Separate simd file into multiple files

Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
This commit is contained in:
Rafael Ravedutti 2022-03-16 14:52:55 +01:00
parent 459853dc25
commit f3263a2d48
5 changed files with 321 additions and 217 deletions

View File

@ -26,226 +26,23 @@
#include <immintrin.h> #include <immintrin.h>
#include <zmmintrin.h> #include <zmmintrin.h>
#ifdef AVX512
# if PRECISION == 2
# include "simd/avx512_double.h"
# else
# include "simd/avx512_float.h"
# endif
#else
# if PRECISION == 2
# include "simd/avx_avx2_double.h"
# else
# include "simd/avx_avx2_float.h"
# endif
#endif
#define SIMD_PRINT_REAL(a) simd_print_real(#a, a); #define SIMD_PRINT_REAL(a) simd_print_real(#a, a);
#define SIMD_PRINT_MASK(a) simd_print_mask(#a, a); #define SIMD_PRINT_MASK(a) simd_print_mask(#a, a);
#ifdef AVX512
#if PRECISION == 2 // Double precision
#define MD_SIMD_FLOAT __m512d
#define MD_SIMD_MASK __mmask8
static inline MD_SIMD_FLOAT simd_broadcast(double scalar) { return _mm512_set1_pd(scalar); }
static inline MD_SIMD_FLOAT simd_zero() { return _mm512_set1_pd(0.0); }
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_add_pd(a, b); }
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_sub_pd(a, b); }
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_mul_pd(a, b); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm512_fmadd_pd(a, b, c); }
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm512_rcp14_pd(a); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm512_mask_add_pd(a, m, a, b); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_cmp_pd_mask(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm512_load_pd(p); }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
MD_SIMD_FLOAT x = _mm512_add_pd(a, _mm512_shuffle_f64x2(a, a, 0xee));
x = _mm512_add_pd(x, _mm512_shuffle_f64x2(x, x, 0x11));
x = _mm512_add_pd(x, _mm512_permute_pd(x, 0x01));
return *((MD_FLOAT *) &x);
}
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const double* m) {
return _mm512_broadcast_f64x4(_mm256_load_pd(m));
}
static inline MD_SIMD_FLOAT simd_load_h_dual(const double* m) {
return _mm512_insertf64x4(_mm512_broadcastsd_pd(_mm_load_sd(m)), _mm256_broadcastsd_pd(_mm_load_sd(m + 1)), 1);
}
static inline double simd_h_dual_reduce_sum(double* m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
__m512d t0;
__m256d t2, t3;
t0 = _mm512_add_pd(v0, _mm512_permutex_pd(v0, 0x4e));
t0 = _mm512_mask_add_pd(t0, simd_mask_from_u32(0xccul), v1, _mm512_permutex_pd(v1, 0x4e));
t0 = _mm512_add_pd(t0, _mm512_permutex_pd(t0, 0xb1));
t0 = _mm512_mask_shuffle_f64x2(t0, simd_mask_from_u32(0xaaul), t0, t0, 0xee);
t2 = _mm512_castpd512_pd256(t0);
t3 = _mm256_load_pd(m);
t3 = _mm256_add_pd(t3, t2);
_mm256_store_pd(m, t3);
t0 = _mm512_add_pd(t0, _mm512_permutex_pd(t0, 0x4e));
t0 = _mm512_add_pd(t0, _mm512_permutex_pd(t0, 0xb1));
return _mm_cvtsd_f64(_mm512_castpd512_pd128(t0));
}
#else // Single-precision
#define MD_SIMD_FLOAT __m512
#define MD_SIMD_MASK __mmask16
static inline MD_SIMD_FLOAT simd_broadcast(float scalar) { return _mm512_set1_ps(scalar); }
static inline MD_SIMD_FLOAT simd_zero() { return _mm512_set1_ps(0.0f); }
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_add_ps(a, b); }
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_sub_ps(a, b); }
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_mul_ps(a, b); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm512_fmadd_ps(a, b, c); }
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm512_rcp14_ps(a); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm512_mask_add_ps(a, m, a, b); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask16(a, b); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_cmp_ps_mask(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask16(a); }
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask16_u32(a); }
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm512_load_ps(p); }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
// This would only be called in a Mx16 configuration, which is not valid in GROMACS
fprintf(stderr, "simd_h_reduce_sum(): Called with AVX512 intrinsics and single-precision which is not valid!\n");
exit(-1);
return 0.0;
}
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const float* m) {
return _mm512_castpd_ps(_mm512_broadcast_f64x4(_mm256_load_pd((const double *)(m))));
}
static inline MD_SIMD_FLOAT simd_load_h_dual(const float* m) {
return _mm512_shuffle_f32x4(_mm512_broadcastss_ps(_mm_load_ss(m)), _mm512_broadcastss_ps(_mm_load_ss(m + 1)), 0x44);
}
static inline MD_FLOAT simd_h_dual_reduce_sum(float* m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
__m512 t0, t1;
__m128 t2, t3;
t0 = _mm512_shuffle_f32x4(v0, v1, 0x88);
t1 = _mm512_shuffle_f32x4(v0, v1, 0xdd);
t0 = _mm512_add_ps(t0, t1);
t0 = _mm512_add_ps(t0, _mm512_permute_ps(t0, 0x4e));
t0 = _mm512_add_ps(t0, _mm512_permute_ps(t0, 0xb1));
t0 = _mm512_maskz_compress_ps(simd_mask_from_u32(0x1111ul), t0);
t3 = _mm512_castps512_ps128(t0);
t2 = _mm_load_ps(m);
t2 = _mm_add_ps(t2, t3);
_mm_store_ps(m, t2);
t3 = _mm_add_ps(t3, _mm_permute_ps(t3, 0x4e));
t3 = _mm_add_ps(t3, _mm_permute_ps(t3, 0xb1));
return _mm_cvtss_f32(t3);
}
#endif // PRECISION
#else // AVX or AVX2
#if PRECISION == 2 // Double precision
#define MD_SIMD_FLOAT __m256d
#ifdef NO_AVX2
#define MD_SIMD_MASK __m256d
#else
#define MD_SIMD_MASK __mmask8
#endif
static inline MD_SIMD_FLOAT simd_broadcast(double scalar) { return _mm256_set1_pd(scalar); }
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_pd(0.0); }
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_add_pd(a, b); }
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_sub_pd(a, b); }
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_mul_pd(a, b); }
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_pd(p); }
#ifdef NO_AVX2
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_cvtps_pd(_mm_rcp_ps(_mm256_cvtpd_ps(a))); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return simd_add(simd_mul(a, b), c); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return simd_add(a, _mm256_and_pd(b, m)); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _mm256_and_pd(a, b); }
// TODO: Initialize all diagonal cases and just select the proper one (all bits set or diagonal) based on cond0
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) {
const unsigned long long int all = 0xFFFFFFFFFFFFFFFF;
const unsigned long long int none = 0x0;
return _mm256_castsi256_pd(_mm256_set_epi64x((a & 0x8) ? all : none, (a & 0x4) ? all : none, (a & 0x2) ? all : none, (a & 0x1) ? all : none));
}
// TODO: Implement this, althrough it is just required for debugging
static inline int simd_mask_to_u32(MD_SIMD_MASK a) { return 0; }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
__m128d a0, a1;
a = _mm256_add_pd(a, _mm256_permute_pd(a, 0b0101));
a0 = _mm256_castpd256_pd128(a);
a1 = _mm256_extractf128_pd(a, 0x1);
a0 = _mm_add_sd(a0, a1);
return *((MD_FLOAT *) &a0);
}
#else // AVX2
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_pd(a); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_pd(a, b, c); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm256_mask_add_pd(a, m, a, b); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd_mask(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
__m128d a0, a1;
// test with shuffle & add as an alternative to hadd later
a = _mm256_hadd_pd(a, a);
a0 = _mm256_castpd256_pd128(a);
a1 = _mm256_extractf128_pd(a, 0x1);
a0 = _mm_add_sd(a0, a1);
return *((MD_FLOAT *) &a0);
}
#endif
#else // Single-precision
#define MD_SIMD_FLOAT __m256
#ifdef NO_AVX2
#define MD_SIMD_MASK __m256
#else
#define MD_SIMD_MASK __mmask8
#endif
static inline MD_SIMD_FLOAT simd_broadcast(float scalar) { return _mm256_set1_ps(scalar); }
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_ps(0.0); }
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_add_ps(a, b); }
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_sub_ps(a, b); }
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_mul_ps(a, b); }
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_ps(p); }
#ifdef NO_AVX2
#error "AVX intrinsincs with single-precision not implemented!"
#else // AVX2
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_ps(a); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_ps(a, b, c); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm256_mask_add_ps(a, m, a, b); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd_mask(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
__m128 t0;
t0 = _mm_add_ps(_mm256_castps256_ps128(a), _mm256_extractf128_ps(a, 0x1));
t0 = _mm_add_ps(t0, _mm_permute_ps(t0, _MM_SHUFFLE(1, 0, 3, 2)));
t0 = _mm_add_ss(t0, _mm_permute_ps(t0, _MM_SHUFFLE(0, 3, 2, 1)));
return *((MD_FLOAT *) &t0);
}
#endif // NO_AVX2
#endif // PRECISION
#endif // AVX or AVX2
static inline void simd_print_real(const char *ref, MD_SIMD_FLOAT a) { static inline void simd_print_real(const char *ref, MD_SIMD_FLOAT a) {
double x[VECTOR_WIDTH]; double x[VECTOR_WIDTH];
memcpy(x, &a, sizeof(x)); memcpy(x, &a, sizeof(x));

View File

@ -0,0 +1,77 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <string.h>
#include <immintrin.h>
#include <zmmintrin.h>
#define MD_SIMD_FLOAT __m512d
#define MD_SIMD_MASK __mmask8
static inline MD_SIMD_FLOAT simd_broadcast(double scalar) { return _mm512_set1_pd(scalar); }
static inline MD_SIMD_FLOAT simd_zero() { return _mm512_set1_pd(0.0); }
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_add_pd(a, b); }
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_sub_pd(a, b); }
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_mul_pd(a, b); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm512_fmadd_pd(a, b, c); }
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm512_rcp14_pd(a); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm512_mask_add_pd(a, m, a, b); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_cmp_pd_mask(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm512_load_pd(p); }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
MD_SIMD_FLOAT x = _mm512_add_pd(a, _mm512_shuffle_f64x2(a, a, 0xee));
x = _mm512_add_pd(x, _mm512_shuffle_f64x2(x, x, 0x11));
x = _mm512_add_pd(x, _mm512_permute_pd(x, 0x01));
return *((MD_FLOAT *) &x);
}
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const double* m) {
return _mm512_broadcast_f64x4(_mm256_load_pd(m));
}
static inline MD_SIMD_FLOAT simd_load_h_dual(const double* m) {
return _mm512_insertf64x4(_mm512_broadcastsd_pd(_mm_load_sd(m)), _mm256_broadcastsd_pd(_mm_load_sd(m + 1)), 1);
}
static inline double simd_h_dual_reduce_sum(double* m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
__m512d t0;
__m256d t2, t3;
t0 = _mm512_add_pd(v0, _mm512_permutex_pd(v0, 0x4e));
t0 = _mm512_mask_add_pd(t0, simd_mask_from_u32(0xccul), v1, _mm512_permutex_pd(v1, 0x4e));
t0 = _mm512_add_pd(t0, _mm512_permutex_pd(t0, 0xb1));
t0 = _mm512_mask_shuffle_f64x2(t0, simd_mask_from_u32(0xaaul), t0, t0, 0xee);
t2 = _mm512_castpd512_pd256(t0);
t3 = _mm256_load_pd(m);
t3 = _mm256_add_pd(t3, t2);
_mm256_store_pd(m, t3);
t0 = _mm512_add_pd(t0, _mm512_permutex_pd(t0, 0x4e));
t0 = _mm512_add_pd(t0, _mm512_permutex_pd(t0, 0xb1));
return _mm_cvtsd_f64(_mm512_castpd512_pd128(t0));
}

View File

@ -0,0 +1,78 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <string.h>
#include <immintrin.h>
#include <zmmintrin.h>
#define MD_SIMD_FLOAT __m512
#define MD_SIMD_MASK __mmask16
static inline MD_SIMD_FLOAT simd_broadcast(float scalar) { return _mm512_set1_ps(scalar); }
static inline MD_SIMD_FLOAT simd_zero() { return _mm512_set1_ps(0.0f); }
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_add_ps(a, b); }
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_sub_ps(a, b); }
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_mul_ps(a, b); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm512_fmadd_ps(a, b, c); }
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm512_rcp14_ps(a); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm512_mask_add_ps(a, m, a, b); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask16(a, b); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_cmp_ps_mask(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask16(a); }
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask16_u32(a); }
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm512_load_ps(p); }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
// This would only be called in a Mx16 configuration, which is not valid in GROMACS
fprintf(stderr, "simd_h_reduce_sum(): Called with AVX512 intrinsics and single-precision which is not valid!\n");
exit(-1);
return 0.0;
}
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const float* m) {
return _mm512_castpd_ps(_mm512_broadcast_f64x4(_mm256_load_pd((const double *)(m))));
}
static inline MD_SIMD_FLOAT simd_load_h_dual(const float* m) {
return _mm512_shuffle_f32x4(_mm512_broadcastss_ps(_mm_load_ss(m)), _mm512_broadcastss_ps(_mm_load_ss(m + 1)), 0x44);
}
static inline MD_FLOAT simd_h_dual_reduce_sum(float* m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
__m512 t0, t1;
__m128 t2, t3;
t0 = _mm512_shuffle_f32x4(v0, v1, 0x88);
t1 = _mm512_shuffle_f32x4(v0, v1, 0xdd);
t0 = _mm512_add_ps(t0, t1);
t0 = _mm512_add_ps(t0, _mm512_permute_ps(t0, 0x4e));
t0 = _mm512_add_ps(t0, _mm512_permute_ps(t0, 0xb1));
t0 = _mm512_maskz_compress_ps(simd_mask_from_u32(0x1111ul), t0);
t3 = _mm512_castps512_ps128(t0);
t2 = _mm_load_ps(m);
t2 = _mm_add_ps(t2, t3);
_mm_store_ps(m, t2);
t3 = _mm_add_ps(t3, _mm_permute_ps(t3, 0x4e));
t3 = _mm_add_ps(t3, _mm_permute_ps(t3, 0xb1));
return _mm_cvtss_f32(t3);
}

View File

@ -0,0 +1,87 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <string.h>
#include <immintrin.h>
#include <zmmintrin.h>
#define MD_SIMD_FLOAT __m256d
#ifdef NO_AVX2
#define MD_SIMD_MASK __m256d
#else
#define MD_SIMD_MASK __mmask8
#endif
static inline MD_SIMD_FLOAT simd_broadcast(double scalar) { return _mm256_set1_pd(scalar); }
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_pd(0.0); }
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_add_pd(a, b); }
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_sub_pd(a, b); }
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_mul_pd(a, b); }
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_pd(p); }
#ifdef NO_AVX2
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_cvtps_pd(_mm_rcp_ps(_mm256_cvtpd_ps(a))); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return simd_add(simd_mul(a, b), c); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return simd_add(a, _mm256_and_pd(b, m)); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _mm256_and_pd(a, b); }
// TODO: Initialize all diagonal cases and just select the proper one (all bits set or diagonal) based on cond0
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) {
const unsigned long long int all = 0xFFFFFFFFFFFFFFFF;
const unsigned long long int none = 0x0;
return _mm256_castsi256_pd(_mm256_set_epi64x((a & 0x8) ? all : none, (a & 0x4) ? all : none, (a & 0x2) ? all : none, (a & 0x1) ? all : none));
}
// TODO: Implement this, althrough it is just required for debugging
static inline int simd_mask_to_u32(MD_SIMD_MASK a) { return 0; }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
__m128d a0, a1;
a = _mm256_add_pd(a, _mm256_permute_pd(a, 0b0101));
a0 = _mm256_castpd256_pd128(a);
a1 = _mm256_extractf128_pd(a, 0x1);
a0 = _mm_add_sd(a0, a1);
return *((MD_FLOAT *) &a0);
}
#else // AVX2
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_pd(a); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_pd(a, b, c); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm256_mask_add_pd(a, m, a, b); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd_mask(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
__m128d a0, a1;
// test with shuffle & add as an alternative to hadd later
a = _mm256_hadd_pd(a, a);
a0 = _mm256_castpd256_pd128(a);
a1 = _mm256_extractf128_pd(a, 0x1);
a0 = _mm_add_sd(a0, a1);
return *((MD_FLOAT *) &a0);
}
#endif

View File

@ -0,0 +1,65 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <string.h>
#include <immintrin.h>
#include <zmmintrin.h>
#define MD_SIMD_FLOAT __m256
#ifdef NO_AVX2
#define MD_SIMD_MASK __m256
#else
#define MD_SIMD_MASK __mmask8
#endif
static inline MD_SIMD_FLOAT simd_broadcast(float scalar) { return _mm256_set1_ps(scalar); }
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_ps(0.0); }
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_add_ps(a, b); }
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_sub_ps(a, b); }
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_mul_ps(a, b); }
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_ps(p); }
#ifdef NO_AVX2
#error "AVX intrinsincs with single-precision not implemented!"
#else // AVX2
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_ps(a); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_ps(a, b, c); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm256_mask_add_ps(a, m, a, b); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd_mask(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
__m128 t0;
t0 = _mm_add_ps(_mm256_castps256_ps128(a), _mm256_extractf128_ps(a, 0x1));
t0 = _mm_add_ps(t0, _mm_permute_ps(t0, _MM_SHUFFLE(1, 0, 3, 2)));
t0 = _mm_add_ss(t0, _mm_permute_ps(t0, _MM_SHUFFLE(0, 3, 2, 1)));
return *((MD_FLOAT *) &t0);
}
#endif