sr2_3 * sr2_3 * sr2_3 * sigma6_vec; MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec; MD_SIMD_FLOAT force1 = c48_vec * sr6_1 * (sr6_1 - c05_vec) * sr2_1 * eps_vec; MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec; MD_SIMD_FLOAT force3 = c48_vec * sr6_3 * (sr6_3 - c05_vec) * sr2_3 * eps_vec; MD_SIMD_FLOAT tx0 = select_by_mask(delx0 * force0, cutoff_mask0); MD_SIMD_FLOAT ty0 = select_by_mask(dely0 * force0, cutoff_mask0); MD_SIMD_FLOAT tz0 = select_by_mask(delz0 * force0, cutoff_mask0); MD_SIMD_FLOAT tx1 = select_by_mask(delx1 * force1, cutoff_mask1); MD_SIMD_FLOAT ty1 = select_by_mask(dely1 * force1, cutoff_mask1); MD_SIMD_FLOAT tz1 = select_by_mask(delz1 * force1, cutoff_mask1); MD_SIMD_FLOAT tx2 = select_by_mask(delx2 * force2, cutoff_mask2); MD_SIMD_FLOAT ty2 = select_by_mask(dely2 * force2, cutoff_mask2); MD_SIMD_FLOAT tz2 = select_by_mask(delz2 * force2, cutoff_mask2); MD_SIMD_FLOAT tx3 = select_by_mask(delx3 * force3, cutoff_mask3); MD_SIMD_FLOAT ty3 = select_by_mask(dely3 * force3, cutoff_mask3); MD_SIMD_FLOAT tz3 = select_by_mask(delz3 * force3, cutoff_mask3); fix0 = simd_add(fix0, tx0); fiy0 = simd_add(fiy0, ty0); fiz0 = simd_add(fiz0, tz0); fix1 = simd_add(fix1, tx1); fiy1 = simd_add(fiy1, ty1); fiz1 = simd_add(fiz1, tz1); fix2 = simd_add(fix2, tx2); fiy2 = simd_add(fiy2, ty2); fiz2 = simd_add(fiz2, tz2); fix3 = simd_add(fix3, tx3); fiy3 = simd_add(fiy3, ty3); fiz3 = simd_add(fiz3, tz3); #ifdef HALF_NEIGHBOR_LISTS_CHECK_CJ if(cj < CJ1_FROM_CI(atom->Nlocal)) { simd_store(&cj_f[CL_X_OFFSET], simd_load(&cj_f[CL_X_OFFSET]) - (tx0 + tx1 + tx2 + tx3)); simd_store(&cj_f[CL_Y_OFFSET], simd_load(&cj_f[CL_Y_OFFSET]) - (ty0 + ty1 + ty2 + ty3)); simd_store(&cj_f[CL_Z_OFFSET], simd_load(&cj_f[CL_Z_OFFSET]) - (tz0 + tz1 + tz2 + tz3)); } #else simd_store(&cj_f[CL_X_OFFSET], simd_load(&cj_f[CL_X_OFFSET]) - (tx0 + tx1 + tx2 + tx3)); simd_store(&cj_f[CL_Y_OFFSET], simd_load(&cj_f[CL_Y_OFFSET]) - (ty0 + ty1 + ty2 + ty3)); simd_store(&cj_f[CL_Z_OFFSET], simd_load(&cj_f[CL_Z_OFFSET]) - (tz0 + tz1 + tz2 + tz3)); #endif } simd_incr_reduced_sum(&ci_f[CL_X_OFFSET], fix0, fix1, fix2, fix3); simd_incr_reduced_sum(&ci_f[CL_Y_OFFSET], fiy0, fiy1, fiy2, fiy3); simd_incr_reduced_sum(&ci_f[CL_Z_OFFSET], fiz0, fiz1, fiz2, fiz3); addStat(stats->calculated_forces, 1); addStat(stats->num_neighs, numneighs); addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_M / CLUSTER_N)); } LIKWID_MARKER_STOP("force"); } double E = getTimeStamp(); DEBUG_MESSAGE("computeForceLJ_4xn end\n"); return E-S; } double computeForceLJ_4xn_full(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { DEBUG_MESSAGE("computeForceLJ_4xn begin\n"); int Nlocal = atom->Nlocal; NeighborCluster* neighs; MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT sigma6 = param->sigma6; MD_FLOAT epsilon = param->epsilon; MD_SIMD_FLOAT cutforcesq_vec = simd_broadcast(cutforcesq); MD_SIMD_FLOAT sigma6_vec = simd_broadcast(sigma6); MD_SIMD_FLOAT eps_vec = simd_broadcast(epsilon); MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0); MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5); for(int ci = 0; ci < atom->Nclusters_local; ci++) { int ci_vec_base = CI_VECTOR_BASE_INDEX(ci); MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base]; for(int cii = 0; cii < atom->iclusters[ci].natoms; cii++) { ci_f[CL_X_OFFSET + cii] = 0.0; ci_f[CL_Y_OFFSET + cii] = 0.0; ci_f[CL_Z_OFFSET + cii] = 0.0; } } double S = getTimeStamp(); #pragma omp parallel { LIKWID_MARKER_START("force"); #pragma omp for for(int ci = 0; ci < atom->Nclusters_local; ci++) { int ci_cj0 = CJ0_FROM_CI(ci); #if CLUSTER_M > CLUSTER_N int ci_cj1 = CJ1_FROM_CI(ci); #endif int ci_vec_base = CI_VECTOR_BASE_INDEX(ci); MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base]; MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base]; neighs = &neighbor->neighbors[ci * neighbor->maxneighs]; int numneighs = neighbor->numneigh[ci]; int numneighs_masked = neighbor->numneigh_masked[ci]; MD_SIMD_FLOAT xi0_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 0]); MD_SIMD_FLOAT xi1_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 1]); MD_SIMD_FLOAT xi2_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 2]); MD_SIMD_FLOAT xi3_tmp = simd_broadcast(ci_x[CL_X_OFFSET + 3]); MD_SIMD_FLOAT yi0_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 0]); MD_SIMD_FLOAT yi1_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 1]); MD_SIMD_FLOAT yi2_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 2]); MD_SIMD_FLOAT yi3_tmp = simd_broadcast(ci_x[CL_Y_OFFSET + 3]); MD_SIMD_FLOAT zi0_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 0]); MD_SIMD_FLOAT zi1_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 1]); MD_SIMD_FLOAT zi2_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 2]); MD_SIMD_FLOAT zi3_tmp = simd_broadcast(ci_x[CL_Z_OFFSET + 3]); MD_SIMD_FLOAT fix0 = simd_zero(); MD_SIMD_FLOAT fiy0 = simd_zero(); MD_SIMD_FLOAT fiz0 = simd_zero(); MD_SIMD_FLOAT fix1 = simd_zero(); MD_SIMD_FLOAT fiy1 = simd_zero(); MD_SIMD_FLOAT fiz1 = simd_zero(); MD_SIMD_FLOAT fix2 = simd_zero(); MD_SIMD_FLOAT fiy2 = simd_zero(); MD_SIMD_FLOAT fiz2 = simd_zero(); MD_SIMD_FLOAT fix3 = simd_zero(); MD_SIMD_FLOAT fiy3 = simd_zero(); MD_SIMD_FLOAT fiz3 = simd_zero(); for(int k = 0; k < numneighs_masked; k++) { int cj = neighs[k].cj; int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj); int imask = neighs[k].imask; MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base]; MD_SIMD_FLOAT xj_tmp = simd_load(&cj_x[CL_X_OFFSET]); MD_SIMD_FLOAT yj_tmp = simd_load(&cj_x[CL_Y_OFFSET]); MD_SIMD_FLOAT zj_tmp = simd_load(&cj_x[CL_Z_OFFSET]); MD_SIMD_FLOAT delx0 = xi0_tmp - xj_tmp; MD_SIMD_FLOAT dely0 = yi0_tmp - yj_tmp; MD_SIMD_FLOAT delz0 = zi0_tmp - zj_tmp; MD_SIMD_FLOAT delx1 = xi1_tmp - xj_tmp; MD_SIMD_FLOAT dely1 = yi1_tmp - yj_tmp; MD_SIMD_FLOAT delz1 = zi1_tmp - zj_tmp; MD_SIMD_FLOAT delx2 = xi2_tmp - xj_tmp; MD_SIMD_FLOAT dely2 = yi2_tmp - yj_tmp; MD_SIMD_FLOAT delz2 = zi2_tmp - zj_tmp; MD_SIMD_FLOAT delx3 = xi3_tmp - xj_tmp; MD_SIMD_FLOAT dely3 = yi3_tmp - yj_tmp; MD_SIMD_FLOAT delz3 = zi3_tmp - zj_tmp; #if CLUSTER_M == CLUSTER_N unsigned int cond0 = (unsigned int)(cj == ci_cj0); MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_4xn_fn[cond0 * 4 + 0]); MD_SIMD_MASK excl_mask1 = simd_mask_from_u32(atom->masks_4xn_fn[cond0 * 4 + 1]); MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_4xn_fn[cond0 * 4 + 2]); MD_SIMD_MASK excl_mask3 = simd_mask_from_u32(atom->masks_4xn_fn[cond0 * 4 + 3]); #else #if CLUSTER_M < CLUSTER_N unsigned int cond0 = (unsigned int)((cj << 1) + 0 == ci); unsigned int cond1 = (unsigned int)((cj << 1) + 1 == ci); #else unsigned int cond0 = (unsigned int)(cj == ci_cj0); unsigned int cond1 = (unsigned int)(cj == ci_cj1); #endif MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_4xn_fn[cond0 * 8 + cond1 * 4 + 0]); MD_SIMD_MASK excl_mask1 = simd_mask_from_u32(atom->masks_4xn_fn[cond0 * 8 + cond1 * 4 + 1]); MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_4xn_fn[cond0 * 8 + cond1 * 4 + 2]); MD_SIMD_MASK excl_mask3 = simd_mask_from_u32(atom->masks_4xn_fn[cond0 * 8 + cond1 * 4 + 3]); #endif MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, delz0 * delz0)); MD_SIMD_FLOAT rsq1 = simd_fma(delx1, delx1, simd_fma(dely1, dely1, delz1 * delz1)); MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, delz2 * delz2)); MD_SIMD_FLOAT rsq3 = simd_fma(delx3, delx3, simd_fma(dely3, dely3, delz3 * delz3)); MD_SIMD_MASK cutoff_mask0 = simd_mask_and(excl_mask0, simd_mask_cond_lt(rsq0, cutforcesq_vec)); MD_SIMD_MASK cutoff_mask1 = simd_mask_and(excl_mask1, simd_mask_cond_lt(rsq1, cutforcesq_vec)); MD_SIMD_MASK cutoff_mask2 = simd_mask_and(excl_mask2, simd_mask_cond_lt(rsq2, cutforcesq_vec)); MD_SIMD_MASK cutoff_mask3 = simd_mask_and(excl_mask3, simd_mask_cond_lt(rsq3, cutforcesq_vec)); MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0); MD_SIMD_FLOAT sr2_1 = simd_reciprocal(rsq1); MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2); MD_SIMD_FLOAT sr2_3 = simd_reciprocal(rsq3); MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec; MD_SIMD_FLOAT sr6_1 = sr2_1 * sr2_1 * sr2_1 * sigma6_vec; MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec; MD_SIMD_FLOAT sr6_3 = sr2_3 * sr2_3 * sr2_3 * sigma6_vec; MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec; MD_SIMD_FLOAT force1 = c48_vec * sr6_1 * (sr6_1 - c05_vec) * sr2_1 * eps_vec; MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec; MD_SIMD_FLOAT force3 = c48_vec * sr6_3 * (sr6_3 - c05_vec) * sr2_3 * eps_vec; fix0 = simd_masked_add(fix0, delx0 * force0, cutoff_mask0); fiy0 = simd_masked_add(fiy0, dely0 * force0, cutoff_mask0); fiz0 = simd_masked_add(fiz0, delz0 * force0, cutoff_mask0); fix1 = simd_masked_add(fix1, delx1 * force1, cutoff_mask1); fiy1 = simd_masked_add(fiy1, dely1 * force1, cutoff_mask1); fiz1 = simd_masked_add(fiz1, delz1 * force1, cutoff_mask1); fix2 = simd_masked_add(fix2, delx2 * force2, cutoff_mask2); fiy2 = simd_masked_add(fiy2, dely2 * force2, cutoff_mask2); fiz2 = simd_masked_add(fiz2, delz2 * force2, cutoff_mask2); fix3 = simd_masked_add(fix3, delx3 * force3, cutoff_mask3); fiy3 = simd_masked_add(fiy3, dely3 * force3, cutoff_mask3); fiz3 = simd_masked_add(fiz3, delz3 * force3, cutoff_mask3); } for(int k = numneighs_masked; k < numneighs; k++) { int cj = neighs[k].cj; int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj); int imask = neighs[k].imask; MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base]; MD_SIMD_FLOAT xj_tmp = simd_load(&cj_x[CL_X_OFFSET]); MD_SIMD_FLOAT yj_tmp = simd_load(&cj_x[CL_Y_OFFSET]); MD_SIMD_FLOAT zj_tmp = simd_load(&cj_x[CL_Z_OFFSET]); MD_SIMD_FLOAT delx0 = xi0_tmp - xj_tmp; MD_SIMD_FLOAT dely0 = yi0_tmp - yj_tmp; MD_SIMD_FLOAT delz0 = zi0_tmp - zj_tmp; MD_SIMD_FLOAT delx1 = xi1_tmp - xj_tmp; MD_SIMD_FLOAT dely1 = yi1_tmp - yj_tmp; MD_SIMD_FLOAT delz1 = zi1_tmp - zj_tmp; MD_SIMD_FLOAT delx2 = xi2_tmp - xj_tmp; MD_SIMD_FLOAT dely2 = yi2_tmp - yj_tmp; MD_SIMD_FLOAT delz2 = zi2_tmp - zj_tmp; MD_SIMD_FLOAT delx3 = xi3_tmp - xj_tmp; MD_SIMD_FLOAT dely3 = yi3_tmp - yj_tmp; MD_SIMD_FLOAT delz3 = zi3_tmp - zj_tmp; MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, delz0 * delz0)); MD_SIMD_FLOAT rsq1 = simd_fma(delx1, delx1, simd_fma(dely1, dely1, delz1 * delz1)); MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, delz2 * delz2)); MD_SIMD_FLOAT rsq3 = simd_fma(delx3, delx3, simd_fma(dely3, dely3, delz3 * delz3)); MD_SIMD_MASK cutoff_mask0 = simd_mask_cond_lt(rsq0, cutforcesq_vec); MD_SIMD_MASK cutoff_mask1 = simd_mask_cond_lt(rsq1, cutforcesq_vec); MD_SIMD_MASK cutoff_mask2 = simd_mask_cond_lt(rsq2, cutforcesq_vec); MD_SIMD_MASK cutoff_mask3 = simd_mask_cond_lt(rsq3, cutforcesq_vec); MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0); MD_SIMD_FLOAT sr2_1 = simd_reciprocal(rsq1); MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2); MD_SIMD_FLOAT sr2_3 = simd_reciprocal(rsq3); MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec; MD_SIMD_FLOAT sr6_1 = sr2_1 * sr2_1 * sr2_1 * sigma6_vec; MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec; MD_SIMD_FLOAT sr6_3 = sr2_3 * sr2_3 * sr2_3 * sigma6_vec; MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec; MD_SIMD_FLOAT force1 = c48_vec * sr6_1 * (sr6_1 - c05_vec) * sr2_1 * eps_vec; MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec; MD_SIMD_FLOAT force3 = c48_vec * sr6_3 * (sr6_3 - c05_vec) * sr2_3 * eps_vec; fix0 = simd_masked_add(fix0, delx0 * force0, cutoff_mask0); fiy0 = simd_masked_add(fiy0, dely0 * force0, cutoff_mask0); fiz0 = simd_masked_add(fiz0, delz0 * force0, cutoff_mask0); fix1 = simd_masked_add(fix1, delx1 * force1, cutoff_mask1); fiy1 = simd_masked_add(fiy1, dely1 * force1, cutoff_mask1); fiz1 = simd_masked_add(fiz1, delz1 * force1, cutoff_mask1); fix2 = simd_masked_add(fix2, delx2 * force2, cutoff_mask2); fiy2 = simd_masked_add(fiy2, dely2 * force2, cutoff_mask2); fiz2 = simd_masked_add(fiz2, delz2 * force2, cutoff_mask2); fix3 = simd_masked_add(fix3, delx3 * force3, cutoff_mask3); fiy3 = simd_masked_add(fiy3, dely3 * force3, cutoff_mask3); fiz3 = simd_masked_add(fiz3, delz3 * force3, cutoff_mask3); } simd_incr_reduced_sum(&ci_f[CL_X_OFFSET], fix0, fix1, fix2, fix3); simd_incr_reduced_sum(&ci_f[CL_Y_OFFSET], fiy0, fiy1, fiy2, fiy3); simd_incr_reduced_sum(&ci_f[CL_Z_OFFSET], fiz0, fiz1, fiz2, fiz3); addStat(stats->calculated_forces, 1); addStat(stats->num_neighs, numneighs); addStat(stats->force_iters, (long long int)((double)numneighs)); //addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_M / CLUSTER_N)); } LIKWID_MARKER_STOP("force"); } double E = getTimeStamp(); DEBUG_MESSAGE("computeForceLJ_4xn end\n"); return E-S; } double computeForceLJ_4xn(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { if(neighbor->half_neigh) { return computeForceLJ_4xn_half(param, atom, neighbor, stats); } return computeForceLJ_4xn_full(param, atom, neighbor, stats); }