35 Commits

Author SHA1 Message Date
Rafael Ravedutti
bc7b523979 Move src directory to lammps
Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
2022-08-04 17:25:31 +02:00
Rafael Ravedutti
eeba125a52 Remove likwid and architecture-specific compilation flags
Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
2022-08-04 17:09:17 +02:00
Martin Bauernfeind
b32254b03f Changed data types in currently unused sort method to also work with single precision floating numbers 2022-07-22 13:55:27 +02:00
Martin Bauernfeind
4dac820784 Added newline in output to improve formatting 2022-07-20 23:04:22 +02:00
Martin Bauernfeind
fe56c50efd Added one more output line to output the force kernel throughput 2022-07-20 22:43:57 +02:00
Martin Bauernfeind
7a61cbbabf Instrumented the reneighbor function in order to obtain runtimes of its compontents 2022-07-19 20:38:11 +02:00
Martin Bauernfeind
176de0525b Instrumented the reneighbor function with timers (via getTimestamp()) to measure the runtime of its different components/methods 2022-07-17 18:34:17 +02:00
Martin Bauernfeind
7bad7e84b6 Fixed compiler errors 2022-07-13 14:52:37 +02:00
Martin Bauernfeind
fb304f240b Small changes in buildNeighbor to initialize the bincount list and other arrays only once 2022-07-13 14:42:34 +02:00
Martin Bauernfeind
5a6d1851ed Ported updateAtomsPbc to cuda and changed the code to use the cuda version from now on 2022-07-13 14:07:19 +02:00
Martin Bauernfeind
f61f59ba3f Fixed a compiler error and removed an unnecessary memcpy (from device to host) - performance seems to have crossed the 300M updates/second mark for the A100 2022-07-11 00:55:42 +02:00
Martin Bauernfeind
d1c2249b55 Added code to sort the contents of all bins to make it comparable to the CPU version 2022-07-11 00:24:48 +02:00
Martin Bauernfeind
c9db6e45fa Fixed compiler errors 2022-07-10 21:13:37 +02:00
Martin Bauernfeind
0967e8f671 The program now does the binning on the GPU via the binatoms_cuda method 2022-07-10 18:05:06 +02:00
Martin Bauernfeind
fa409c016c Added a struct to contain binning information such as the pointer to bincount and bins - not used yet 2022-07-08 13:52:45 +02:00
Martin Bauernfeind
b65199308d Ported the binatoms method to cuda - not used in the program yet 2022-07-06 01:09:11 +02:00
Martin Bauernfeind
71798f5ec5 🐛 Fixed aforementioned correctness issue by deleting a superflous cudaMemcpy in computeForce() that was overwriting correct data with incorrect data 2022-07-05 00:54:11 +02:00
Martin Bauernfeind
4f0403d3ea Fixed an correctness issue by conservatively copying over data from and to the GPU 2022-07-05 00:33:12 +02:00
Martin Bauernfeind
fa86e44f90 Fixed wrong number of threadblock being launched 2022-07-04 19:36:09 +02:00
Martin Bauernfeind
7e8fd96fa4 Fixed some compiler errors - the simulation seems to be off regarding how many ghost atoms are used -> some bugfixing might be needed 2022-07-03 21:14:33 +02:00
Martin Bauernfeind
463de5b1ed Ported the updatePbc method to cuda 2022-07-03 19:53:33 +02:00
Martin Bauernfeind
4a32a62a98 🐛 Fixed some bugs - neighborhood computation now seems to be quite fast 2022-06-26 20:19:59 +02:00
Martin Bauernfeind
16e8b76012 Added debug output to find memory leak 2022-06-26 19:43:10 +02:00
Martin Bauernfeind
60ed524dd8 Fixed various compiler errors - now there's probably a memory leak remaining 2022-06-26 18:37:09 +02:00
Martin Bauernfeind
45f83c7607 Fixed some struct declaration mistakes 2022-06-26 17:52:09 +02:00
Martin Bauernfeind
c49278cb21 First crude attempt at parallelizing neighborhood computation (only the part after binning the atoms is parallelized with cuda) 2022-06-26 16:25:59 +02:00
Martin Bauernfeind
757d4329f3 Added a rough sketch for the next steps of porting neighborhood computation to cuda 2022-06-23 23:58:15 +02:00
Martin Bauernfeind
67f9c769ef Fixing errors - hopefully it works this time 2022-06-23 22:25:55 +02:00
Martin Bauernfeind
b5b4d23c0c 🐛 further refactoring fixing 2022-06-23 19:46:29 +02:00
Martin Bauernfeind
fea1e41daa 🐛 further refactoring step fixing 2022-06-23 19:43:36 +02:00
Martin Bauernfeind
f1998b7acc 🐛 further refactor step fixing 2022-06-23 19:39:36 +02:00
Martin Bauernfeind
2fe3cd80a0 🐛 further refactor step fixing 2022-06-23 19:36:59 +02:00
Martin Bauernfeind
f4313f64e5 ♻️ further refactoring step fixing 2022-06-23 19:34:16 +02:00
Martin Bauernfeind
7f068a6959 ♻️ Fixing refactoring step 2022-06-23 19:32:09 +02:00
Martin Bauernfeind
62cfc22856 ♻️ Refactoring: pulled definition of the GPU atom and neighbor representation from force.cu and put it into main 2022-06-23 18:54:56 +02:00
31 changed files with 1160 additions and 693 deletions

View File

@@ -7,9 +7,10 @@ ANSI_CFLAGS += -pedantic
ANSI_CFLAGS += -Wextra ANSI_CFLAGS += -Wextra
# CFLAGS = -O0 -g -std=c99 -fargument-noalias # CFLAGS = -O0 -g -std=c99 -fargument-noalias
CFLAGS = -O3 -g -arch=sm_61 # -fopenmp #CFLAGS = -O3 -g -arch=sm_61 # -fopenmp
CFLAGS = -O3 -g # -fopenmp
ASFLAGS = -masm=intel ASFLAGS = -masm=intel
LFLAGS = LFLAGS =
DEFINES = -D_GNU_SOURCE -DLIKWID_PERFMON DEFINES = -D_GNU_SOURCE #-DLIKWID_PERFMON
INCLUDES = $(LIKWID_INC) INCLUDES = $(LIKWID_INC)
LIBS = -lm $(LIKWID_LIB) -llikwid -lcuda -lcudart LIBS = -lm $(LIKWID_LIB) -lcuda -lcudart #-llikwid

View File

@@ -124,92 +124,46 @@ __global__ void kernel_final_integrate(MD_FLOAT dtforce, int Nlocal, Atom a) {
extern "C" { extern "C" {
static Atom c_atom;
int *c_neighs;
int *c_neigh_numneigh;
int get_num_threads() {
const char *num_threads_env = getenv("NUM_THREADS"); void cuda_final_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom, const int num_threads_per_block) {
int num_threads = 0;
if(num_threads_env == nullptr)
num_threads = 32;
else {
num_threads = atoi(num_threads_env);
}
return num_threads;
}
void cuda_final_integrate(bool doReneighbour, Parameter *param, Atom *atom) {
const int Nlocal = atom->Nlocal; const int Nlocal = atom->Nlocal;
const int num_threads = get_num_threads();
const int num_threads_per_block = num_threads; // this should be multiple of 32 as operations are performed at the level of warps
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
kernel_final_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, Nlocal, c_atom); kernel_final_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, Nlocal, *c_atom);
checkCUDAError( "PeekAtLastError FinalIntegrate", cudaPeekAtLastError() ); checkCUDAError( "PeekAtLastError FinalIntegrate", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync FinalIntegrate", cudaDeviceSynchronize() ); checkCUDAError( "DeviceSync FinalIntegrate", cudaDeviceSynchronize() );
if(doReneighbour) { if(doReneighbour) {
checkCUDAError( "FinalIntegrate: velocity memcpy", cudaMemcpy(atom->vx, c_atom.vx, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) ); checkCUDAError( "FinalIntegrate: velocity memcpy", cudaMemcpy(atom->vx, c_atom->vx, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
} }
} }
void cuda_initial_integrate(bool doReneighbour, Parameter *param, Atom *atom) { void cuda_initial_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom, const int num_threads_per_block) {
const int Nlocal = atom->Nlocal; const int Nlocal = atom->Nlocal;
const int num_threads = get_num_threads();
const int num_threads_per_block = num_threads; // this should be multiple of 32 as operations are performed at the level of warps
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
kernel_initial_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, param->dt, Nlocal, c_atom); kernel_initial_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, param->dt, Nlocal, *c_atom);
checkCUDAError( "PeekAtLastError InitialIntegrate", cudaPeekAtLastError() ); checkCUDAError( "PeekAtLastError InitialIntegrate", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync InitialIntegrate", cudaDeviceSynchronize() ); checkCUDAError( "DeviceSync InitialIntegrate", cudaDeviceSynchronize() );
if(doReneighbour) { if(doReneighbour) {
checkCUDAError( "InitialIntegrate: velocity memcpy", cudaMemcpy(atom->vx, c_atom.vx, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) ); checkCUDAError( "InitialIntegrate: velocity memcpy", cudaMemcpy(atom->vx, c_atom->vx, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
} }
checkCUDAError( "InitialIntegrate: position memcpy", cudaMemcpy(atom->x, c_atom.x, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
}
void initCudaAtom(Atom *atom, Neighbor *neighbor) {
const int Nlocal = atom->Nlocal;
checkCUDAError( "c_atom.x malloc", cudaMalloc((void**)&(c_atom.x), sizeof(MD_FLOAT) * atom->Nmax * 3) );
checkCUDAError( "c_atom.x memcpy", cudaMemcpy(c_atom.x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.fx malloc", cudaMalloc((void**)&(c_atom.fx), sizeof(MD_FLOAT) * Nlocal * 3) );
checkCUDAError( "c_atom.vx malloc", cudaMalloc((void**)&(c_atom.vx), sizeof(MD_FLOAT) * Nlocal * 3) );
checkCUDAError( "c_atom.vx memcpy", cudaMemcpy(c_atom.vx, atom->vx, sizeof(MD_FLOAT) * Nlocal * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.type malloc", cudaMalloc((void**)&(c_atom.type), sizeof(int) * atom->Nmax) );
checkCUDAError( "c_atom.epsilon malloc", cudaMalloc((void**)&(c_atom.epsilon), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_atom.sigma6 malloc", cudaMalloc((void**)&(c_atom.sigma6), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_atom.cutforcesq malloc", cudaMalloc((void**)&(c_atom.cutforcesq), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_neighs malloc", cudaMalloc((void**)&c_neighs, sizeof(int) * Nlocal * neighbor->maxneighs) );
checkCUDAError( "c_neigh_numneigh malloc", cudaMalloc((void**)&c_neigh_numneigh, sizeof(int) * Nlocal) );
checkCUDAError( "c_atom.type memcpy", cudaMemcpy(c_atom.type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.sigma6 memcpy", cudaMemcpy(c_atom.sigma6, atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.epsilon memcpy", cudaMemcpy(c_atom.epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.cutforcesq memcpy", cudaMemcpy(c_atom.cutforcesq, atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
} }
double computeForce( double computeForce(
bool reneighbourHappenend, bool reneighbourHappenend,
Parameter *param, Parameter *param,
Atom *atom, Atom *atom,
Neighbor *neighbor Neighbor *neighbor,
Atom *c_atom,
Neighbor *c_neighbor,
int num_threads_per_block
) )
{ {
int Nlocal = atom->Nlocal; int Nlocal = atom->Nlocal;
@@ -219,14 +173,6 @@ double computeForce(
MD_FLOAT epsilon = param->epsilon; MD_FLOAT epsilon = param->epsilon;
#endif #endif
const int num_threads = get_num_threads();
c_atom.Natoms = atom->Natoms;
c_atom.Nlocal = atom->Nlocal;
c_atom.Nghost = atom->Nghost;
c_atom.Nmax = atom->Nmax;
c_atom.ntypes = atom->ntypes;
/* /*
int nDevices; int nDevices;
cudaGetDeviceCount(&nDevices); cudaGetDeviceCount(&nDevices);
@@ -242,24 +188,16 @@ double computeForce(
// HINT: Run with cuda-memcheck ./MDBench-NVCC in case of error // HINT: Run with cuda-memcheck ./MDBench-NVCC in case of error
// checkCUDAError( "c_atom.fx memset", cudaMemset(c_atom.fx, 0, sizeof(MD_FLOAT) * Nlocal * 3) ); // checkCUDAError( "c_atom->fx memset", cudaMemset(c_atom->fx, 0, sizeof(MD_FLOAT) * Nlocal * 3) );
cudaProfilerStart(); cudaProfilerStart();
checkCUDAError( "c_atom.x memcpy", cudaMemcpy(c_atom.x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
if(reneighbourHappenend) {
checkCUDAError( "c_neigh_numneigh memcpy", cudaMemcpy(c_neigh_numneigh, neighbor->numneigh, sizeof(int) * Nlocal, cudaMemcpyHostToDevice) );
checkCUDAError( "c_neighs memcpy", cudaMemcpy(c_neighs, neighbor->neighbors, sizeof(int) * Nlocal * neighbor->maxneighs, cudaMemcpyHostToDevice) );
}
const int num_threads_per_block = num_threads; // this should be multiple of 32 as operations are performed at the level of warps
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
double S = getTimeStamp(); double S = getTimeStamp();
LIKWID_MARKER_START("force"); LIKWID_MARKER_START("force");
calc_force <<< num_blocks, num_threads_per_block >>> (c_atom, cutforcesq, sigma6, epsilon, Nlocal, neighbor->maxneighs, c_neighs, c_neigh_numneigh); calc_force <<< num_blocks, num_threads_per_block >>> (*c_atom, cutforcesq, sigma6, epsilon, Nlocal, neighbor->maxneighs, c_neighbor->neighbors, c_neighbor->numneigh);
checkCUDAError( "PeekAtLastError ComputeForce", cudaPeekAtLastError() ); checkCUDAError( "PeekAtLastError ComputeForce", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync ComputeForce", cudaDeviceSynchronize() ); checkCUDAError( "DeviceSync ComputeForce", cudaDeviceSynchronize() );

View File

@@ -33,9 +33,26 @@ typedef struct {
int* numneigh; int* numneigh;
} Neighbor; } Neighbor;
typedef struct {
MD_FLOAT xprd; MD_FLOAT yprd; MD_FLOAT zprd;
MD_FLOAT bininvx; MD_FLOAT bininvy; MD_FLOAT bininvz;
int mbinxlo; int mbinylo; int mbinzlo;
int nbinx; int nbiny; int nbinz;
int mbinx; int mbiny; int mbinz;
} Neighbor_params;
typedef struct {
int* bincount;
int* bins;
int mbins;
int atoms_per_bin;
} Binning;
extern void initNeighbor(Neighbor*, Parameter*); extern void initNeighbor(Neighbor*, Parameter*);
extern void setupNeighbor(); extern void setupNeighbor();
extern void binatoms(Atom*); extern void binatoms(Atom*);
extern void buildNeighbor(Atom*, Neighbor*); extern void buildNeighbor(Atom*, Neighbor*);
extern void sortAtom(Atom*); extern void sortAtom(Atom*);
extern void binatoms_cuda(Atom*, Binning*, int*, Neighbor_params*, const int);
extern void buildNeighbor_cuda(Atom*, Neighbor*, Atom*, Neighbor*, const int, double*);
#endif #endif

View File

@@ -25,8 +25,10 @@
#ifndef __PBC_H_ #ifndef __PBC_H_
#define __PBC_H_ #define __PBC_H_
extern void initPbc(); extern void initPbc(Atom*);
extern void updatePbc(Atom*, Parameter*); extern void updatePbc(Atom*, Parameter*);
extern void updatePbc_cuda(Atom*, Parameter*, Atom*, bool, const int);
extern void updateAtomsPbc(Atom*, Parameter*); extern void updateAtomsPbc(Atom*, Parameter*);
extern void updateAtomsPbc_cuda(Atom*, Parameter*, Atom*, const int);
extern void setupPbc(Atom*, Parameter*); extern void setupPbc(Atom*, Parameter*);
#endif #endif

View File

@@ -5,6 +5,11 @@ typedef enum {
TOTAL = 0, TOTAL = 0,
NEIGH, NEIGH,
FORCE, FORCE,
NEIGH_UPDATE_ATOMS_PBC,
NEIGH_SETUP_PBC,
NEIGH_UPDATE_PBC,
NEIGH_BINATOMS,
NEIGH_BUILD_LISTS,
NUMTIMER NUMTIMER
} timertype; } timertype;

View File

@@ -45,12 +45,14 @@
#define HLINE "----------------------------------------------------------------------------\n" #define HLINE "----------------------------------------------------------------------------\n"
extern void initCudaAtom(Atom *atom, Neighbor *neighbor); extern void cuda_final_integrate(bool doReneighbour, Parameter *param,
Atom *atom, Atom *c_atom,
const int num_threads_per_block);
extern void cuda_initial_integrate(bool doReneighbour, Parameter *param,
Atom *atom, Atom *c_atom,
const int num_threads_per_block);
extern void cuda_final_integrate(bool doReneighbour, Parameter *param, Atom *atom); extern double computeForce(bool, Parameter*, Atom*, Neighbor*, Atom*, Neighbor*, const int);
extern void cuda_initial_integrate(bool doReneighbour, Parameter *param, Atom *atom);
extern double computeForce(bool, Parameter*, Atom*, Neighbor*);
extern double computeForceTracing(Parameter*, Atom*, Neighbor*, Stats*, int, int); extern double computeForceTracing(Parameter*, Atom*, Neighbor*, Stats*, int, int);
extern double computeForceEam(Eam* eam, Parameter*, Atom *atom, Neighbor *neighbor, Stats *stats, int first_exec, int timestep); extern double computeForceEam(Eam* eam, Parameter*, Atom *atom, Neighbor *neighbor, Stats *stats, int first_exec, int timestep);
@@ -78,12 +80,52 @@ void init(Parameter *param)
param->proc_freq = 2.4; param->proc_freq = 2.4;
} }
void initCudaAtom(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) {
c_atom->Natoms = atom->Natoms;
c_atom->Nlocal = atom->Nlocal;
c_atom->Nghost = atom->Nghost;
c_atom->Nmax = atom->Nmax;
c_atom->ntypes = atom->ntypes;
c_atom->border_map = NULL;
const int Nlocal = atom->Nlocal;
checkCUDAError( "c_atom->x malloc", cudaMalloc((void**)&(c_atom->x), sizeof(MD_FLOAT) * atom->Nmax * 3) );
checkCUDAError( "c_atom->x memcpy", cudaMemcpy(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->fx malloc", cudaMalloc((void**)&(c_atom->fx), sizeof(MD_FLOAT) * Nlocal * 3) );
checkCUDAError( "c_atom->vx malloc", cudaMalloc((void**)&(c_atom->vx), sizeof(MD_FLOAT) * Nlocal * 3) );
checkCUDAError( "c_atom->vx memcpy", cudaMemcpy(c_atom->vx, atom->vx, sizeof(MD_FLOAT) * Nlocal * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->type malloc", cudaMalloc((void**)&(c_atom->type), sizeof(int) * atom->Nmax) );
checkCUDAError( "c_atom->epsilon malloc", cudaMalloc((void**)&(c_atom->epsilon), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_atom->sigma6 malloc", cudaMalloc((void**)&(c_atom->sigma6), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_atom->cutforcesq malloc", cudaMalloc((void**)&(c_atom->cutforcesq), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_neighbor->neighbors malloc", cudaMalloc((void**)&c_neighbor->neighbors, sizeof(int) * Nlocal * neighbor->maxneighs) );
checkCUDAError( "c_neighbor->numneigh malloc", cudaMalloc((void**)&c_neighbor->numneigh, sizeof(int) * Nlocal) );
checkCUDAError( "c_atom->type memcpy", cudaMemcpy(c_atom->type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->sigma6 memcpy", cudaMemcpy(c_atom->sigma6, atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->epsilon memcpy", cudaMemcpy(c_atom->epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->cutforcesq memcpy", cudaMemcpy(c_atom->cutforcesq, atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
}
double setup( double setup(
Parameter *param, Parameter *param,
Eam *eam, Eam *eam,
Atom *atom, Atom *atom,
Neighbor *neighbor, Neighbor *neighbor,
Stats *stats) Atom *c_atom,
Neighbor *c_neighbor,
Stats *stats,
const int num_threads_per_block,
double* timers)
{ {
if(param->force_field == FF_EAM) { initEam(eam, param); } if(param->force_field == FF_EAM) { initEam(eam, param); }
double S, E; double S, E;
@@ -102,11 +144,11 @@ double setup(
setupThermo(param, atom->Natoms); setupThermo(param, atom->Natoms);
adjustThermo(param, atom); adjustThermo(param, atom);
setupPbc(atom, param); setupPbc(atom, param);
updatePbc(atom, param); initCudaAtom(atom, neighbor, c_atom, c_neighbor);
buildNeighbor(atom, neighbor); updatePbc_cuda(atom, param, c_atom, true, num_threads_per_block);
buildNeighbor_cuda(atom, neighbor, c_atom, c_neighbor, num_threads_per_block, timers);
E = getTimeStamp(); E = getTimeStamp();
initCudaAtom(atom, neighbor);
return E-S; return E-S;
} }
@@ -114,19 +156,35 @@ double setup(
double reneighbour( double reneighbour(
Parameter *param, Parameter *param,
Atom *atom, Atom *atom,
Neighbor *neighbor) Neighbor *neighbor,
Atom *c_atom,
Neighbor *c_neighbor,
const int num_threads_per_block,
double* timers)
{ {
double S, E; double S, E, beforeEvent, afterEvent;
S = getTimeStamp(); S = getTimeStamp();
beforeEvent = S;
LIKWID_MARKER_START("reneighbour"); LIKWID_MARKER_START("reneighbour");
updateAtomsPbc(atom, param); updateAtomsPbc_cuda(atom, param, c_atom, num_threads_per_block);
afterEvent = getTimeStamp();
timers[NEIGH_UPDATE_ATOMS_PBC] += afterEvent - beforeEvent;
beforeEvent = afterEvent;
setupPbc(atom, param); setupPbc(atom, param);
updatePbc(atom, param); afterEvent = getTimeStamp();
timers[NEIGH_SETUP_PBC] += afterEvent - beforeEvent;
beforeEvent = afterEvent;
updatePbc_cuda(atom, param, c_atom, true, num_threads_per_block);
afterEvent = getTimeStamp();
timers[NEIGH_UPDATE_PBC] += afterEvent - beforeEvent;
beforeEvent = afterEvent;
//sortAtom(atom); //sortAtom(atom);
buildNeighbor(atom, neighbor); buildNeighbor_cuda(atom, neighbor, c_atom, c_neighbor, num_threads_per_block, timers);
LIKWID_MARKER_STOP("reneighbour"); LIKWID_MARKER_STOP("reneighbour");
E = getTimeStamp(); E = getTimeStamp();
afterEvent = E;
timers[NEIGH_BUILD_LISTS] += afterEvent - beforeEvent;
return E-S; return E-S;
} }
@@ -178,6 +236,19 @@ const char* ff2str(int ff)
return "invalid"; return "invalid";
} }
int get_num_threads() {
const char *num_threads_env = getenv("NUM_THREADS");
int num_threads = 0;
if(num_threads_env == 0)
num_threads = 32;
else {
num_threads = atoi(num_threads_env);
}
return num_threads;
}
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
double timer[NUMTIMER]; double timer[NUMTIMER];
@@ -186,6 +257,8 @@ int main(int argc, char** argv)
Neighbor neighbor; Neighbor neighbor;
Stats stats; Stats stats;
Parameter param; Parameter param;
Atom c_atom;
Neighbor c_neighbor;
LIKWID_MARKER_INIT; LIKWID_MARKER_INIT;
#pragma omp parallel #pragma omp parallel
@@ -256,7 +329,10 @@ int main(int argc, char** argv)
} }
} }
setup(&param, &eam, &atom, &neighbor, &stats); // this should be multiple of 32 as operations are performed at the level of warps
const int num_threads_per_block = get_num_threads();
setup(&param, &eam, &atom, &neighbor, &c_atom, &c_neighbor, &stats, num_threads_per_block, (double*) &timer);
computeThermo(0, &param, &atom); computeThermo(0, &param, &atom);
if(param.force_field == FF_EAM) { if(param.force_field == FF_EAM) {
computeForceEam(&eam, &param, &atom, &neighbor, &stats, 1, 0); computeForceEam(&eam, &param, &atom, &neighbor, &stats, 1, 0);
@@ -264,13 +340,18 @@ int main(int argc, char** argv)
#if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS) #if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS)
computeForceTracing(&param, &atom, &neighbor, &stats, 1, 0); computeForceTracing(&param, &atom, &neighbor, &stats, 1, 0);
#else #else
computeForce(true, &param, &atom, &neighbor); computeForce(true, &param, &atom, &neighbor, &c_atom, &c_neighbor, num_threads_per_block);
#endif #endif
} }
timer[FORCE] = 0.0; timer[FORCE] = 0.0;
timer[NEIGH] = 0.0; timer[NEIGH] = 0.0;
timer[TOTAL] = getTimeStamp(); timer[TOTAL] = getTimeStamp();
timer[NEIGH_UPDATE_ATOMS_PBC] = 0.0;
timer[NEIGH_SETUP_PBC] = 0.0;
timer[NEIGH_UPDATE_PBC] = 0.0;
timer[NEIGH_BINATOMS] = 0.0;
timer[NEIGH_BUILD_LISTS] = 0.0;
if(param.vtk_file != NULL) { if(param.vtk_file != NULL) {
write_atoms_to_vtk_file(param.vtk_file, &atom, 0); write_atoms_to_vtk_file(param.vtk_file, &atom, 0);
@@ -280,12 +361,15 @@ int main(int argc, char** argv)
const bool doReneighbour = (n + 1) % param.every == 0; const bool doReneighbour = (n + 1) % param.every == 0;
cuda_initial_integrate(doReneighbour, &param, &atom); cuda_initial_integrate(doReneighbour, &param, &atom, &c_atom, num_threads_per_block);
if(doReneighbour) { if(doReneighbour) {
timer[NEIGH] += reneighbour(&param, &atom, &neighbor); timer[NEIGH] += reneighbour(&param, &atom, &neighbor, &c_atom, &c_neighbor, num_threads_per_block, (double*) &timer);
} else { } else {
updatePbc(&atom, &param); double before = getTimeStamp();
updatePbc_cuda(&atom, &param, &c_atom, false, num_threads_per_block);
double after = getTimeStamp();
timer[NEIGH_UPDATE_PBC] += after - before;
} }
if(param.force_field == FF_EAM) { if(param.force_field == FF_EAM) {
@@ -294,13 +378,14 @@ int main(int argc, char** argv)
#if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS) #if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS)
timer[FORCE] += computeForceTracing(&param, &atom, &neighbor, &stats, 0, n + 1); timer[FORCE] += computeForceTracing(&param, &atom, &neighbor, &stats, 0, n + 1);
#else #else
timer[FORCE] += computeForce(doReneighbour, &param, &atom, &neighbor); timer[FORCE] += computeForce(doReneighbour, &param, &atom, &neighbor, &c_atom, &c_neighbor, num_threads_per_block);
#endif #endif
} }
cuda_final_integrate(doReneighbour, &param, &atom); cuda_final_integrate(doReneighbour, &param, &atom, &c_atom, num_threads_per_block);
if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) { if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) {
checkCUDAError("computeThermo atom->x memcpy back", cudaMemcpy(atom.x, c_atom.x, atom.Nmax * sizeof(MD_FLOAT) * 3, cudaMemcpyDeviceToHost) );
computeThermo(n + 1, &param, &atom); computeThermo(n + 1, &param, &atom);
} }
@@ -309,6 +394,7 @@ int main(int argc, char** argv)
} }
} }
timer[NEIGH_BUILD_LISTS] -= timer[NEIGH_BINATOMS];
timer[TOTAL] = getTimeStamp() - timer[TOTAL]; timer[TOTAL] = getTimeStamp() - timer[TOTAL];
computeThermo(-1, &param, &atom); computeThermo(-1, &param, &atom);
@@ -322,11 +408,15 @@ int main(int argc, char** argv)
#endif #endif
printf(HLINE); printf(HLINE);
printf("System: %d atoms %d ghost atoms, Steps: %d\n", atom.Natoms, atom.Nghost, param.ntimes); printf("System: %d atoms %d ghost atoms, Steps: %d\n", atom.Natoms, atom.Nghost, param.ntimes);
printf("TOTAL %.2fs FORCE %.2fs NEIGH %.2fs REST %.2fs\n", printf("TOTAL %.2fs FORCE %.2fs NEIGH %.2fs REST %.2fs NEIGH_TIMERS: UPD_AT: %.2fs SETUP_PBC %.2fs UPDATE_PBC %.2fs BINATOMS %.2fs BUILD_NEIGHBOR %.2fs\n",
timer[TOTAL], timer[FORCE], timer[NEIGH], timer[TOTAL]-timer[FORCE]-timer[NEIGH]); timer[TOTAL], timer[FORCE], timer[NEIGH], timer[TOTAL]-timer[FORCE]-timer[NEIGH], timer[NEIGH_UPDATE_ATOMS_PBC], timer[NEIGH_SETUP_PBC], timer[NEIGH_UPDATE_PBC], timer[NEIGH_BINATOMS], timer[NEIGH_BUILD_LISTS]);
printf(HLINE); printf(HLINE);
printf("Performance: %.2f million atom updates per second\n", printf("Performance: %.2f million atom updates per second\n",
1e-6 * (double) atom.Natoms * param.ntimes / timer[TOTAL]); 1e-6 * (double) atom.Natoms * param.ntimes / timer[TOTAL]);
double atomUpdatesTotal = (double) atom.Natoms * param.ntimes;
printf("Force_perf in millions per sec: %.2f\n", 1e-6 * atomUpdatesTotal / timer[FORCE]);
double atomNeighUpdatesTotal = (double) atom.Natoms * param.ntimes / param.every;
printf("Neighbor_perf in millions per sec: updateAtomsPbc: %.2f setupPbc: %.2f updatePbc: %.2f binAtoms: %.2f buildNeighbor_wo_binning: %.2f\n", 1e-6 * atomNeighUpdatesTotal / timer[NEIGH_UPDATE_ATOMS_PBC], 1e-6 * atomNeighUpdatesTotal / timer[NEIGH_SETUP_PBC], 1e-6 * atomUpdatesTotal / timer[NEIGH_UPDATE_PBC], 1e-6 * atomNeighUpdatesTotal / timer[NEIGH_BINATOMS], 1e-6 * atomNeighUpdatesTotal / timer[NEIGH_BUILD_LISTS]);
#ifdef COMPUTE_STATS #ifdef COMPUTE_STATS
displayStatistics(&atom, &param, &stats, timer); displayStatistics(&atom, &param, &stats, timer);
#endif #endif

719
lammps/neighbor.cu Normal file
View File

@@ -0,0 +1,719 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2021 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <cuda_profiler_api.h>
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
extern "C" {
#include <neighbor.h>
#include <parameter.h>
#include <allocate.h>
#include <atom.h>
#include <timing.h>
#include <timers.h>
#define SMALL 1.0e-6
#define FACTOR 0.999
}
__device__ int coord2bin_device(MD_FLOAT xin, MD_FLOAT yin, MD_FLOAT zin,
Neighbor_params np)
{
int ix, iy, iz;
if(xin >= np.xprd) {
ix = (int)((xin - np.xprd) * np.bininvx) + np.nbinx - np.mbinxlo;
} else if(xin >= 0.0) {
ix = (int)(xin * np.bininvx) - np.mbinxlo;
} else {
ix = (int)(xin * np.bininvx) - np.mbinxlo - 1;
}
if(yin >= np.yprd) {
iy = (int)((yin - np.yprd) * np.bininvy) + np.nbiny - np.mbinylo;
} else if(yin >= 0.0) {
iy = (int)(yin * np.bininvy) - np.mbinylo;
} else {
iy = (int)(yin * np.bininvy) - np.mbinylo - 1;
}
if(zin >= np.zprd) {
iz = (int)((zin - np.zprd) * np.bininvz) + np.nbinz - np.mbinzlo;
} else if(zin >= 0.0) {
iz = (int)(zin * np.bininvz) - np.mbinzlo;
} else {
iz = (int)(zin * np.bininvz) - np.mbinzlo - 1;
}
return (iz * np.mbiny * np.mbinx + iy * np.mbinx + ix + 1);
}
/* sorts the contents of a bin to make it comparable to the CPU version */
/* uses bubble sort since atoms per bin should be relatively small and can be done in situ */
__global__ void sort_bin_contents_kernel(int* bincount, int* bins, int mbins, int atoms_per_bin){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= mbins){
return;
}
int atoms_in_bin = bincount[i];
int* bin_ptr = &bins[i * atoms_per_bin];
int sorted;
do {
sorted = 1;
int tmp;
for(int index = 0; index < atoms_in_bin - 1; index++){
if (bin_ptr[index] > bin_ptr[index + 1]){
tmp = bin_ptr[index];
bin_ptr[index] = bin_ptr[index + 1];
bin_ptr[index + 1] = tmp;
sorted = 0;
}
}
} while (!sorted);
}
__global__ void binatoms_kernel(Atom a, int* bincount, int* bins, int atoms_per_bin, Neighbor_params np, int *resize_needed){
Atom* atom = &a;
const int i = blockIdx.x * blockDim.x + threadIdx.x;
int nall = atom->Nlocal + atom->Nghost;
if(i >= nall){
return;
}
MD_FLOAT x = atom_x(i);
MD_FLOAT y = atom_y(i);
MD_FLOAT z = atom_z(i);
int ibin = coord2bin_device(x, y, z, np);
int ac = atomicAdd(&bincount[ibin], 1);
if(ac < atoms_per_bin){
bins[ibin * atoms_per_bin + ac] = i;
} else {
atomicMax(resize_needed, ac);
}
}
__global__ void compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np, int nstencil, int* stencil,
int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs, MD_FLOAT cutneighsq){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int Nlocal = a.Nlocal;
if( i >= Nlocal ) {
return;
}
Atom *atom = &a;
Neighbor *neighbor = &neigh;
int* neighptr = &(neighbor->neighbors[i]);
int n = 0;
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
int ibin = coord2bin_device(xtmp, ytmp, ztmp, np);
#ifdef EXPLICIT_TYPES
int type_i = atom->type[i];
#endif
for(int k = 0; k < nstencil; k++) {
int jbin = ibin + stencil[k];
int* loc_bin = &bins[jbin * atoms_per_bin];
for(int m = 0; m < bincount[jbin]; m++) {
int j = loc_bin[m];
if ( j == i ){
continue;
}
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
#ifdef EXPLICIT_TYPES
int type_j = atom->type[j];
const MD_FLOAT cutoff = atom->cutneighsq[type_i * atom->ntypes + type_j];
#else
const MD_FLOAT cutoff = cutneighsq;
#endif
if( rsq <= cutoff ) {
int idx = atom->Nlocal * n;
neighptr[idx] = j;
n += 1;
}
}
}
neighbor->numneigh[i] = n;
if(n > neighbor->maxneighs) {
atomicMax(new_maxneighs, n);
}
}
extern "C" {
static MD_FLOAT xprd, yprd, zprd;
static MD_FLOAT bininvx, bininvy, bininvz;
static int mbinxlo, mbinylo, mbinzlo;
static int nbinx, nbiny, nbinz;
static int mbinx, mbiny, mbinz; // n bins in x, y, z
static int *bincount;
static int *bins;
static int mbins; //total number of bins
static int atoms_per_bin; // max atoms per bin
static MD_FLOAT cutneigh;
static MD_FLOAT cutneighsq; // neighbor cutoff squared
static int nmax;
static int nstencil; // # of bins in stencil
static int* stencil; // stencil list of bin offsets
static MD_FLOAT binsizex, binsizey, binsizez;
static int* c_stencil = NULL;
static int* c_resize_needed = NULL;
static int* c_new_maxneighs = NULL;
static Binning c_binning{
.bincount = NULL,
.bins = NULL,
.mbins = 0,
.atoms_per_bin = 0
};
static int coord2bin(MD_FLOAT, MD_FLOAT , MD_FLOAT);
static MD_FLOAT bindist(int, int, int);
/* exported subroutines */
void initNeighbor(Neighbor *neighbor, Parameter *param)
{
MD_FLOAT neighscale = 5.0 / 6.0;
xprd = param->nx * param->lattice;
yprd = param->ny * param->lattice;
zprd = param->nz * param->lattice;
cutneigh = param->cutneigh;
nbinx = neighscale * param->nx;
nbiny = neighscale * param->ny;
nbinz = neighscale * param->nz;
nmax = 0;
atoms_per_bin = 8;
stencil = NULL;
bins = NULL;
bincount = NULL;
neighbor->maxneighs = 100;
neighbor->numneigh = NULL;
neighbor->neighbors = NULL;
}
void setupNeighbor()
{
MD_FLOAT coord;
int mbinxhi, mbinyhi, mbinzhi;
int nextx, nexty, nextz;
MD_FLOAT xlo = 0.0; MD_FLOAT xhi = xprd;
MD_FLOAT ylo = 0.0; MD_FLOAT yhi = yprd;
MD_FLOAT zlo = 0.0; MD_FLOAT zhi = zprd;
cutneighsq = cutneigh * cutneigh;
binsizex = xprd / nbinx;
binsizey = yprd / nbiny;
binsizez = zprd / nbinz;
bininvx = 1.0 / binsizex;
bininvy = 1.0 / binsizey;
bininvz = 1.0 / binsizez;
coord = xlo - cutneigh - SMALL * xprd;
mbinxlo = (int) (coord * bininvx);
if (coord < 0.0) {
mbinxlo = mbinxlo - 1;
}
coord = xhi + cutneigh + SMALL * xprd;
mbinxhi = (int) (coord * bininvx);
coord = ylo - cutneigh - SMALL * yprd;
mbinylo = (int) (coord * bininvy);
if (coord < 0.0) {
mbinylo = mbinylo - 1;
}
coord = yhi + cutneigh + SMALL * yprd;
mbinyhi = (int) (coord * bininvy);
coord = zlo - cutneigh - SMALL * zprd;
mbinzlo = (int) (coord * bininvz);
if (coord < 0.0) {
mbinzlo = mbinzlo - 1;
}
coord = zhi + cutneigh + SMALL * zprd;
mbinzhi = (int) (coord * bininvz);
mbinxlo = mbinxlo - 1;
mbinxhi = mbinxhi + 1;
mbinx = mbinxhi - mbinxlo + 1;
mbinylo = mbinylo - 1;
mbinyhi = mbinyhi + 1;
mbiny = mbinyhi - mbinylo + 1;
mbinzlo = mbinzlo - 1;
mbinzhi = mbinzhi + 1;
mbinz = mbinzhi - mbinzlo + 1;
nextx = (int) (cutneigh * bininvx);
if(nextx * binsizex < FACTOR * cutneigh) nextx++;
nexty = (int) (cutneigh * bininvy);
if(nexty * binsizey < FACTOR * cutneigh) nexty++;
nextz = (int) (cutneigh * bininvz);
if(nextz * binsizez < FACTOR * cutneigh) nextz++;
if (stencil) {
free(stencil);
}
stencil = (int*) malloc(
(2 * nextz + 1) * (2 * nexty + 1) * (2 * nextx + 1) * sizeof(int));
nstencil = 0;
int kstart = -nextz;
for(int k = kstart; k <= nextz; k++) {
for(int j = -nexty; j <= nexty; j++) {
for(int i = -nextx; i <= nextx; i++) {
if(bindist(i, j, k) < cutneighsq) {
stencil[nstencil++] =
k * mbiny * mbinx + j * mbinx + i;
}
}
}
}
mbins = mbinx * mbiny * mbinz;
if (bincount) {
free(bincount);
}
bincount = (int*) malloc(mbins * sizeof(int));
if (bins) {
free(bins);
}
bins = (int*) malloc(mbins * atoms_per_bin * sizeof(int));
}
void buildNeighbor(Atom *atom, Neighbor *neighbor)
{
int nall = atom->Nlocal + atom->Nghost;
/* extend atom arrays if necessary */
if(nall > nmax) {
nmax = nall;
if(neighbor->numneigh) cudaFreeHost(neighbor->numneigh);
if(neighbor->neighbors) cudaFreeHost(neighbor->neighbors);
checkCUDAError( "buildNeighbor numneigh", cudaMallocHost((void**)&(neighbor->numneigh), nmax * sizeof(int)) );
checkCUDAError( "buildNeighbor neighbors", cudaMallocHost((void**)&(neighbor->neighbors), nmax * neighbor->maxneighs * sizeof(int)) );
// neighbor->numneigh = (int*) malloc(nmax * sizeof(int));
// neighbor->neighbors = (int*) malloc(nmax * neighbor->maxneighs * sizeof(int*));
}
/* bin local & ghost atoms */
binatoms(atom);
int resize = 1;
/* loop over each atom, storing neighbors */
while(resize) {
int new_maxneighs = neighbor->maxneighs;
resize = 0;
for(int i = 0; i < atom->Nlocal; i++) {
int* neighptr = &(neighbor->neighbors[i]);
int n = 0;
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
int ibin = coord2bin(xtmp, ytmp, ztmp);
#ifdef EXPLICIT_TYPES
int type_i = atom->type[i];
#endif
for(int k = 0; k < nstencil; k++) {
int jbin = ibin + stencil[k];
int* loc_bin = &bins[jbin * atoms_per_bin];
for(int m = 0; m < bincount[jbin]; m++) {
int j = loc_bin[m];
if ( j == i ){
continue;
}
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
#ifdef EXPLICIT_TYPES
int type_j = atom->type[j];
const MD_FLOAT cutoff = atom->cutneighsq[type_i * atom->ntypes + type_j];
#else
const MD_FLOAT cutoff = cutneighsq;
#endif
if( rsq <= cutoff ) {
int idx = atom->Nlocal * n;
neighptr[idx] = j;
n += 1;
}
}
}
neighbor->numneigh[i] = n;
if(n >= neighbor->maxneighs) {
resize = 1;
if(n >= new_maxneighs) {
new_maxneighs = n;
}
}
}
if(resize) {
printf("RESIZE %d\n", neighbor->maxneighs);
neighbor->maxneighs = new_maxneighs * 1.2;
free(neighbor->neighbors);
neighbor->neighbors = (int*) malloc(atom->Nmax * neighbor->maxneighs * sizeof(int));
}
}
}
/* internal subroutines */
MD_FLOAT bindist(int i, int j, int k)
{
MD_FLOAT delx, dely, delz;
if(i > 0) {
delx = (i - 1) * binsizex;
} else if(i == 0) {
delx = 0.0;
} else {
delx = (i + 1) * binsizex;
}
if(j > 0) {
dely = (j - 1) * binsizey;
} else if(j == 0) {
dely = 0.0;
} else {
dely = (j + 1) * binsizey;
}
if(k > 0) {
delz = (k - 1) * binsizez;
} else if(k == 0) {
delz = 0.0;
} else {
delz = (k + 1) * binsizez;
}
return (delx * delx + dely * dely + delz * delz);
}
int coord2bin(MD_FLOAT xin, MD_FLOAT yin, MD_FLOAT zin)
{
int ix, iy, iz;
if(xin >= xprd) {
ix = (int)((xin - xprd) * bininvx) + nbinx - mbinxlo;
} else if(xin >= 0.0) {
ix = (int)(xin * bininvx) - mbinxlo;
} else {
ix = (int)(xin * bininvx) - mbinxlo - 1;
}
if(yin >= yprd) {
iy = (int)((yin - yprd) * bininvy) + nbiny - mbinylo;
} else if(yin >= 0.0) {
iy = (int)(yin * bininvy) - mbinylo;
} else {
iy = (int)(yin * bininvy) - mbinylo - 1;
}
if(zin >= zprd) {
iz = (int)((zin - zprd) * bininvz) + nbinz - mbinzlo;
} else if(zin >= 0.0) {
iz = (int)(zin * bininvz) - mbinzlo;
} else {
iz = (int)(zin * bininvz) - mbinzlo - 1;
}
return (iz * mbiny * mbinx + iy * mbinx + ix + 1);
}
void binatoms(Atom *atom)
{
int nall = atom->Nlocal + atom->Nghost;
int resize = 1;
while(resize > 0) {
resize = 0;
for(int i = 0; i < mbins; i++) {
bincount[i] = 0;
}
for(int i = 0; i < nall; i++) {
MD_FLOAT x = atom_x(i);
MD_FLOAT y = atom_y(i);
MD_FLOAT z = atom_z(i);
int ibin = coord2bin(x, y, z);
if(bincount[ibin] < atoms_per_bin) {
int ac = bincount[ibin]++;
bins[ibin * atoms_per_bin + ac] = i;
} else {
resize = 1;
}
}
if(resize) {
free(bins);
atoms_per_bin *= 2;
bins = (int*) malloc(mbins * atoms_per_bin * sizeof(int));
}
}
}
void sortAtom(Atom* atom) {
binatoms(atom);
int Nmax = atom->Nmax;
int* binpos = bincount;
for(int i=1; i<mbins; i++) {
binpos[i] += binpos[i-1];
}
#ifdef AOS
MD_FLOAT* new_x = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT) * 3);
MD_FLOAT* new_vx = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT) * 3);
#else
MD_FLOAT* new_x = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_y = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_z = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_vx = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_vy = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_vz = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
#endif
MD_FLOAT* old_x = atom->x; MD_FLOAT* old_y = atom->y; MD_FLOAT* old_z = atom->z;
MD_FLOAT* old_vx = atom->vx; MD_FLOAT* old_vy = atom->vy; MD_FLOAT* old_vz = atom->vz;
for(int mybin = 0; mybin<mbins; mybin++) {
int start = mybin>0?binpos[mybin-1]:0;
int count = binpos[mybin] - start;
for(int k=0; k<count; k++) {
int new_i = start + k;
int old_i = bins[mybin * atoms_per_bin + k];
#ifdef AOS
new_x[new_i * 3 + 0] = old_x[old_i * 3 + 0];
new_x[new_i * 3 + 1] = old_x[old_i * 3 + 1];
new_x[new_i * 3 + 2] = old_x[old_i * 3 + 2];
new_vx[new_i * 3 + 0] = old_vx[old_i * 3 + 0];
new_vx[new_i * 3 + 1] = old_vy[old_i * 3 + 1];
new_vx[new_i * 3 + 2] = old_vz[old_i * 3 + 2];
#else
new_x[new_i] = old_x[old_i];
new_y[new_i] = old_y[old_i];
new_z[new_i] = old_z[old_i];
new_vx[new_i] = old_vx[old_i];
new_vy[new_i] = old_vy[old_i];
new_vz[new_i] = old_vz[old_i];
#endif
}
}
free(atom->x);
atom->x = new_x;
free(atom->vx);
atom->vx = new_vx;
#ifndef AOS
free(atom->y);
free(atom->z);
atom->y = new_y; atom->z = new_z;
free(atom->vy); free(atom->vz);
atom->vy = new_vy; atom->vz = new_vz;
#endif
}
void binatoms_cuda(Atom* c_atom, Binning* c_binning, int* c_resize_needed, Neighbor_params *np, const int threads_per_block)
{
int nall = c_atom->Nlocal + c_atom->Nghost;
int resize = 1;
const int num_blocks = ceil((float)nall / (float)threads_per_block);
while(resize > 0) {
resize = 0;
checkCUDAError("binatoms_cuda c_binning->bincount memset", cudaMemset(c_binning->bincount, 0, c_binning->mbins * sizeof(int)));
checkCUDAError("binatoms_cuda c_resize_needed memset", cudaMemset(c_resize_needed, 0, sizeof(int)) );
/*binatoms_kernel(Atom a, int* bincount, int* bins, int c_binning->atoms_per_bin, Neighbor_params np, int *resize_needed) */
binatoms_kernel<<<num_blocks, threads_per_block>>>(*c_atom, c_binning->bincount, c_binning->bins, c_binning->atoms_per_bin, *np, c_resize_needed);
checkCUDAError( "PeekAtLastError binatoms kernel", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync binatoms kernel", cudaDeviceSynchronize() );
checkCUDAError("binatoms_cuda c_resize_needed memcpy back", cudaMemcpy(&resize, c_resize_needed, sizeof(int), cudaMemcpyDeviceToHost) );
if(resize) {
cudaFree(c_binning->bins);
c_binning->atoms_per_bin *= 2;
checkCUDAError("binatoms_cuda c_binning->bins resize malloc", cudaMalloc(&c_binning->bins, c_binning->mbins * c_binning->atoms_per_bin * sizeof(int)) );
}
}
atoms_per_bin = c_binning->atoms_per_bin;
const int sortBlocks = ceil((float)mbins / (float)threads_per_block);
/*void sort_bin_contents_kernel(int* bincount, int* bins, int mbins, int atoms_per_bin)*/
sort_bin_contents_kernel<<<sortBlocks, threads_per_block>>>(c_binning->bincount, c_binning->bins, c_binning->mbins, c_binning->atoms_per_bin);
checkCUDAError( "PeekAtLastError sort_bin_contents kernel", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync sort_bin_contents kernel", cudaDeviceSynchronize() );
}
void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor, const int num_threads_per_block, double* timers)
{
int nall = atom->Nlocal + atom->Nghost;
c_neighbor->maxneighs = neighbor->maxneighs;
cudaProfilerStart();
/* upload stencil */
// TODO move all of this initialization into its own method
if(c_stencil == NULL){
checkCUDAError( "buildNeighbor c_n_stencil malloc", cudaMalloc((void**)&c_stencil, nstencil * sizeof(int)) );
checkCUDAError( "buildNeighbor c_n_stencil memcpy", cudaMemcpy(c_stencil, stencil, nstencil * sizeof(int), cudaMemcpyHostToDevice ));
}
if(c_binning.mbins == 0){
c_binning.mbins = mbins;
c_binning.atoms_per_bin = atoms_per_bin;
checkCUDAError( "buildNeighbor c_binning->bincount malloc", cudaMalloc((void**)&(c_binning.bincount), c_binning.mbins * sizeof(int)) );
checkCUDAError( "buidlNeighbor c_binning->bins malloc", cudaMalloc((void**)&(c_binning.bins), c_binning.mbins * c_binning.atoms_per_bin * sizeof(int)) );
}
Neighbor_params np{
.xprd = xprd,
.yprd = yprd,
.zprd = zprd,
.bininvx = bininvx,
.bininvy = bininvy,
.bininvz = bininvz,
.mbinxlo = mbinxlo,
.mbinylo = mbinylo,
.mbinzlo = mbinzlo,
.nbinx = nbinx,
.nbiny = nbiny,
.nbinz = nbinz,
.mbinx = mbinx,
.mbiny = mbiny,
.mbinz = mbinz
};
if(c_resize_needed == NULL){
checkCUDAError("buildNeighbor c_resize_needed malloc", cudaMalloc((void**)&c_resize_needed, sizeof(int)) );
}
/* bin local & ghost atoms */
double beforeBinning = getTimeStamp();
binatoms_cuda(c_atom, &c_binning, c_resize_needed, &np, num_threads_per_block);
double afterBinning = getTimeStamp();
timers[NEIGH_BINATOMS] += afterBinning - beforeBinning;
if(c_new_maxneighs == NULL){
checkCUDAError("c_new_maxneighs malloc", cudaMalloc((void**)&c_new_maxneighs, sizeof(int) ));
}
int resize = 1;
/* extend c_neighbor arrays if necessary */
if(nall > nmax) {
nmax = nall;
if(c_neighbor->numneigh) cudaFree(c_neighbor->numneigh);
if(c_neighbor->neighbors) cudaFree(c_neighbor->neighbors);
checkCUDAError( "buildNeighbor c_numneigh malloc", cudaMalloc((void**)&(c_neighbor->numneigh), nmax * sizeof(int)) );
checkCUDAError( "buildNeighbor c_neighbors malloc", cudaMalloc((void**)&(c_neighbor->neighbors), nmax * c_neighbor->maxneighs * sizeof(int)) );
}
/* loop over each atom, storing neighbors */
while(resize) {
resize = 0;
checkCUDAError("c_new_maxneighs memset", cudaMemset(c_new_maxneighs, 0, sizeof(int) ));
// TODO call compute_neigborhood kernel here
const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block);
/*compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np, int nstencil, int* stencil,
int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs)
* */
compute_neighborhood<<<num_blocks, num_threads_per_block>>>(*c_atom, *c_neighbor,
np, nstencil, c_stencil,
c_binning.bins, c_binning.atoms_per_bin, c_binning.bincount,
c_new_maxneighs,
cutneighsq);
checkCUDAError( "PeekAtLastError ComputeNeighbor", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync ComputeNeighbor", cudaDeviceSynchronize() );
// TODO copy the value of c_new_maxneighs back to host and check if it has been modified
int new_maxneighs;
checkCUDAError("c_new_maxneighs memcpy back", cudaMemcpy(&new_maxneighs, c_new_maxneighs, sizeof(int), cudaMemcpyDeviceToHost));
if (new_maxneighs > c_neighbor->maxneighs){
resize = 1;
}
if(resize) {
printf("RESIZE %d\n", c_neighbor->maxneighs);
c_neighbor->maxneighs = new_maxneighs * 1.2;
printf("NEW SIZE %d\n", c_neighbor->maxneighs);
cudaFree(c_neighbor->neighbors);
checkCUDAError("c_neighbor->neighbors resize malloc",
cudaMalloc((void**)(&c_neighbor->neighbors),
c_atom->Nmax * c_neighbor->maxneighs * sizeof(int)));
}
}
neighbor->maxneighs = c_neighbor->maxneighs;
cudaProfilerStop();
}
}

286
lammps/pbc.cu Normal file
View File

@@ -0,0 +1,286 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <stdio.h>
extern "C" {
#include <pbc.h>
#include <atom.h>
#include <allocate.h>
#define DELTA 20000
}
__global__ void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
Atom* atom = &a;
if( i >= atom->Nlocal ){
return;
}
if (atom_x(i) < 0.0) {
atom_x(i) += xprd;
} else if (atom_x(i) >= xprd) {
atom_x(i) -= xprd;
}
if (atom_y(i) < 0.0) {
atom_y(i) += yprd;
} else if (atom_y(i) >= yprd) {
atom_y(i) -= yprd;
}
if (atom_z(i) < 0.0) {
atom_z(i) += zprd;
} else if (atom_z(i) >= zprd) {
atom_z(i) -= zprd;
}
}
__global__ void computePbcUpdate(Atom a, int* PBCx, int* PBCy, int* PBCz, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int Nghost = a.Nghost;
if( i >= Nghost ) {
return;
}
Atom* atom = &a;
int *border_map = atom->border_map;
int nlocal = atom->Nlocal;
atom_x(nlocal + i) = atom_x(border_map[i]) + PBCx[i] * xprd;
atom_y(nlocal + i) = atom_y(border_map[i]) + PBCy[i] * yprd;
atom_z(nlocal + i) = atom_z(border_map[i]) + PBCz[i] * zprd;
}
extern "C"{
static int NmaxGhost;
static int *PBCx, *PBCy, *PBCz;
static int c_NmaxGhost = 0;
static int *c_PBCx = NULL, *c_PBCy = NULL, *c_PBCz = NULL;
static void growPbc(Atom *);
/* exported subroutines */
void initPbc(Atom *atom) {
NmaxGhost = 0;
atom->border_map = NULL;
PBCx = NULL;
PBCy = NULL;
PBCz = NULL;
}
/* update coordinates of ghost atoms */
/* uses mapping created in setupPbc */
void updatePbc(Atom *atom, Parameter *param) {
int *border_map = atom->border_map;
int nlocal = atom->Nlocal;
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
for (int i = 0; i < atom->Nghost; i++) {
atom_x(nlocal + i) = atom_x(border_map[i]) + PBCx[i] * xprd;
atom_y(nlocal + i) = atom_y(border_map[i]) + PBCy[i] * yprd;
atom_z(nlocal + i) = atom_z(border_map[i]) + PBCz[i] * zprd;
}
}
/* update coordinates of ghost atoms */
/* uses mapping created in setupPbc */
void updatePbc_cuda(Atom *atom, Parameter *param, Atom *c_atom, bool doReneighbor, const int num_threads_per_block) {
if (doReneighbor){
c_atom->Natoms = atom->Natoms;
c_atom->Nlocal = atom->Nlocal;
c_atom->Nghost = atom->Nghost;
c_atom->ntypes = atom->ntypes;
if (atom->Nmax > c_atom->Nmax){ // the number of ghost atoms has increased -> more space is needed
c_atom->Nmax = atom->Nmax;
if(c_atom->x != NULL){ cudaFree(c_atom->x); }
if(c_atom->type != NULL){ cudaFree(c_atom->type); }
checkCUDAError( "updatePbc c_atom->x malloc", cudaMalloc((void**)&(c_atom->x), sizeof(MD_FLOAT) * atom->Nmax * 3) );
checkCUDAError( "updatePbc c_atom->type malloc", cudaMalloc((void**)&(c_atom->type), sizeof(int) * atom->Nmax) );
}
// TODO if the sort is reactivated the atom->vx needs to be copied to GPU as well
checkCUDAError( "updatePbc c_atom->x memcpy", cudaMemcpy(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "updatePbc c_atom->type memcpy", cudaMemcpy(c_atom->type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice) );
if(c_NmaxGhost < NmaxGhost){
c_NmaxGhost = NmaxGhost;
if(c_PBCx != NULL){ cudaFree(c_PBCx); }
if(c_PBCy != NULL){ cudaFree(c_PBCy); }
if(c_PBCz != NULL){ cudaFree(c_PBCz); }
if(c_atom->border_map != NULL){ cudaFree(c_atom->border_map); }
checkCUDAError( "updatePbc c_PBCx malloc", cudaMalloc((void**)&c_PBCx, NmaxGhost * sizeof(int)) );
checkCUDAError( "updatePbc c_PBCy malloc", cudaMalloc((void**)&c_PBCy, NmaxGhost * sizeof(int)) );
checkCUDAError( "updatePbc c_PBCz malloc", cudaMalloc((void**)&c_PBCz, NmaxGhost * sizeof(int)) );
checkCUDAError( "updatePbc c_atom->border_map malloc", cudaMalloc((void**)&(c_atom->border_map), NmaxGhost * sizeof(int)) );
}
checkCUDAError( "updatePbc c_PBCx memcpy", cudaMemcpy(c_PBCx, PBCx, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) );
checkCUDAError( "updatePbc c_PBCy memcpy", cudaMemcpy(c_PBCy, PBCy, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) );
checkCUDAError( "updatePbc c_PBCz memcpy", cudaMemcpy(c_PBCz, PBCz, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) );
checkCUDAError( "updatePbc c_atom->border_map memcpy", cudaMemcpy(c_atom->border_map, atom->border_map, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) );
}
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
const int num_blocks = ceil((float)atom->Nghost / (float)num_threads_per_block);
/*__global__ void computePbcUpdate(Atom a, int* PBCx, int* PBCy, int* PBCz,
* MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd)
* */
computePbcUpdate<<<num_blocks, num_threads_per_block>>>(*c_atom, c_PBCx, c_PBCy, c_PBCz, xprd, yprd, zprd);
checkCUDAError( "PeekAtLastError UpdatePbc", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync UpdatePbc", cudaDeviceSynchronize() );
}
/* relocate atoms that have left domain according
* to periodic boundary conditions */
void updateAtomsPbc(Atom *atom, Parameter *param) {
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
for (int i = 0; i < atom->Nlocal; i++) {
if (atom_x(i) < 0.0) {
atom_x(i) += xprd;
} else if (atom_x(i) >= xprd) {
atom_x(i) -= xprd;
}
if (atom_y(i) < 0.0) {
atom_y(i) += yprd;
} else if (atom_y(i) >= yprd) {
atom_y(i) -= yprd;
}
if (atom_z(i) < 0.0) {
atom_z(i) += zprd;
} else if (atom_z(i) >= zprd) {
atom_z(i) -= zprd;
}
}
}
void updateAtomsPbc_cuda(Atom* atom, Parameter* param, Atom* c_atom, const int num_threads_per_block){
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block);
/*void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd)*/
computeAtomsPbcUpdate<<<num_blocks, num_threads_per_block>>>(*c_atom, xprd, yprd, zprd);
checkCUDAError( "PeekAtLastError UpdateAtomsPbc", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync UpdateAtomsPbc", cudaDeviceSynchronize() );
checkCUDAError( "updateAtomsPbc position memcpy back", cudaMemcpy(atom->x, c_atom->x, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
}
/* setup periodic boundary conditions by
* defining ghost atoms around domain
* only creates mapping and coordinate corrections
* that are then enforced in updatePbc */
#define ADDGHOST(dx, dy, dz) \
Nghost++; \
border_map[Nghost] = i; \
PBCx[Nghost] = dx; \
PBCy[Nghost] = dy; \
PBCz[Nghost] = dz; \
atom->type[atom->Nlocal + Nghost] = atom->type[i]
void setupPbc(Atom *atom, Parameter *param) {
int *border_map = atom->border_map;
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
MD_FLOAT Cutneigh = param->cutneigh;
int Nghost = -1;
for (int i = 0; i < atom->Nlocal; i++) {
if (atom->Nlocal + Nghost + 7 >= atom->Nmax) {
growAtom(atom);
}
if (Nghost + 7 >= NmaxGhost) {
growPbc(atom);
border_map = atom->border_map;
}
MD_FLOAT x = atom_x(i);
MD_FLOAT y = atom_y(i);
MD_FLOAT z = atom_z(i);
/* Setup ghost atoms */
/* 6 planes */
if (x < Cutneigh) { ADDGHOST(+1, 0, 0); }
if (x >= (xprd - Cutneigh)) { ADDGHOST(-1, 0, 0); }
if (y < Cutneigh) { ADDGHOST(0, +1, 0); }
if (y >= (yprd - Cutneigh)) { ADDGHOST(0, -1, 0); }
if (z < Cutneigh) { ADDGHOST(0, 0, +1); }
if (z >= (zprd - Cutneigh)) { ADDGHOST(0, 0, -1); }
/* 8 corners */
if (x < Cutneigh && y < Cutneigh && z < Cutneigh) { ADDGHOST(+1, +1, +1); }
if (x < Cutneigh && y >= (yprd - Cutneigh) && z < Cutneigh) { ADDGHOST(+1, -1, +1); }
if (x < Cutneigh && y >= Cutneigh && z >= (zprd - Cutneigh)) { ADDGHOST(+1, +1, -1); }
if (x < Cutneigh && y >= (yprd - Cutneigh) && z >= (zprd - Cutneigh)) { ADDGHOST(+1, -1, -1); }
if (x >= (xprd - Cutneigh) && y < Cutneigh && z < Cutneigh) { ADDGHOST(-1, +1, +1); }
if (x >= (xprd - Cutneigh) && y >= (yprd - Cutneigh) && z < Cutneigh) { ADDGHOST(-1, -1, +1); }
if (x >= (xprd - Cutneigh) && y < Cutneigh && z >= (zprd - Cutneigh)) { ADDGHOST(-1, +1, -1); }
if (x >= (xprd - Cutneigh) && y >= (yprd - Cutneigh) && z >= (zprd - Cutneigh)) { ADDGHOST(-1, -1, -1); }
/* 12 edges */
if (x < Cutneigh && z < Cutneigh) { ADDGHOST(+1, 0, +1); }
if (x < Cutneigh && z >= (zprd - Cutneigh)) { ADDGHOST(+1, 0, -1); }
if (x >= (xprd - Cutneigh) && z < Cutneigh) { ADDGHOST(-1, 0, +1); }
if (x >= (xprd - Cutneigh) && z >= (zprd - Cutneigh)) { ADDGHOST(-1, 0, -1); }
if (y < Cutneigh && z < Cutneigh) { ADDGHOST(0, +1, +1); }
if (y < Cutneigh && z >= (zprd - Cutneigh)) { ADDGHOST(0, +1, -1); }
if (y >= (yprd - Cutneigh) && z < Cutneigh) { ADDGHOST(0, -1, +1); }
if (y >= (yprd - Cutneigh) && z >= (zprd - Cutneigh)) { ADDGHOST(0, -1, -1); }
if (y < Cutneigh && x < Cutneigh) { ADDGHOST(+1, +1, 0); }
if (y < Cutneigh && x >= (xprd - Cutneigh)) { ADDGHOST(-1, +1, 0); }
if (y >= (yprd - Cutneigh) && x < Cutneigh) { ADDGHOST(+1, -1, 0); }
if (y >= (yprd - Cutneigh) && x >= (xprd - Cutneigh)) { ADDGHOST(-1, -1, 0); }
}
// increase by one to make it the ghost atom count
atom->Nghost = Nghost + 1;
}
/* internal subroutines */
void growPbc(Atom *atom) {
int nold = NmaxGhost;
NmaxGhost += DELTA;
atom->border_map = (int *) reallocate(atom->border_map, ALIGNMENT, NmaxGhost * sizeof(int), nold * sizeof(int));
PBCx = (int *) reallocate(PBCx, ALIGNMENT, NmaxGhost * sizeof(int), nold * sizeof(int));
PBCy = (int *) reallocate(PBCy, ALIGNMENT, NmaxGhost * sizeof(int), nold * sizeof(int));
PBCz = (int *) reallocate(PBCz, ALIGNMENT, NmaxGhost * sizeof(int), nold * sizeof(int));
}
}

View File

@@ -1,419 +0,0 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2021 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <neighbor.h>
#include <parameter.h>
#include <allocate.h>
#include <atom.h>
#define SMALL 1.0e-6
#define FACTOR 0.999
static MD_FLOAT xprd, yprd, zprd;
static MD_FLOAT bininvx, bininvy, bininvz;
static int mbinxlo, mbinylo, mbinzlo;
static int nbinx, nbiny, nbinz;
static int mbinx, mbiny, mbinz; // n bins in x, y, z
static int *bincount;
static int *bins;
static int mbins; //total number of bins
static int atoms_per_bin; // max atoms per bin
static MD_FLOAT cutneigh;
static MD_FLOAT cutneighsq; // neighbor cutoff squared
static int nmax;
static int nstencil; // # of bins in stencil
static int* stencil; // stencil list of bin offsets
static MD_FLOAT binsizex, binsizey, binsizez;
static int coord2bin(MD_FLOAT, MD_FLOAT , MD_FLOAT);
static MD_FLOAT bindist(int, int, int);
/* exported subroutines */
void initNeighbor(Neighbor *neighbor, Parameter *param)
{
MD_FLOAT neighscale = 5.0 / 6.0;
xprd = param->nx * param->lattice;
yprd = param->ny * param->lattice;
zprd = param->nz * param->lattice;
cutneigh = param->cutneigh;
nbinx = neighscale * param->nx;
nbiny = neighscale * param->ny;
nbinz = neighscale * param->nz;
nmax = 0;
atoms_per_bin = 8;
stencil = NULL;
bins = NULL;
bincount = NULL;
neighbor->maxneighs = 100;
neighbor->numneigh = NULL;
neighbor->neighbors = NULL;
}
void setupNeighbor()
{
MD_FLOAT coord;
int mbinxhi, mbinyhi, mbinzhi;
int nextx, nexty, nextz;
MD_FLOAT xlo = 0.0; MD_FLOAT xhi = xprd;
MD_FLOAT ylo = 0.0; MD_FLOAT yhi = yprd;
MD_FLOAT zlo = 0.0; MD_FLOAT zhi = zprd;
cutneighsq = cutneigh * cutneigh;
binsizex = xprd / nbinx;
binsizey = yprd / nbiny;
binsizez = zprd / nbinz;
bininvx = 1.0 / binsizex;
bininvy = 1.0 / binsizey;
bininvz = 1.0 / binsizez;
coord = xlo - cutneigh - SMALL * xprd;
mbinxlo = (int) (coord * bininvx);
if (coord < 0.0) {
mbinxlo = mbinxlo - 1;
}
coord = xhi + cutneigh + SMALL * xprd;
mbinxhi = (int) (coord * bininvx);
coord = ylo - cutneigh - SMALL * yprd;
mbinylo = (int) (coord * bininvy);
if (coord < 0.0) {
mbinylo = mbinylo - 1;
}
coord = yhi + cutneigh + SMALL * yprd;
mbinyhi = (int) (coord * bininvy);
coord = zlo - cutneigh - SMALL * zprd;
mbinzlo = (int) (coord * bininvz);
if (coord < 0.0) {
mbinzlo = mbinzlo - 1;
}
coord = zhi + cutneigh + SMALL * zprd;
mbinzhi = (int) (coord * bininvz);
mbinxlo = mbinxlo - 1;
mbinxhi = mbinxhi + 1;
mbinx = mbinxhi - mbinxlo + 1;
mbinylo = mbinylo - 1;
mbinyhi = mbinyhi + 1;
mbiny = mbinyhi - mbinylo + 1;
mbinzlo = mbinzlo - 1;
mbinzhi = mbinzhi + 1;
mbinz = mbinzhi - mbinzlo + 1;
nextx = (int) (cutneigh * bininvx);
if(nextx * binsizex < FACTOR * cutneigh) nextx++;
nexty = (int) (cutneigh * bininvy);
if(nexty * binsizey < FACTOR * cutneigh) nexty++;
nextz = (int) (cutneigh * bininvz);
if(nextz * binsizez < FACTOR * cutneigh) nextz++;
if (stencil) {
free(stencil);
}
stencil = (int*) malloc(
(2 * nextz + 1) * (2 * nexty + 1) * (2 * nextx + 1) * sizeof(int));
nstencil = 0;
int kstart = -nextz;
for(int k = kstart; k <= nextz; k++) {
for(int j = -nexty; j <= nexty; j++) {
for(int i = -nextx; i <= nextx; i++) {
if(bindist(i, j, k) < cutneighsq) {
stencil[nstencil++] =
k * mbiny * mbinx + j * mbinx + i;
}
}
}
}
mbins = mbinx * mbiny * mbinz;
if (bincount) {
free(bincount);
}
bincount = (int*) malloc(mbins * sizeof(int));
if (bins) {
free(bins);
}
bins = (int*) malloc(mbins * atoms_per_bin * sizeof(int));
}
void buildNeighbor(Atom *atom, Neighbor *neighbor)
{
int nall = atom->Nlocal + atom->Nghost;
/* extend atom arrays if necessary */
if(nall > nmax) {
nmax = nall;
if(neighbor->numneigh) cudaFreeHost(neighbor->numneigh);
if(neighbor->neighbors) cudaFreeHost(neighbor->neighbors);
checkCUDAError( "buildNeighbor numneigh", cudaMallocHost((void**)&(neighbor->numneigh), nmax * sizeof(int)) );
checkCUDAError( "buildNeighbor neighbors", cudaMallocHost((void**)&(neighbor->neighbors), nmax * neighbor->maxneighs * sizeof(int)) );
// neighbor->numneigh = (int*) malloc(nmax * sizeof(int));
// neighbor->neighbors = (int*) malloc(nmax * neighbor->maxneighs * sizeof(int*));
}
/* bin local & ghost atoms */
binatoms(atom);
int resize = 1;
/* loop over each atom, storing neighbors */
while(resize) {
int new_maxneighs = neighbor->maxneighs;
resize = 0;
for(int i = 0; i < atom->Nlocal; i++) {
int* neighptr = &(neighbor->neighbors[i]);
int n = 0;
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
int ibin = coord2bin(xtmp, ytmp, ztmp);
#ifdef EXPLICIT_TYPES
int type_i = atom->type[i];
#endif
for(int k = 0; k < nstencil; k++) {
int jbin = ibin + stencil[k];
int* loc_bin = &bins[jbin * atoms_per_bin];
for(int m = 0; m < bincount[jbin]; m++) {
int j = loc_bin[m];
if ( j == i ){
continue;
}
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
#ifdef EXPLICIT_TYPES
int type_j = atom->type[j];
const MD_FLOAT cutoff = atom->cutneighsq[type_i * atom->ntypes + type_j];
#else
const MD_FLOAT cutoff = cutneighsq;
#endif
if( rsq <= cutoff ) {
int idx = atom->Nlocal * n;
neighptr[idx] = j;
n += 1;
}
}
}
neighbor->numneigh[i] = n;
if(n >= neighbor->maxneighs) {
resize = 1;
if(n >= new_maxneighs) {
new_maxneighs = n;
}
}
}
if(resize) {
printf("RESIZE %d\n", neighbor->maxneighs);
neighbor->maxneighs = new_maxneighs * 1.2;
free(neighbor->neighbors);
neighbor->neighbors = (int*) malloc(atom->Nmax * neighbor->maxneighs * sizeof(int));
}
}
}
/* internal subroutines */
MD_FLOAT bindist(int i, int j, int k)
{
MD_FLOAT delx, dely, delz;
if(i > 0) {
delx = (i - 1) * binsizex;
} else if(i == 0) {
delx = 0.0;
} else {
delx = (i + 1) * binsizex;
}
if(j > 0) {
dely = (j - 1) * binsizey;
} else if(j == 0) {
dely = 0.0;
} else {
dely = (j + 1) * binsizey;
}
if(k > 0) {
delz = (k - 1) * binsizez;
} else if(k == 0) {
delz = 0.0;
} else {
delz = (k + 1) * binsizez;
}
return (delx * delx + dely * dely + delz * delz);
}
int coord2bin(MD_FLOAT xin, MD_FLOAT yin, MD_FLOAT zin)
{
int ix, iy, iz;
if(xin >= xprd) {
ix = (int)((xin - xprd) * bininvx) + nbinx - mbinxlo;
} else if(xin >= 0.0) {
ix = (int)(xin * bininvx) - mbinxlo;
} else {
ix = (int)(xin * bininvx) - mbinxlo - 1;
}
if(yin >= yprd) {
iy = (int)((yin - yprd) * bininvy) + nbiny - mbinylo;
} else if(yin >= 0.0) {
iy = (int)(yin * bininvy) - mbinylo;
} else {
iy = (int)(yin * bininvy) - mbinylo - 1;
}
if(zin >= zprd) {
iz = (int)((zin - zprd) * bininvz) + nbinz - mbinzlo;
} else if(zin >= 0.0) {
iz = (int)(zin * bininvz) - mbinzlo;
} else {
iz = (int)(zin * bininvz) - mbinzlo - 1;
}
return (iz * mbiny * mbinx + iy * mbinx + ix + 1);
}
void binatoms(Atom *atom)
{
int nall = atom->Nlocal + atom->Nghost;
int resize = 1;
while(resize > 0) {
resize = 0;
for(int i = 0; i < mbins; i++) {
bincount[i] = 0;
}
for(int i = 0; i < nall; i++) {
MD_FLOAT x = atom_x(i);
MD_FLOAT y = atom_y(i);
MD_FLOAT z = atom_z(i);
int ibin = coord2bin(x, y, z);
if(bincount[ibin] < atoms_per_bin) {
int ac = bincount[ibin]++;
bins[ibin * atoms_per_bin + ac] = i;
} else {
resize = 1;
}
}
if(resize) {
free(bins);
atoms_per_bin *= 2;
bins = (int*) malloc(mbins * atoms_per_bin * sizeof(int));
}
}
}
void sortAtom(Atom* atom) {
binatoms(atom);
int Nmax = atom->Nmax;
int* binpos = bincount;
for(int i=1; i<mbins; i++) {
binpos[i] += binpos[i-1];
}
#ifdef AOS
double* new_x = (double*) malloc(Nmax * sizeof(MD_FLOAT) * 3);
double* new_vx = (double*) malloc(Nmax * sizeof(MD_FLOAT) * 3);
#else
double* new_x = (double*) malloc(Nmax * sizeof(MD_FLOAT));
double* new_y = (double*) malloc(Nmax * sizeof(MD_FLOAT));
double* new_z = (double*) malloc(Nmax * sizeof(MD_FLOAT));
double* new_vx = (double*) malloc(Nmax * sizeof(MD_FLOAT));
double* new_vy = (double*) malloc(Nmax * sizeof(MD_FLOAT));
double* new_vz = (double*) malloc(Nmax * sizeof(MD_FLOAT));
#endif
double* old_x = atom->x; double* old_y = atom->y; double* old_z = atom->z;
double* old_vx = atom->vx; double* old_vy = atom->vy; double* old_vz = atom->vz;
for(int mybin = 0; mybin<mbins; mybin++) {
int start = mybin>0?binpos[mybin-1]:0;
int count = binpos[mybin] - start;
for(int k=0; k<count; k++) {
int new_i = start + k;
int old_i = bins[mybin * atoms_per_bin + k];
#ifdef AOS
new_x[new_i * 3 + 0] = old_x[old_i * 3 + 0];
new_x[new_i * 3 + 1] = old_x[old_i * 3 + 1];
new_x[new_i * 3 + 2] = old_x[old_i * 3 + 2];
new_vx[new_i * 3 + 0] = old_vx[old_i * 3 + 0];
new_vx[new_i * 3 + 1] = old_vy[old_i * 3 + 1];
new_vx[new_i * 3 + 2] = old_vz[old_i * 3 + 2];
#else
new_x[new_i] = old_x[old_i];
new_y[new_i] = old_y[old_i];
new_z[new_i] = old_z[old_i];
new_vx[new_i] = old_vx[old_i];
new_vy[new_i] = old_vy[old_i];
new_vz[new_i] = old_vz[old_i];
#endif
}
}
free(atom->x);
atom->x = new_x;
free(atom->vx);
atom->vx = new_vx;
#ifndef AOS
free(atom->y);
free(atom->z);
atom->y = new_y; atom->z = new_z;
free(atom->vy); free(atom->vz);
atom->vy = new_vy; atom->vz = new_vz;
#endif
}

172
src/pbc.c
View File

@@ -1,172 +0,0 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <stdio.h>
#include <pbc.h>
#include <atom.h>
#include <allocate.h>
#define DELTA 20000
static int NmaxGhost;
static int *PBCx, *PBCy, *PBCz;
static void growPbc(Atom*);
/* exported subroutines */
void initPbc(Atom* atom)
{
NmaxGhost = 0;
atom->border_map = NULL;
PBCx = NULL; PBCy = NULL; PBCz = NULL;
}
/* update coordinates of ghost atoms */
/* uses mapping created in setupPbc */
void updatePbc(Atom *atom, Parameter *param)
{
int *border_map = atom->border_map;
int nlocal = atom->Nlocal;
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
for(int i = 0; i < atom->Nghost; i++) {
atom_x(nlocal + i) = atom_x(border_map[i]) + PBCx[i] * xprd;
atom_y(nlocal + i) = atom_y(border_map[i]) + PBCy[i] * yprd;
atom_z(nlocal + i) = atom_z(border_map[i]) + PBCz[i] * zprd;
}
}
/* relocate atoms that have left domain according
* to periodic boundary conditions */
void updateAtomsPbc(Atom *atom, Parameter *param)
{
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
for(int i = 0; i < atom->Nlocal; i++) {
if(atom_x(i) < 0.0) {
atom_x(i) += xprd;
} else if(atom_x(i) >= xprd) {
atom_x(i) -= xprd;
}
if(atom_y(i) < 0.0) {
atom_y(i) += yprd;
} else if(atom_y(i) >= yprd) {
atom_y(i) -= yprd;
}
if(atom_z(i) < 0.0) {
atom_z(i) += zprd;
} else if(atom_z(i) >= zprd) {
atom_z(i) -= zprd;
}
}
}
/* setup periodic boundary conditions by
* defining ghost atoms around domain
* only creates mapping and coordinate corrections
* that are then enforced in updatePbc */
#define ADDGHOST(dx,dy,dz) \
Nghost++; \
border_map[Nghost] = i; \
PBCx[Nghost] = dx; \
PBCy[Nghost] = dy; \
PBCz[Nghost] = dz; \
atom->type[atom->Nlocal + Nghost] = atom->type[i]
void setupPbc(Atom *atom, Parameter *param)
{
int *border_map = atom->border_map;
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
MD_FLOAT Cutneigh = param->cutneigh;
int Nghost = -1;
for(int i = 0; i < atom->Nlocal; i++) {
if (atom->Nlocal + Nghost + 7 >= atom->Nmax) {
growAtom(atom);
}
if (Nghost + 7 >= NmaxGhost) {
growPbc(atom);
border_map = atom->border_map;
}
MD_FLOAT x = atom_x(i);
MD_FLOAT y = atom_y(i);
MD_FLOAT z = atom_z(i);
/* Setup ghost atoms */
/* 6 planes */
if (x < Cutneigh) { ADDGHOST(+1,0,0); }
if (x >= (xprd-Cutneigh)) { ADDGHOST(-1,0,0); }
if (y < Cutneigh) { ADDGHOST(0,+1,0); }
if (y >= (yprd-Cutneigh)) { ADDGHOST(0,-1,0); }
if (z < Cutneigh) { ADDGHOST(0,0,+1); }
if (z >= (zprd-Cutneigh)) { ADDGHOST(0,0,-1); }
/* 8 corners */
if (x < Cutneigh && y < Cutneigh && z < Cutneigh) { ADDGHOST(+1,+1,+1); }
if (x < Cutneigh && y >= (yprd-Cutneigh) && z < Cutneigh) { ADDGHOST(+1,-1,+1); }
if (x < Cutneigh && y >= Cutneigh && z >= (zprd-Cutneigh)) { ADDGHOST(+1,+1,-1); }
if (x < Cutneigh && y >= (yprd-Cutneigh) && z >= (zprd-Cutneigh)) { ADDGHOST(+1,-1,-1); }
if (x >= (xprd-Cutneigh) && y < Cutneigh && z < Cutneigh) { ADDGHOST(-1,+1,+1); }
if (x >= (xprd-Cutneigh) && y >= (yprd-Cutneigh) && z < Cutneigh) { ADDGHOST(-1,-1,+1); }
if (x >= (xprd-Cutneigh) && y < Cutneigh && z >= (zprd-Cutneigh)) { ADDGHOST(-1,+1,-1); }
if (x >= (xprd-Cutneigh) && y >= (yprd-Cutneigh) && z >= (zprd-Cutneigh)) { ADDGHOST(-1,-1,-1); }
/* 12 edges */
if (x < Cutneigh && z < Cutneigh) { ADDGHOST(+1,0,+1); }
if (x < Cutneigh && z >= (zprd-Cutneigh)) { ADDGHOST(+1,0,-1); }
if (x >= (xprd-Cutneigh) && z < Cutneigh) { ADDGHOST(-1,0,+1); }
if (x >= (xprd-Cutneigh) && z >= (zprd-Cutneigh)) { ADDGHOST(-1,0,-1); }
if (y < Cutneigh && z < Cutneigh) { ADDGHOST(0,+1,+1); }
if (y < Cutneigh && z >= (zprd-Cutneigh)) { ADDGHOST(0,+1,-1); }
if (y >= (yprd-Cutneigh) && z < Cutneigh) { ADDGHOST(0,-1,+1); }
if (y >= (yprd-Cutneigh) && z >= (zprd-Cutneigh)) { ADDGHOST(0,-1,-1); }
if (y < Cutneigh && x < Cutneigh) { ADDGHOST(+1,+1,0); }
if (y < Cutneigh && x >= (xprd-Cutneigh)) { ADDGHOST(-1,+1,0); }
if (y >= (yprd-Cutneigh) && x < Cutneigh) { ADDGHOST(+1,-1,0); }
if (y >= (yprd-Cutneigh) && x >= (xprd-Cutneigh)) { ADDGHOST(-1,-1,0); }
}
// increase by one to make it the ghost atom count
atom->Nghost = Nghost + 1;
}
/* internal subroutines */
void growPbc(Atom* atom)
{
int nold = NmaxGhost;
NmaxGhost += DELTA;
atom->border_map = (int*) reallocate(atom->border_map, ALIGNMENT, NmaxGhost * sizeof(int), nold * sizeof(int));
PBCx = (int*) reallocate(PBCx, ALIGNMENT, NmaxGhost * sizeof(int), nold * sizeof(int));
PBCy = (int*) reallocate(PBCy, ALIGNMENT, NmaxGhost * sizeof(int), nold * sizeof(int));
PBCz = (int*) reallocate(PBCz, ALIGNMENT, NmaxGhost * sizeof(int), nold * sizeof(int));
}