Compare commits

...

10 Commits

Author SHA1 Message Date
Rafael Ravedutti
bc7b523979 Move src directory to lammps
Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
2022-08-04 17:25:31 +02:00
Rafael Ravedutti
eeba125a52 Remove likwid and architecture-specific compilation flags
Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
2022-08-04 17:09:17 +02:00
Martin Bauernfeind
b32254b03f Changed data types in currently unused sort method to also work with single precision floating numbers 2022-07-22 13:55:27 +02:00
Martin Bauernfeind
4dac820784 Added newline in output to improve formatting 2022-07-20 23:04:22 +02:00
Martin Bauernfeind
fe56c50efd Added one more output line to output the force kernel throughput 2022-07-20 22:43:57 +02:00
Martin Bauernfeind
7a61cbbabf Instrumented the reneighbor function in order to obtain runtimes of its compontents 2022-07-19 20:38:11 +02:00
Martin Bauernfeind
176de0525b Instrumented the reneighbor function with timers (via getTimestamp()) to measure the runtime of its different components/methods 2022-07-17 18:34:17 +02:00
Martin Bauernfeind
7bad7e84b6 Fixed compiler errors 2022-07-13 14:52:37 +02:00
Martin Bauernfeind
fb304f240b Small changes in buildNeighbor to initialize the bincount list and other arrays only once 2022-07-13 14:42:34 +02:00
Martin Bauernfeind
5a6d1851ed Ported updateAtomsPbc to cuda and changed the code to use the cuda version from now on 2022-07-13 14:07:19 +02:00
29 changed files with 139 additions and 56 deletions

View File

@ -7,9 +7,10 @@ ANSI_CFLAGS += -pedantic
ANSI_CFLAGS += -Wextra
# CFLAGS = -O0 -g -std=c99 -fargument-noalias
CFLAGS = -O3 -g -arch=sm_61 # -fopenmp
#CFLAGS = -O3 -g -arch=sm_61 # -fopenmp
CFLAGS = -O3 -g # -fopenmp
ASFLAGS = -masm=intel
LFLAGS =
DEFINES = -D_GNU_SOURCE -DLIKWID_PERFMON
DEFINES = -D_GNU_SOURCE #-DLIKWID_PERFMON
INCLUDES = $(LIKWID_INC)
LIBS = -lm $(LIKWID_LIB) -llikwid -lcuda -lcudart
LIBS = -lm $(LIKWID_LIB) -lcuda -lcudart #-llikwid

View File

@ -153,7 +153,6 @@ void cuda_initial_integrate(bool doReneighbour, Parameter *param, Atom *atom, At
if(doReneighbour) {
checkCUDAError( "InitialIntegrate: velocity memcpy", cudaMemcpy(atom->vx, c_atom->vx, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
checkCUDAError( "InitialIntegrate: position memcpy", cudaMemcpy(atom->x, c_atom->x, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
}
}

View File

@ -54,5 +54,5 @@ extern void binatoms(Atom*);
extern void buildNeighbor(Atom*, Neighbor*);
extern void sortAtom(Atom*);
extern void binatoms_cuda(Atom*, Binning*, int*, Neighbor_params*, const int);
extern void buildNeighbor_cuda(Atom*, Neighbor*, Atom*, Neighbor*, const int);
extern void buildNeighbor_cuda(Atom*, Neighbor*, Atom*, Neighbor*, const int, double*);
#endif

View File

@ -29,5 +29,6 @@ extern void initPbc(Atom*);
extern void updatePbc(Atom*, Parameter*);
extern void updatePbc_cuda(Atom*, Parameter*, Atom*, bool, const int);
extern void updateAtomsPbc(Atom*, Parameter*);
extern void updateAtomsPbc_cuda(Atom*, Parameter*, Atom*, const int);
extern void setupPbc(Atom*, Parameter*);
#endif

View File

@ -5,6 +5,11 @@ typedef enum {
TOTAL = 0,
NEIGH,
FORCE,
NEIGH_UPDATE_ATOMS_PBC,
NEIGH_SETUP_PBC,
NEIGH_UPDATE_PBC,
NEIGH_BINATOMS,
NEIGH_BUILD_LISTS,
NUMTIMER
} timertype;

View File

@ -124,7 +124,8 @@ double setup(
Atom *c_atom,
Neighbor *c_neighbor,
Stats *stats,
const int num_threads_per_block)
const int num_threads_per_block,
double* timers)
{
if(param->force_field == FF_EAM) { initEam(eam, param); }
double S, E;
@ -145,7 +146,7 @@ double setup(
setupPbc(atom, param);
initCudaAtom(atom, neighbor, c_atom, c_neighbor);
updatePbc_cuda(atom, param, c_atom, true, num_threads_per_block);
buildNeighbor_cuda(atom, neighbor, c_atom, c_neighbor, num_threads_per_block);
buildNeighbor_cuda(atom, neighbor, c_atom, c_neighbor, num_threads_per_block, timers);
E = getTimeStamp();
@ -158,19 +159,32 @@ double reneighbour(
Neighbor *neighbor,
Atom *c_atom,
Neighbor *c_neighbor,
const int num_threads_per_block)
const int num_threads_per_block,
double* timers)
{
double S, E;
double S, E, beforeEvent, afterEvent;
S = getTimeStamp();
beforeEvent = S;
LIKWID_MARKER_START("reneighbour");
updateAtomsPbc(atom, param);
updateAtomsPbc_cuda(atom, param, c_atom, num_threads_per_block);
afterEvent = getTimeStamp();
timers[NEIGH_UPDATE_ATOMS_PBC] += afterEvent - beforeEvent;
beforeEvent = afterEvent;
setupPbc(atom, param);
afterEvent = getTimeStamp();
timers[NEIGH_SETUP_PBC] += afterEvent - beforeEvent;
beforeEvent = afterEvent;
updatePbc_cuda(atom, param, c_atom, true, num_threads_per_block);
afterEvent = getTimeStamp();
timers[NEIGH_UPDATE_PBC] += afterEvent - beforeEvent;
beforeEvent = afterEvent;
//sortAtom(atom);
buildNeighbor_cuda(atom, neighbor, c_atom, c_neighbor, num_threads_per_block);
buildNeighbor_cuda(atom, neighbor, c_atom, c_neighbor, num_threads_per_block, timers);
LIKWID_MARKER_STOP("reneighbour");
E = getTimeStamp();
afterEvent = E;
timers[NEIGH_BUILD_LISTS] += afterEvent - beforeEvent;
return E-S;
}
@ -318,7 +332,7 @@ int main(int argc, char** argv)
// this should be multiple of 32 as operations are performed at the level of warps
const int num_threads_per_block = get_num_threads();
setup(&param, &eam, &atom, &neighbor, &c_atom, &c_neighbor, &stats, num_threads_per_block);
setup(&param, &eam, &atom, &neighbor, &c_atom, &c_neighbor, &stats, num_threads_per_block, (double*) &timer);
computeThermo(0, &param, &atom);
if(param.force_field == FF_EAM) {
computeForceEam(&eam, &param, &atom, &neighbor, &stats, 1, 0);
@ -333,6 +347,11 @@ int main(int argc, char** argv)
timer[FORCE] = 0.0;
timer[NEIGH] = 0.0;
timer[TOTAL] = getTimeStamp();
timer[NEIGH_UPDATE_ATOMS_PBC] = 0.0;
timer[NEIGH_SETUP_PBC] = 0.0;
timer[NEIGH_UPDATE_PBC] = 0.0;
timer[NEIGH_BINATOMS] = 0.0;
timer[NEIGH_BUILD_LISTS] = 0.0;
if(param.vtk_file != NULL) {
write_atoms_to_vtk_file(param.vtk_file, &atom, 0);
@ -345,9 +364,12 @@ int main(int argc, char** argv)
cuda_initial_integrate(doReneighbour, &param, &atom, &c_atom, num_threads_per_block);
if(doReneighbour) {
timer[NEIGH] += reneighbour(&param, &atom, &neighbor, &c_atom, &c_neighbor, num_threads_per_block);
timer[NEIGH] += reneighbour(&param, &atom, &neighbor, &c_atom, &c_neighbor, num_threads_per_block, (double*) &timer);
} else {
double before = getTimeStamp();
updatePbc_cuda(&atom, &param, &c_atom, false, num_threads_per_block);
double after = getTimeStamp();
timer[NEIGH_UPDATE_PBC] += after - before;
}
if(param.force_field == FF_EAM) {
@ -372,6 +394,7 @@ int main(int argc, char** argv)
}
}
timer[NEIGH_BUILD_LISTS] -= timer[NEIGH_BINATOMS];
timer[TOTAL] = getTimeStamp() - timer[TOTAL];
computeThermo(-1, &param, &atom);
@ -385,11 +408,15 @@ int main(int argc, char** argv)
#endif
printf(HLINE);
printf("System: %d atoms %d ghost atoms, Steps: %d\n", atom.Natoms, atom.Nghost, param.ntimes);
printf("TOTAL %.2fs FORCE %.2fs NEIGH %.2fs REST %.2fs\n",
timer[TOTAL], timer[FORCE], timer[NEIGH], timer[TOTAL]-timer[FORCE]-timer[NEIGH]);
printf("TOTAL %.2fs FORCE %.2fs NEIGH %.2fs REST %.2fs NEIGH_TIMERS: UPD_AT: %.2fs SETUP_PBC %.2fs UPDATE_PBC %.2fs BINATOMS %.2fs BUILD_NEIGHBOR %.2fs\n",
timer[TOTAL], timer[FORCE], timer[NEIGH], timer[TOTAL]-timer[FORCE]-timer[NEIGH], timer[NEIGH_UPDATE_ATOMS_PBC], timer[NEIGH_SETUP_PBC], timer[NEIGH_UPDATE_PBC], timer[NEIGH_BINATOMS], timer[NEIGH_BUILD_LISTS]);
printf(HLINE);
printf("Performance: %.2f million atom updates per second\n",
1e-6 * (double) atom.Natoms * param.ntimes / timer[TOTAL]);
double atomUpdatesTotal = (double) atom.Natoms * param.ntimes;
printf("Force_perf in millions per sec: %.2f\n", 1e-6 * atomUpdatesTotal / timer[FORCE]);
double atomNeighUpdatesTotal = (double) atom.Natoms * param.ntimes / param.every;
printf("Neighbor_perf in millions per sec: updateAtomsPbc: %.2f setupPbc: %.2f updatePbc: %.2f binAtoms: %.2f buildNeighbor_wo_binning: %.2f\n", 1e-6 * atomNeighUpdatesTotal / timer[NEIGH_UPDATE_ATOMS_PBC], 1e-6 * atomNeighUpdatesTotal / timer[NEIGH_SETUP_PBC], 1e-6 * atomUpdatesTotal / timer[NEIGH_UPDATE_PBC], 1e-6 * atomNeighUpdatesTotal / timer[NEIGH_BINATOMS], 1e-6 * atomNeighUpdatesTotal / timer[NEIGH_BUILD_LISTS]);
#ifdef COMPUTE_STATS
displayStatistics(&atom, &param, &stats, timer);
#endif

View File

@ -33,6 +33,8 @@ extern "C" {
#include <parameter.h>
#include <allocate.h>
#include <atom.h>
#include <timing.h>
#include <timers.h>
#define SMALL 1.0e-6
#define FACTOR 0.999
@ -194,6 +196,17 @@ static int nstencil; // # of bins in stencil
static int* stencil; // stencil list of bin offsets
static MD_FLOAT binsizex, binsizey, binsizez;
static int* c_stencil = NULL;
static int* c_resize_needed = NULL;
static int* c_new_maxneighs = NULL;
static Binning c_binning{
.bincount = NULL,
.bins = NULL,
.mbins = 0,
.atoms_per_bin = 0
};
static int coord2bin(MD_FLOAT, MD_FLOAT , MD_FLOAT);
static MD_FLOAT bindist(int, int, int);
@ -506,21 +519,21 @@ void sortAtom(Atom* atom) {
}
#ifdef AOS
double* new_x = (double*) malloc(Nmax * sizeof(MD_FLOAT) * 3);
MD_FLOAT* new_x = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT) * 3);
double* new_vx = (double*) malloc(Nmax * sizeof(MD_FLOAT) * 3);
MD_FLOAT* new_vx = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT) * 3);
#else
double* new_x = (double*) malloc(Nmax * sizeof(MD_FLOAT));
double* new_y = (double*) malloc(Nmax * sizeof(MD_FLOAT));
double* new_z = (double*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_x = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_y = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_z = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
double* new_vx = (double*) malloc(Nmax * sizeof(MD_FLOAT));
double* new_vy = (double*) malloc(Nmax * sizeof(MD_FLOAT));
double* new_vz = (double*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_vx = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_vy = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_vz = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
#endif
double* old_x = atom->x; double* old_y = atom->y; double* old_z = atom->z;
double* old_vx = atom->vx; double* old_vy = atom->vy; double* old_vz = atom->vz;
MD_FLOAT* old_x = atom->x; MD_FLOAT* old_y = atom->y; MD_FLOAT* old_z = atom->z;
MD_FLOAT* old_vx = atom->vx; MD_FLOAT* old_vy = atom->vy; MD_FLOAT* old_vz = atom->vz;
for(int mybin = 0; mybin<mbins; mybin++) {
int start = mybin>0?binpos[mybin-1]:0;
@ -568,12 +581,6 @@ void binatoms_cuda(Atom* c_atom, Binning* c_binning, int* c_resize_needed, Neigh
{
int nall = c_atom->Nlocal + c_atom->Nghost;
int resize = 1;
if(c_binning->bincount == NULL){
checkCUDAError("binatoms_cuda c_binning->bincount malloc", cudaMalloc((void**)(&c_binning->bincount), c_binning->mbins * sizeof(int)) );
}
if(c_binning->bins == NULL){
checkCUDAError("binatoms_cuda c_binning->bins malloc", cudaMalloc((void**)(&c_binning->bins), c_binning->mbins * c_binning->atoms_per_bin * sizeof(int)) );
}
const int num_blocks = ceil((float)nall / (float)threads_per_block);
@ -585,10 +592,10 @@ void binatoms_cuda(Atom* c_atom, Binning* c_binning, int* c_resize_needed, Neigh
/*binatoms_kernel(Atom a, int* bincount, int* bins, int c_binning->atoms_per_bin, Neighbor_params np, int *resize_needed) */
binatoms_kernel<<<num_blocks, threads_per_block>>>(*c_atom, c_binning->bincount, c_binning->bins, c_binning->atoms_per_bin, *np, c_resize_needed);
checkCUDAError( "PeekAtLastError binatoms kernel", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync binatoms kernel", cudaDeviceSynchronize() );
checkCUDAError( "PeekAtLastError binatoms kernel", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync binatoms kernel", cudaDeviceSynchronize() );
checkCUDAError("binatoms_cuda c_resize_needed memcpy back", cudaMemcpy(&resize, c_resize_needed, sizeof(int), cudaMemcpyDeviceToHost) );
checkCUDAError("binatoms_cuda c_resize_needed memcpy back", cudaMemcpy(&resize, c_resize_needed, sizeof(int), cudaMemcpyDeviceToHost) );
if(resize) {
cudaFree(c_binning->bins);
@ -604,23 +611,25 @@ void binatoms_cuda(Atom* c_atom, Binning* c_binning, int* c_resize_needed, Neigh
checkCUDAError( "DeviceSync sort_bin_contents kernel", cudaDeviceSynchronize() );
}
void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor, const int num_threads_per_block)
void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor, const int num_threads_per_block, double* timers)
{
int nall = atom->Nlocal + atom->Nghost;
c_neighbor->maxneighs = neighbor->maxneighs;
cudaProfilerStart();
/* upload stencil */
int* c_stencil;
// TODO move this to be done once at the start
checkCUDAError( "buildNeighbor c_n_stencil malloc", cudaMalloc((void**)&c_stencil, nstencil * sizeof(int)) );
checkCUDAError( "buildNeighbor c_n_stencil memcpy", cudaMemcpy(c_stencil, stencil, nstencil * sizeof(int), cudaMemcpyHostToDevice ));
// TODO move all of this initialization into its own method
if(c_stencil == NULL){
checkCUDAError( "buildNeighbor c_n_stencil malloc", cudaMalloc((void**)&c_stencil, nstencil * sizeof(int)) );
checkCUDAError( "buildNeighbor c_n_stencil memcpy", cudaMemcpy(c_stencil, stencil, nstencil * sizeof(int), cudaMemcpyHostToDevice ));
}
Binning c_binning;
c_binning.mbins = mbins;
c_binning.atoms_per_bin = atoms_per_bin;
checkCUDAError( "buildNeighbor c_binning->bincount malloc", cudaMalloc((void**)&(c_binning.bincount), mbins * sizeof(int)) );
checkCUDAError( "buidlNeighbor c_binning->bins malloc", cudaMalloc((void**)&(c_binning.bins), c_binning.mbins * c_binning.atoms_per_bin * sizeof(int)) );
if(c_binning.mbins == 0){
c_binning.mbins = mbins;
c_binning.atoms_per_bin = atoms_per_bin;
checkCUDAError( "buildNeighbor c_binning->bincount malloc", cudaMalloc((void**)&(c_binning.bincount), c_binning.mbins * sizeof(int)) );
checkCUDAError( "buidlNeighbor c_binning->bins malloc", cudaMalloc((void**)&(c_binning.bins), c_binning.mbins * c_binning.atoms_per_bin * sizeof(int)) );
}
Neighbor_params np{
.xprd = xprd,
@ -640,14 +649,19 @@ void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *
.mbinz = mbinz
};
int* c_resize_needed;
checkCUDAError("buildNeighbor c_resize_needed malloc", cudaMalloc((void**)&c_resize_needed, sizeof(int)) );
/* bin local & ghost atoms */
binatoms_cuda(c_atom, &c_binning, c_resize_needed, &np, num_threads_per_block);
if(c_resize_needed == NULL){
checkCUDAError("buildNeighbor c_resize_needed malloc", cudaMalloc((void**)&c_resize_needed, sizeof(int)) );
}
int* c_new_maxneighs;
checkCUDAError("c_new_maxneighs malloc", cudaMalloc((void**)&c_new_maxneighs, sizeof(int) ));
/* bin local & ghost atoms */
double beforeBinning = getTimeStamp();
binatoms_cuda(c_atom, &c_binning, c_resize_needed, &np, num_threads_per_block);
double afterBinning = getTimeStamp();
timers[NEIGH_BINATOMS] += afterBinning - beforeBinning;
if(c_new_maxneighs == NULL){
checkCUDAError("c_new_maxneighs malloc", cudaMalloc((void**)&c_new_maxneighs, sizeof(int) ));
}
int resize = 1;
@ -701,10 +715,5 @@ void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *
neighbor->maxneighs = c_neighbor->maxneighs;
cudaProfilerStop();
cudaFree(c_new_maxneighs);
cudaFree(c_stencil);
cudaFree(c_binning.bincount);
cudaFree(c_binning.bins);
}
}

View File

@ -33,6 +33,32 @@ extern "C" {
}
__global__ void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
Atom* atom = &a;
if( i >= atom->Nlocal ){
return;
}
if (atom_x(i) < 0.0) {
atom_x(i) += xprd;
} else if (atom_x(i) >= xprd) {
atom_x(i) -= xprd;
}
if (atom_y(i) < 0.0) {
atom_y(i) += yprd;
} else if (atom_y(i) >= yprd) {
atom_y(i) -= yprd;
}
if (atom_z(i) < 0.0) {
atom_z(i) += zprd;
} else if (atom_z(i) >= zprd) {
atom_z(i) -= zprd;
}
}
__global__ void computePbcUpdate(Atom a, int* PBCx, int* PBCy, int* PBCz, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int Nghost = a.Nghost;
@ -163,6 +189,21 @@ void updateAtomsPbc(Atom *atom, Parameter *param) {
}
}
void updateAtomsPbc_cuda(Atom* atom, Parameter* param, Atom* c_atom, const int num_threads_per_block){
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block);
/*void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd)*/
computeAtomsPbcUpdate<<<num_blocks, num_threads_per_block>>>(*c_atom, xprd, yprd, zprd);
checkCUDAError( "PeekAtLastError UpdateAtomsPbc", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync UpdateAtomsPbc", cudaDeviceSynchronize() );
checkCUDAError( "updateAtomsPbc position memcpy back", cudaMemcpy(atom->x, c_atom->x, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
}
/* setup periodic boundary conditions by
* defining ghost atoms around domain
* only creates mapping and coordinate corrections