Building of super clusters complete, force computation kernel WIP
This commit is contained in:
parent
b20e8c6986
commit
ee3f6de050
4
Makefile
4
Makefile
@ -97,6 +97,10 @@ ifeq ($(strip $(USE_SIMD_KERNEL)),true)
|
||||
DEFINES += -DUSE_SIMD_KERNEL
|
||||
endif
|
||||
|
||||
ifeq ($(strip $(USE_SUPER_CLUSTERS)),true)
|
||||
DEFINES += -DUSE_SUPER_CLUSTERS
|
||||
endif
|
||||
|
||||
VPATH = $(SRC_DIR) $(ASM_DIR) $(CUDA_DIR)
|
||||
ASM = $(patsubst $(SRC_DIR)/%.c, $(BUILD_DIR)/%.s,$(wildcard $(SRC_DIR)/*.c))
|
||||
OVERWRITE:= $(patsubst $(ASM_DIR)/%-new.s, $(BUILD_DIR)/%.o,$(wildcard $(ASM_DIR)/*-new.s))
|
||||
|
@ -1,5 +1,5 @@
|
||||
# Compiler tag (GCC/CLANG/ICC/ICX/ONEAPI/NVCC)
|
||||
TAG ?= ICC
|
||||
TAG ?= NVCC
|
||||
# Instruction set (SSE/AVX/AVX_FMA/AVX2/AVX512)
|
||||
ISA ?= AVX512
|
||||
# Optimization scheme (lammps/gromacs/clusters_per_bin)
|
||||
@ -41,6 +41,7 @@ HALF_NEIGHBOR_LISTS_CHECK_CJ ?= false
|
||||
# Configurations for CUDA
|
||||
# Use CUDA host memory to optimize transfers
|
||||
USE_CUDA_HOST_MEMORY ?= false
|
||||
USE_SUPER_CLUSTERS ?= true
|
||||
|
||||
#Feature options
|
||||
OPTIONS = -DALIGNMENT=64
|
||||
|
@ -37,6 +37,24 @@ void initAtom(Atom *atom) {
|
||||
atom->iclusters = NULL;
|
||||
atom->jclusters = NULL;
|
||||
atom->icluster_bin = NULL;
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
atom->scl_x = NULL;
|
||||
atom->scl_v = NULL;
|
||||
atom->scl_f = NULL;
|
||||
|
||||
atom->Nsclusters = 0;
|
||||
atom->Nsclusters_local = 0;
|
||||
atom->Nsclusters_ghost = 0;
|
||||
atom->Nsclusters_max = 0;
|
||||
|
||||
atom->scl_type = NULL;
|
||||
|
||||
atom->siclusters = NULL;
|
||||
atom->icluster_idx = NULL;
|
||||
|
||||
atom->sicluster_bin = NULL;
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
}
|
||||
|
||||
void createAtom(Atom *atom, Parameter *param) {
|
||||
@ -421,3 +439,25 @@ void growClusters(Atom *atom) {
|
||||
atom->cl_v = (MD_FLOAT*) reallocate(atom->cl_v, ALIGNMENT, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT), nold * CLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
atom->cl_type = (int*) reallocate(atom->cl_type, ALIGNMENT, atom->Nclusters_max * CLUSTER_M * sizeof(int), nold * CLUSTER_M * sizeof(int));
|
||||
}
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
void growSuperClusters(Atom *atom) {
|
||||
int nold = atom->Nsclusters_max;
|
||||
atom->Nsclusters_max += DELTA;
|
||||
atom->siclusters = (SuperCluster*) reallocate(atom->siclusters, ALIGNMENT, atom->Nsclusters_max * sizeof(SuperCluster), nold * sizeof(SuperCluster));
|
||||
atom->icluster_idx = (int*) reallocate(atom->icluster_idx, ALIGNMENT, atom->Nsclusters_max * SCLUSTER_SIZE * sizeof(int), nold * SCLUSTER_SIZE * sizeof(int));
|
||||
atom->sicluster_bin = (int*) reallocate(atom->sicluster_bin, ALIGNMENT, atom->Nsclusters_max * sizeof(int), nold * sizeof(int));
|
||||
//atom->scl_type = (int*) reallocate(atom->scl_type, ALIGNMENT, atom->Nclusters_max * CLUSTER_M * SCLUSTER_SIZE * sizeof(int), nold * CLUSTER_M * SCLUSTER_SIZE * sizeof(int));
|
||||
|
||||
atom->scl_x = (MD_FLOAT*) reallocate(atom->scl_x, ALIGNMENT, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT), nold * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
atom->scl_f = (MD_FLOAT*) reallocate(atom->scl_f, ALIGNMENT, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT), nold * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
atom->scl_v = (MD_FLOAT*) reallocate(atom->scl_v, ALIGNMENT, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT), nold * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
|
||||
|
||||
/*
|
||||
for (int sci = 0; sci < atom->Nsclusters_max; sci++) {
|
||||
atom->siclusters[sci].iclusters = (int*) reallocate(atom->siclusters[sci].iclusters, ALIGNMENT, SCLUSTER_SIZE * sizeof(int), SCLUSTER_SIZE * sizeof(int));
|
||||
}
|
||||
*/
|
||||
}
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
|
@ -39,8 +39,29 @@ extern "C" {
|
||||
MD_FLOAT *cuda_bbminz, *cuda_bbmaxz;
|
||||
int *cuda_PBCx, *cuda_PBCy, *cuda_PBCz;
|
||||
int isReneighboured;
|
||||
|
||||
int *cuda_iclusters;
|
||||
int *cuda_nclusters;
|
||||
|
||||
int cuda_max_scl;
|
||||
MD_FLOAT *cuda_scl_x;
|
||||
MD_FLOAT *cuda_scl_v;
|
||||
MD_FLOAT *cuda_scl_f;
|
||||
|
||||
extern void alignDataToSuperclusters(Atom *atom);
|
||||
extern void alignDataFromSuperclusters(Atom *atom);
|
||||
extern double computeForceLJSup_cuda(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats);
|
||||
}
|
||||
|
||||
extern __global__ void cudaInitialIntegrateSup_warp(MD_FLOAT *cuda_cl_x, MD_FLOAT *cuda_cl_v, MD_FLOAT *cuda_cl_f,
|
||||
int *cuda_nclusters,
|
||||
int *cuda_natoms,
|
||||
int Nsclusters_local, MD_FLOAT dtforce, MD_FLOAT dt);
|
||||
|
||||
extern __global__ void cudaFinalIntegrateSup_warp(MD_FLOAT *cuda_cl_v, MD_FLOAT *cuda_cl_f,
|
||||
int *cuda_nclusters, int *cuda_natoms,
|
||||
int Nsclusters_local, MD_FLOAT dtforce);
|
||||
|
||||
extern "C"
|
||||
void initDevice(Atom *atom, Neighbor *neighbor) {
|
||||
cuda_assert("cudaDeviceSetup", cudaDeviceReset());
|
||||
@ -59,10 +80,23 @@ void initDevice(Atom *atom, Neighbor *neighbor) {
|
||||
natoms = (int *) malloc(atom->Nclusters_max * sizeof(int));
|
||||
ngatoms = (int *) malloc(atom->Nclusters_max * sizeof(int));
|
||||
isReneighboured = 1;
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
cuda_max_scl = atom->Nsclusters_max;
|
||||
cuda_iclusters = (int *) allocateGPU(atom->Nsclusters_max * SCLUSTER_SIZE * sizeof(int));
|
||||
cuda_nclusters = (int *) allocateGPU(atom->Nsclusters_max * sizeof(int));
|
||||
|
||||
cuda_scl_x = (MD_FLOAT *) allocateGPU(atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
cuda_scl_v = (MD_FLOAT *) allocateGPU(atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
cuda_scl_f = (MD_FLOAT *) allocateGPU(atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
}
|
||||
|
||||
extern "C"
|
||||
void copyDataToCUDADevice(Atom *atom) {
|
||||
DEBUG_MESSAGE("copyDataToCUDADevice start\r\n");
|
||||
|
||||
memcpyToGPU(cuda_cl_x, atom->cl_x, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
memcpyToGPU(cuda_cl_v, atom->cl_v, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
memcpyToGPU(cuda_cl_f, atom->cl_f, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
@ -85,13 +119,49 @@ void copyDataToCUDADevice(Atom *atom) {
|
||||
memcpyToGPU(cuda_PBCx, atom->PBCx, atom->Nclusters_ghost * sizeof(int));
|
||||
memcpyToGPU(cuda_PBCy, atom->PBCy, atom->Nclusters_ghost * sizeof(int));
|
||||
memcpyToGPU(cuda_PBCz, atom->PBCz, atom->Nclusters_ghost * sizeof(int));
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
alignDataToSuperclusters(atom);
|
||||
|
||||
if (cuda_max_scl < atom->Nsclusters_max) {
|
||||
cuda_assert("cudaDeviceFree", cudaFree(cuda_scl_x));
|
||||
cuda_assert("cudaDeviceFree", cudaFree(cuda_scl_v));
|
||||
cuda_assert("cudaDeviceFree", cudaFree(cuda_scl_f));
|
||||
cuda_max_scl = atom->Nsclusters_max;
|
||||
|
||||
cuda_iclusters = (int *) allocateGPU(atom->Nsclusters_max * SCLUSTER_SIZE * sizeof(int));
|
||||
cuda_nclusters = (int *) allocateGPU(atom->Nsclusters_max * sizeof(int));
|
||||
|
||||
cuda_scl_x = (MD_FLOAT *) allocateGPU(atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
cuda_scl_v = (MD_FLOAT *) allocateGPU(atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
cuda_scl_f = (MD_FLOAT *) allocateGPU(atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
}
|
||||
memcpyToGPU(cuda_scl_x, atom->scl_x, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
memcpyToGPU(cuda_scl_v, atom->scl_v, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
memcpyToGPU(cuda_scl_f, atom->scl_f, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
|
||||
DEBUG_MESSAGE("copyDataToCUDADevice stop\r\n");
|
||||
|
||||
}
|
||||
|
||||
extern "C"
|
||||
void copyDataFromCUDADevice(Atom *atom) {
|
||||
DEBUG_MESSAGE("copyDataFromCUDADevice start\r\n");
|
||||
|
||||
memcpyFromGPU(atom->cl_x, cuda_cl_x, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
memcpyFromGPU(atom->cl_v, cuda_cl_v, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
memcpyFromGPU(atom->cl_f, cuda_cl_f, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
alignDataFromSuperclusters(atom);
|
||||
|
||||
memcpyFromGPU(atom->scl_x, cuda_scl_x, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
memcpyFromGPU(atom->scl_v, cuda_scl_v, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
memcpyFromGPU(atom->scl_f, cuda_scl_f, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
|
||||
DEBUG_MESSAGE("copyDataFromCUDADevice stop\r\n");
|
||||
}
|
||||
|
||||
extern "C"
|
||||
@ -109,6 +179,12 @@ void cudaDeviceFree() {
|
||||
cuda_assert("cudaDeviceFree", cudaFree(cuda_PBCz));
|
||||
free(natoms);
|
||||
free(ngatoms);
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
cuda_assert("cudaDeviceFree", cudaFree(cuda_scl_x));
|
||||
cuda_assert("cudaDeviceFree", cudaFree(cuda_scl_v));
|
||||
cuda_assert("cudaDeviceFree", cudaFree(cuda_scl_f));
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
}
|
||||
|
||||
__global__ void cudaInitialIntegrate_warp(MD_FLOAT *cuda_cl_x, MD_FLOAT *cuda_cl_v, MD_FLOAT *cuda_cl_f,
|
||||
@ -251,9 +327,17 @@ extern "C"
|
||||
void cudaInitialIntegrate(Parameter *param, Atom *atom) {
|
||||
const int threads_num = 16;
|
||||
dim3 block_size = dim3(threads_num, 1, 1);
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
dim3 grid_size = dim3(atom->Nsclusters_local/(threads_num)+1, 1, 1);
|
||||
cudaInitialIntegrateSup_warp<<<grid_size, block_size>>>(cuda_scl_x, cuda_scl_v, cuda_scl_f,
|
||||
cuda_nclusters,
|
||||
cuda_natoms, atom->Nsclusters_local, param->dtforce, param->dt);
|
||||
#else
|
||||
dim3 grid_size = dim3(atom->Nclusters_local/(threads_num)+1, 1, 1);
|
||||
cudaInitialIntegrate_warp<<<grid_size, block_size>>>(cuda_cl_x, cuda_cl_v, cuda_cl_f,
|
||||
cuda_natoms, atom->Nclusters_local, param->dtforce, param->dt);
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
cuda_assert("cudaInitialIntegrate", cudaPeekAtLastError());
|
||||
cuda_assert("cudaInitialIntegrate", cudaDeviceSynchronize());
|
||||
}
|
||||
@ -310,8 +394,17 @@ extern "C"
|
||||
void cudaFinalIntegrate(Parameter *param, Atom *atom) {
|
||||
const int threads_num = 16;
|
||||
dim3 block_size = dim3(threads_num, 1, 1);
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
dim3 grid_size = dim3(atom->Nsclusters_local/(threads_num)+1, 1, 1);
|
||||
cudaFinalIntegrateSup_warp<<<grid_size, block_size>>>(cuda_scl_v, cuda_scl_f,
|
||||
cuda_nclusters, cuda_natoms,
|
||||
atom->Nsclusters_local, param->dt);
|
||||
#else
|
||||
dim3 grid_size = dim3(atom->Nclusters_local/(threads_num)+1, 1, 1);
|
||||
cudaFinalIntegrate_warp<<<grid_size, block_size>>>(cuda_cl_v, cuda_cl_f, cuda_natoms, atom->Nclusters_local, param->dt);
|
||||
cudaFinalIntegrate_warp<<<grid_size, block_size>>>(cuda_cl_v, cuda_cl_f, cuda_natoms,
|
||||
atom->Nclusters_local, param->dt);
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
cuda_assert("cudaFinalIntegrate", cudaPeekAtLastError());
|
||||
cuda_assert("cudaFinalIntegrate", cudaDeviceSynchronize());
|
||||
}
|
||||
|
290
gromacs/cuda/force_lj_sup.cu
Normal file
290
gromacs/cuda/force_lj_sup.cu
Normal file
@ -0,0 +1,290 @@
|
||||
|
||||
extern "C" {
|
||||
|
||||
#include <stdio.h>
|
||||
//---
|
||||
#include <cuda.h>
|
||||
#include <driver_types.h>
|
||||
//---
|
||||
#include <likwid-marker.h>
|
||||
//---
|
||||
#include <atom.h>
|
||||
#include <device.h>
|
||||
#include <neighbor.h>
|
||||
#include <parameter.h>
|
||||
#include <stats.h>
|
||||
#include <timing.h>
|
||||
#include <util.h>
|
||||
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
extern MD_FLOAT *cuda_cl_x;
|
||||
extern MD_FLOAT *cuda_cl_v;
|
||||
extern MD_FLOAT *cuda_cl_f;
|
||||
extern int *cuda_neighbors;
|
||||
extern int *cuda_numneigh;
|
||||
extern int *cuda_natoms;
|
||||
extern int *natoms;
|
||||
extern int *ngatoms;
|
||||
extern int *cuda_border_map;
|
||||
extern int *cuda_jclusters_natoms;
|
||||
extern MD_FLOAT *cuda_bbminx, *cuda_bbmaxx;
|
||||
extern MD_FLOAT *cuda_bbminy, *cuda_bbmaxy;
|
||||
extern MD_FLOAT *cuda_bbminz, *cuda_bbmaxz;
|
||||
extern int *cuda_PBCx, *cuda_PBCy, *cuda_PBCz;
|
||||
extern int isReneighboured;
|
||||
|
||||
extern int *cuda_iclusters;
|
||||
extern int *cuda_nclusters;
|
||||
|
||||
extern MD_FLOAT *cuda_scl_x;
|
||||
extern MD_FLOAT *cuda_scl_v;
|
||||
extern MD_FLOAT *cuda_scl_f;
|
||||
}
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
extern "C"
|
||||
void alignDataToSuperclusters(Atom *atom) {
|
||||
for (int sci = 0; sci < atom->Nsclusters_local; sci++) {
|
||||
const unsigned int scl_offset = sci * SCLUSTER_SIZE * 3 * CLUSTER_M;
|
||||
|
||||
for (int ci = 0, scci = scl_offset; ci < atom->siclusters[sci].nclusters; ci++, scci += CLUSTER_M) {
|
||||
|
||||
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(atom->icluster_idx[SCLUSTER_SIZE * sci + ci])];
|
||||
MD_FLOAT *ci_v = &atom->cl_v[CI_VECTOR_BASE_INDEX(atom->icluster_idx[SCLUSTER_SIZE * sci + ci])];
|
||||
MD_FLOAT *ci_f = &atom->cl_f[CI_VECTOR_BASE_INDEX(atom->icluster_idx[SCLUSTER_SIZE * sci + ci])];
|
||||
|
||||
/*
|
||||
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
|
||||
MD_FLOAT *ci_v = &atom->cl_v[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
|
||||
MD_FLOAT *ci_f = &atom->cl_f[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
|
||||
*/
|
||||
|
||||
memcpy(&atom->scl_x[scci], &ci_x[0], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&atom->scl_x[scci + SCLUSTER_SIZE * CLUSTER_M], &ci_x[0 + CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&atom->scl_x[scci + 2 * SCLUSTER_SIZE * CLUSTER_M], &ci_x[0 + 2 * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
|
||||
memcpy(&atom->scl_v[scci], &ci_v[0], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&atom->scl_v[scci + SCLUSTER_SIZE * CLUSTER_M], &ci_v[0 + CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&atom->scl_v[scci + 2 * SCLUSTER_SIZE * CLUSTER_M], &ci_v[0 + 2 * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
|
||||
memcpy(&atom->scl_f[scci], &ci_f[0], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&atom->scl_f[scci + SCLUSTER_SIZE * CLUSTER_M], &ci_f[0 + CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&atom->scl_f[scci + 2 * SCLUSTER_SIZE * CLUSTER_M], &ci_f[0 + 2 * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
extern "C"
|
||||
void alignDataFromSuperclusters(Atom *atom) {
|
||||
for (int sci = 0; sci < atom->Nsclusters_local; sci++) {
|
||||
const unsigned int scl_offset = sci * SCLUSTER_SIZE * 3 * CLUSTER_M;
|
||||
|
||||
for (int ci = 0, scci = scl_offset; ci < atom->siclusters[sci].nclusters; ci++, scci += CLUSTER_M) {
|
||||
|
||||
|
||||
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(atom->icluster_idx[SCLUSTER_SIZE * sci + ci])];
|
||||
MD_FLOAT *ci_v = &atom->cl_v[CI_VECTOR_BASE_INDEX(atom->icluster_idx[SCLUSTER_SIZE * sci + ci])];
|
||||
MD_FLOAT *ci_f = &atom->cl_f[CI_VECTOR_BASE_INDEX(atom->icluster_idx[SCLUSTER_SIZE * sci + ci])];
|
||||
|
||||
/*
|
||||
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
|
||||
MD_FLOAT *ci_v = &atom->cl_v[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
|
||||
MD_FLOAT *ci_f = &atom->cl_f[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
|
||||
*/
|
||||
|
||||
memcpy(&ci_x[0], &atom->scl_x[scci], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&ci_x[0 + CLUSTER_M], &atom->scl_x[scci + SCLUSTER_SIZE * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&ci_x[0 + 2 * CLUSTER_M], &atom->scl_x[scci + 2 * SCLUSTER_SIZE * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
|
||||
memcpy(&ci_v[0], &atom->scl_v[scci], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&ci_v[0 + CLUSTER_M], &atom->scl_v[scci + SCLUSTER_SIZE * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&ci_v[0 + 2 * CLUSTER_M], &atom->scl_v[scci + 2 * SCLUSTER_SIZE * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
|
||||
memcpy(&ci_f[0], &atom->scl_f[scci], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&ci_f[0 + CLUSTER_M], &atom->scl_f[scci + SCLUSTER_SIZE * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&ci_f[0 + 2 * CLUSTER_M], &atom->scl_f[scci + 2 * SCLUSTER_SIZE * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void cudaInitialIntegrateSup_warp(MD_FLOAT *cuda_cl_x, MD_FLOAT *cuda_cl_v, MD_FLOAT *cuda_cl_f,
|
||||
int *cuda_nclusters,
|
||||
int *cuda_natoms,
|
||||
int Nsclusters_local, MD_FLOAT dtforce, MD_FLOAT dt) {
|
||||
|
||||
unsigned int sci_pos = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
//unsigned int cii_pos = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
if (sci_pos >= Nsclusters_local) return;
|
||||
|
||||
//unsigned int ci_pos = cii_pos / CLUSTER_M;
|
||||
//unsigned int scii_pos = cii_pos % CLUSTER_M;
|
||||
|
||||
//if (ci_pos >= cuda_nclusters[sci_pos]) return;
|
||||
//if (scii_pos >= cuda_natoms[ci_pos]) return;
|
||||
|
||||
int ci_vec_base = SCI_VECTOR_BASE_INDEX(sci_pos);
|
||||
MD_FLOAT *ci_x = &cuda_cl_x[ci_vec_base];
|
||||
MD_FLOAT *ci_v = &cuda_cl_v[ci_vec_base];
|
||||
MD_FLOAT *ci_f = &cuda_cl_f[ci_vec_base];
|
||||
|
||||
for (int scii_pos = 0; scii_pos < SCLUSTER_M; scii_pos++) {
|
||||
ci_v[SCL_X_OFFSET + scii_pos] += dtforce * ci_f[SCL_X_OFFSET + scii_pos];
|
||||
ci_v[SCL_Y_OFFSET + scii_pos] += dtforce * ci_f[SCL_Y_OFFSET + scii_pos];
|
||||
ci_v[SCL_Z_OFFSET + scii_pos] += dtforce * ci_f[SCL_Z_OFFSET + scii_pos];
|
||||
ci_x[SCL_X_OFFSET + scii_pos] += dt * ci_v[SCL_X_OFFSET + scii_pos];
|
||||
ci_x[SCL_Y_OFFSET + scii_pos] += dt * ci_v[SCL_Y_OFFSET + scii_pos];
|
||||
ci_x[SCL_Z_OFFSET + scii_pos] += dt * ci_v[SCL_Z_OFFSET + scii_pos];
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void cudaFinalIntegrateSup_warp(MD_FLOAT *cuda_cl_v, MD_FLOAT *cuda_cl_f,
|
||||
int *cuda_nclusters, int *cuda_natoms,
|
||||
int Nsclusters_local, MD_FLOAT dtforce) {
|
||||
|
||||
unsigned int sci_pos = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
//unsigned int cii_pos = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
if (sci_pos >= Nsclusters_local) return;
|
||||
|
||||
//unsigned int ci_pos = cii_pos / CLUSTER_M;
|
||||
//unsigned int scii_pos = cii_pos % CLUSTER_M;
|
||||
|
||||
//if (ci_pos >= cuda_nclusters[sci_pos]) return;
|
||||
//if (scii_pos >= cuda_natoms[ci_pos]) return;
|
||||
|
||||
int ci_vec_base = SCI_VECTOR_BASE_INDEX(sci_pos);
|
||||
MD_FLOAT *ci_v = &cuda_cl_v[ci_vec_base];
|
||||
MD_FLOAT *ci_f = &cuda_cl_f[ci_vec_base];
|
||||
|
||||
for (int scii_pos = 0; scii_pos < SCLUSTER_M; scii_pos++) {
|
||||
ci_v[SCL_X_OFFSET + scii_pos] += dtforce * ci_f[SCL_X_OFFSET + scii_pos];
|
||||
ci_v[SCL_Y_OFFSET + scii_pos] += dtforce * ci_f[SCL_Y_OFFSET + scii_pos];
|
||||
ci_v[SCL_Z_OFFSET + scii_pos] += dtforce * ci_f[SCL_Z_OFFSET + scii_pos];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
__global__ void computeForceLJSup_cuda_warp(MD_FLOAT *cuda_cl_x, MD_FLOAT *cuda_cl_f,
|
||||
int *cuda_nclusters, int *cuda_iclusters,
|
||||
int Nsclusters_local,
|
||||
int *cuda_numneigh, int *cuda_neighs, int half_neigh, int maxneighs,
|
||||
MD_FLOAT cutforcesq, MD_FLOAT sigma6, MD_FLOAT epsilon) {
|
||||
|
||||
unsigned int sci_pos = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
unsigned int scii_pos = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
unsigned int cjj_pos = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
if ((sci_pos >= Nsclusters_local) || (scii_pos >= SCLUSTER_M) || (cjj_pos >= CLUSTER_N)) return;
|
||||
|
||||
unsigned int ci_pos = scii_pos / CLUSTER_M;
|
||||
unsigned int cii_pos = scii_pos % CLUSTER_M;
|
||||
|
||||
if (ci_pos >= cuda_nclusters[sci_pos]) return;
|
||||
|
||||
int ci_cj0 = CJ0_FROM_CI(ci_pos);
|
||||
int ci_vec_base = SCI_VECTOR_BASE_INDEX(sci_pos);
|
||||
MD_FLOAT *ci_x = &cuda_cl_x[ci_vec_base];
|
||||
MD_FLOAT *ci_f = &cuda_cl_f[ci_vec_base];
|
||||
|
||||
|
||||
//int numneighs = cuda_numneigh[ci_pos];
|
||||
int numneighs = cuda_numneigh[cuda_iclusters[SCLUSTER_SIZE * sci_pos + ci_pos]];
|
||||
|
||||
for(int k = 0; k < numneighs; k++) {
|
||||
int cj = (&cuda_neighs[cuda_iclusters[SCLUSTER_SIZE * sci_pos + ci_pos] * maxneighs])[k];
|
||||
// TODO Make cj accessible from super cluster data alignment (not reachable right now)
|
||||
int cj_vec_base = SCJ_VECTOR_BASE_INDEX(cj);
|
||||
MD_FLOAT *cj_x = &cuda_cl_x[cj_vec_base];
|
||||
MD_FLOAT *cj_f = &cuda_cl_f[cj_vec_base];
|
||||
|
||||
MD_FLOAT xtmp = ci_x[SCL_CL_X_OFFSET(ci_pos) + cii_pos];
|
||||
MD_FLOAT ytmp = ci_x[SCL_CL_Y_OFFSET(ci_pos) + cii_pos];
|
||||
MD_FLOAT ztmp = ci_x[SCL_CL_Z_OFFSET(ci_pos) + cii_pos];
|
||||
MD_FLOAT fix = 0;
|
||||
MD_FLOAT fiy = 0;
|
||||
MD_FLOAT fiz = 0;
|
||||
|
||||
int cond;
|
||||
#if CLUSTER_M == CLUSTER_N
|
||||
cond = half_neigh ? (ci_cj0 != cj || cii_pos < cjj_pos) :
|
||||
(ci_cj0 != cj || cii_pos != cjj_pos);
|
||||
#elif CLUSTER_M < CLUSTER_N
|
||||
cond = half_neigh ? (ci_cj0 != cj || cii_pos + CLUSTER_M * (ci_pos & 0x1) < cjj_pos) :
|
||||
(ci_cj0 != cj || cii_pos + CLUSTER_M * (ci_pos & 0x1) != cjj_pos);
|
||||
#endif
|
||||
if(cond) {
|
||||
MD_FLOAT delx = xtmp - cj_x[SCL_CL_X_OFFSET(ci_pos) + cjj_pos];
|
||||
MD_FLOAT dely = ytmp - cj_x[SCL_CL_Y_OFFSET(ci_pos) + cjj_pos];
|
||||
MD_FLOAT delz = ztmp - cj_x[SCL_CL_Z_OFFSET(ci_pos) + cjj_pos];
|
||||
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
|
||||
if(rsq < cutforcesq) {
|
||||
MD_FLOAT sr2 = 1.0 / rsq;
|
||||
MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
|
||||
MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
|
||||
|
||||
if(half_neigh) {
|
||||
atomicAdd(&cj_f[SCL_CL_X_OFFSET(ci_pos) + cjj_pos], -delx * force);
|
||||
atomicAdd(&cj_f[SCL_CL_Y_OFFSET(ci_pos) + cjj_pos], -dely * force);
|
||||
atomicAdd(&cj_f[SCL_CL_Z_OFFSET(ci_pos) + cjj_pos], -delz * force);
|
||||
}
|
||||
|
||||
fix += delx * force;
|
||||
fiy += dely * force;
|
||||
fiz += delz * force;
|
||||
|
||||
atomicAdd(&ci_f[SCL_CL_X_OFFSET(ci_pos) + cii_pos], fix);
|
||||
atomicAdd(&ci_f[SCL_CL_Y_OFFSET(ci_pos) + cii_pos], fiy);
|
||||
atomicAdd(&ci_f[SCL_CL_Z_OFFSET(ci_pos) + cii_pos], fiz);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
extern "C"
|
||||
double computeForceLJSup_cuda(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
|
||||
DEBUG_MESSAGE("computeForceLJSup_cuda start\r\n");
|
||||
|
||||
MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
|
||||
MD_FLOAT sigma6 = param->sigma6;
|
||||
MD_FLOAT epsilon = param->epsilon;
|
||||
|
||||
memsetGPU(cuda_cl_f, 0, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT));
|
||||
if (isReneighboured) {
|
||||
|
||||
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
||||
memcpyToGPU(&cuda_numneigh[ci], &neighbor->numneigh[ci], sizeof(int));
|
||||
memcpyToGPU(&cuda_neighbors[ci * neighbor->maxneighs], &neighbor->neighbors[ci * neighbor->maxneighs], neighbor->numneigh[ci] * sizeof(int));
|
||||
}
|
||||
|
||||
for(int sci = 0; sci < atom->Nsclusters_local; sci++) {
|
||||
memcpyToGPU(&cuda_nclusters[sci], &atom->siclusters[sci].nclusters, sizeof(int));
|
||||
//memcpyToGPU(&cuda_iclusters[sci * SCLUSTER_SIZE], &atom->siclusters[sci].iclusters, sizeof(int) * atom->siclusters[sci].nclusters);
|
||||
}
|
||||
|
||||
memcpyToGPU(cuda_iclusters, atom->icluster_idx, atom->Nsclusters_max * SCLUSTER_SIZE * sizeof(int));
|
||||
|
||||
isReneighboured = 0;
|
||||
}
|
||||
|
||||
const int threads_num = 1;
|
||||
dim3 block_size = dim3(threads_num, SCLUSTER_M, CLUSTER_N);
|
||||
dim3 grid_size = dim3(atom->Nsclusters_local/threads_num+1, 1, 1);
|
||||
double S = getTimeStamp();
|
||||
LIKWID_MARKER_START("force");
|
||||
computeForceLJSup_cuda_warp<<<grid_size, block_size>>>(cuda_scl_x, cuda_scl_f,
|
||||
cuda_nclusters, cuda_iclusters,
|
||||
atom->Nsclusters_local,
|
||||
cuda_numneigh, cuda_neighbors,
|
||||
neighbor->half_neigh, neighbor->maxneighs, cutforcesq,
|
||||
sigma6, epsilon);
|
||||
cuda_assert("computeForceLJ_cuda", cudaPeekAtLastError());
|
||||
cuda_assert("computeForceLJ_cuda", cudaDeviceSynchronize());
|
||||
LIKWID_MARKER_STOP("force");
|
||||
double E = getTimeStamp();
|
||||
DEBUG_MESSAGE("computeForceLJSup_cuda stop\r\n");
|
||||
return E-S;
|
||||
}
|
||||
#endif //USE_SUPER_CLUSTERS
|
@ -22,7 +22,25 @@
|
||||
# define KERNEL_NAME "CUDA"
|
||||
# define CLUSTER_M 8
|
||||
# define CLUSTER_N VECTOR_WIDTH
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
# define XX 0
|
||||
# define YY 1
|
||||
# define ZZ 2
|
||||
# define SCLUSTER_SIZE_X 2
|
||||
# define SCLUSTER_SIZE_Y 2
|
||||
# define SCLUSTER_SIZE_Z 2
|
||||
# define SCLUSTER_SIZE (SCLUSTER_SIZE_X * SCLUSTER_SIZE_Y * SCLUSTER_SIZE_Z)
|
||||
# define DIM_COORD(dim,coord) ((dim == XX) ? atom_x(coord) : ((dim == YY) ? atom_y(coord) : atom_z(coord)))
|
||||
# define MIN(a,b) ({int _a = (a), _b = (b); _a < _b ? _a : _b; })
|
||||
# define SCLUSTER_M CLUSTER_M * SCLUSTER_SIZE
|
||||
|
||||
# define computeForceLJ computeForceLJSup_cuda
|
||||
#else
|
||||
# define computeForceLJ computeForceLJ_cuda
|
||||
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
|
||||
# define initialIntegrate cudaInitialIntegrate
|
||||
# define finalIntegrate cudaFinalIntegrate
|
||||
# define updatePbc cudaUpdatePbc
|
||||
@ -55,16 +73,28 @@
|
||||
# define CJ1_FROM_CI(a) (a)
|
||||
# define CI_BASE_INDEX(a,b) ((a) * CLUSTER_N * (b))
|
||||
# define CJ_BASE_INDEX(a,b) ((a) * CLUSTER_N * (b))
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
# define SCI_BASE_INDEX(a,b) ((a) * CLUSTER_N * SCLUSTER_SIZE * (b))
|
||||
# define SCJ_BASE_INDEX(a,b) ((a) * CLUSTER_N * SCLUSTER_SIZE * (b))
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
#elif CLUSTER_M == CLUSTER_N * 2 // M > N
|
||||
# define CJ0_FROM_CI(a) ((a) << 1)
|
||||
# define CJ1_FROM_CI(a) (((a) << 1) | 0x1)
|
||||
# define CI_BASE_INDEX(a,b) ((a) * CLUSTER_M * (b))
|
||||
# define CJ_BASE_INDEX(a,b) (((a) >> 1) * CLUSTER_M * (b) + ((a) & 0x1) * (CLUSTER_M >> 1))
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
# define SCI_BASE_INDEX(a,b) ((a) * CLUSTER_M * SCLUSTER_SIZE * (b))
|
||||
# define SCJ_BASE_INDEX(a,b) (((a) >> 1) * CLUSTER_M * SCLUSTER_SIZE * (b) + ((a) & 0x1) * (SCLUSTER_SIZE * CLUSTER_M >> 1))
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
#elif CLUSTER_M == CLUSTER_N / 2 // M < N
|
||||
# define CJ0_FROM_CI(a) ((a) >> 1)
|
||||
# define CJ1_FROM_CI(a) ((a) >> 1)
|
||||
# define CI_BASE_INDEX(a,b) (((a) >> 1) * CLUSTER_N * (b) + ((a) & 0x1) * (CLUSTER_N >> 1))
|
||||
# define CJ_BASE_INDEX(a,b) ((a) * CLUSTER_N * (b))
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
# define SCI_BASE_INDEX(a,b) (((a) >> 1) * CLUSTER_N * SCLUSTER_SIZE * (b) + ((a) & 0x1) * (CLUSTER_N * SCLUSTER_SIZE >> 1))
|
||||
# define SCJ_BASE_INDEX(a,b) ((a) * CLUSTER_N * SCLUSTER_SIZE * (b))
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
#else
|
||||
# error "Invalid cluster configuration!"
|
||||
#endif
|
||||
@ -78,14 +108,37 @@
|
||||
#define CJ_SCALAR_BASE_INDEX(a) (CJ_BASE_INDEX(a, 1))
|
||||
#define CJ_VECTOR_BASE_INDEX(a) (CJ_BASE_INDEX(a, 3))
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
#define SCI_SCALAR_BASE_INDEX(a) (SCI_BASE_INDEX(a, 1))
|
||||
#define SCI_VECTOR_BASE_INDEX(a) (SCI_BASE_INDEX(a, 3))
|
||||
#define SCJ_SCALAR_BASE_INDEX(a) (SCJ_BASE_INDEX(a, 1))
|
||||
#define SCJ_VECTOR_BASE_INDEX(a) (SCJ_BASE_INDEX(a, 3))
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
|
||||
#if CLUSTER_M >= CLUSTER_N
|
||||
# define CL_X_OFFSET (0 * CLUSTER_M)
|
||||
# define CL_Y_OFFSET (1 * CLUSTER_M)
|
||||
# define CL_Z_OFFSET (2 * CLUSTER_M)
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
# define SCL_CL_X_OFFSET(ci) (ci * CLUSTER_M + 0 * SCLUSTER_M)
|
||||
# define SCL_CL_Y_OFFSET(ci) (ci * CLUSTER_M + 1 * SCLUSTER_M)
|
||||
# define SCL_CL_Z_OFFSET(ci) (ci * CLUSTER_M + 2 * SCLUSTER_M)
|
||||
|
||||
# define SCL_X_OFFSET (0 * SCLUSTER_M)
|
||||
# define SCL_Y_OFFSET (1 * SCLUSTER_M)
|
||||
# define SCL_Z_OFFSET (2 * SCLUSTER_M)
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
#else
|
||||
# define CL_X_OFFSET (0 * CLUSTER_N)
|
||||
# define CL_Y_OFFSET (1 * CLUSTER_N)
|
||||
# define CL_Z_OFFSET (2 * CLUSTER_N)
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
# define SCL_X_OFFSET (0 * SCLUSTER_SIZE * CLUSTER_N)
|
||||
# define SCL_Y_OFFSET (1 * SCLUSTER_SIZE * CLUSTER_N)
|
||||
# define SCL_Z_OFFSET (2 * SCLUSTER_SIZE * CLUSTER_N)
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
@ -95,6 +148,14 @@ typedef struct {
|
||||
MD_FLOAT bbminz, bbmaxz;
|
||||
} Cluster;
|
||||
|
||||
typedef struct {
|
||||
//int *iclusters;
|
||||
int nclusters;
|
||||
MD_FLOAT bbminx, bbmaxx;
|
||||
MD_FLOAT bbminy, bbmaxy;
|
||||
MD_FLOAT bbminz, bbmaxz;
|
||||
} SuperCluster;
|
||||
|
||||
typedef struct {
|
||||
int Natoms, Nlocal, Nghost, Nmax;
|
||||
int Nclusters, Nclusters_local, Nclusters_ghost, Nclusters_max;
|
||||
@ -116,6 +177,17 @@ typedef struct {
|
||||
Cluster *iclusters, *jclusters;
|
||||
int *icluster_bin;
|
||||
int dummy_cj;
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
int Nsclusters, Nsclusters_local, Nsclusters_ghost, Nsclusters_max;
|
||||
MD_FLOAT *scl_x;
|
||||
MD_FLOAT *scl_v;
|
||||
MD_FLOAT *scl_f;
|
||||
int *scl_type;
|
||||
int *icluster_idx;
|
||||
SuperCluster *siclusters;
|
||||
int *sicluster_bin;
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
} Atom;
|
||||
|
||||
extern void initAtom(Atom*);
|
||||
@ -126,6 +198,7 @@ extern int readAtom_gro(Atom*, Parameter*);
|
||||
extern int readAtom_dmp(Atom*, Parameter*);
|
||||
extern void growAtom(Atom*);
|
||||
extern void growClusters(Atom*);
|
||||
extern void growSuperClusters(Atom*);
|
||||
|
||||
#ifdef AOS
|
||||
# define POS_DATA_LAYOUT "AoS"
|
||||
|
@ -25,6 +25,7 @@ extern void buildNeighbor(Atom*, Neighbor*);
|
||||
extern void pruneNeighbor(Parameter*, Atom*, Neighbor*);
|
||||
extern void sortAtom(Atom*);
|
||||
extern void buildClusters(Atom*);
|
||||
extern void buildClustersGPU(Atom*);
|
||||
extern void defineJClusters(Atom*);
|
||||
extern void binClusters(Atom*);
|
||||
extern void updateSingleAtoms(Atom*);
|
||||
|
17
gromacs/includes/utils.h
Normal file
17
gromacs/includes/utils.h
Normal file
@ -0,0 +1,17 @@
|
||||
/*
|
||||
* Temporal functions for debugging, remove before proceeding with pull request
|
||||
*/
|
||||
|
||||
#ifndef MD_BENCH_UTILS_H
|
||||
#define MD_BENCH_UTILS_H
|
||||
|
||||
#include <atom.h>
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
void verifyClusters(Atom *atom);
|
||||
void verifyLayout(Atom *atom);
|
||||
void checkAlignment(Atom *atom);
|
||||
void showSuperclusters(Atom *atom);
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
|
||||
#endif //MD_BENCH_UTILS_H
|
@ -9,6 +9,7 @@
|
||||
#ifndef __VTK_H_
|
||||
#define __VTK_H_
|
||||
extern void write_data_to_vtk_file(const char *filename, Atom* atom, int timestep);
|
||||
extern int write_super_clusters_to_vtk_file(const char* filename, Atom* atom, int timestep);
|
||||
extern int write_local_atoms_to_vtk_file(const char* filename, Atom* atom, int timestep);
|
||||
extern int write_ghost_atoms_to_vtk_file(const char* filename, Atom* atom, int timestep);
|
||||
extern int write_local_cluster_edges_to_vtk_file(const char* filename, Atom* atom, int timestep);
|
||||
|
@ -38,7 +38,16 @@ extern double computeForceLJ_cuda(Parameter *param, Atom *atom, Neighbor *neighb
|
||||
extern void copyDataToCUDADevice(Atom *atom);
|
||||
extern void copyDataFromCUDADevice(Atom *atom);
|
||||
extern void cudaDeviceFree();
|
||||
#endif
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
#include <utils.h>
|
||||
extern void buildNeighborGPU(Atom *atom, Neighbor *neighbor);
|
||||
extern void pruneNeighborGPU(Parameter *param, Atom *atom, Neighbor *neighbor);
|
||||
extern void alignDataToSuperclusters(Atom *atom);
|
||||
extern void alignDataFromSuperclusters(Atom *atom);
|
||||
extern double computeForceLJSup_cuda(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats);
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
#endif //CUDA_TARGET
|
||||
|
||||
double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Stats *stats) {
|
||||
if(param->force_field == FF_EAM) { initEam(eam, param); }
|
||||
@ -62,11 +71,19 @@ double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Stats *
|
||||
setupNeighbor(param, atom);
|
||||
setupThermo(param, atom->Natoms);
|
||||
if(param->input_file == NULL) { adjustThermo(param, atom); }
|
||||
#if defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
|
||||
buildClustersGPU(atom);
|
||||
#else
|
||||
buildClusters(atom);
|
||||
#endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
|
||||
defineJClusters(atom);
|
||||
setupPbc(atom, param);
|
||||
binClusters(atom);
|
||||
#if defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
|
||||
buildNeighborGPU(atom, neighbor);
|
||||
#else
|
||||
buildNeighbor(atom, neighbor);
|
||||
#endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
|
||||
initDevice(atom, neighbor);
|
||||
E = getTimeStamp();
|
||||
return E-S;
|
||||
@ -78,11 +95,19 @@ double reneighbour(Parameter *param, Atom *atom, Neighbor *neighbor) {
|
||||
LIKWID_MARKER_START("reneighbour");
|
||||
updateSingleAtoms(atom);
|
||||
updateAtomsPbc(atom, param);
|
||||
#if defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
|
||||
buildClustersGPU(atom);
|
||||
#else
|
||||
buildClusters(atom);
|
||||
#endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
|
||||
defineJClusters(atom);
|
||||
setupPbc(atom, param);
|
||||
binClusters(atom);
|
||||
#if defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
|
||||
buildNeighborGPU(atom, neighbor);
|
||||
#else
|
||||
buildNeighbor(atom, neighbor);
|
||||
#endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
|
||||
LIKWID_MARKER_STOP("reneighbour");
|
||||
E = getTimeStamp();
|
||||
return E-S;
|
||||
@ -237,11 +262,18 @@ int main(int argc, char** argv) {
|
||||
}
|
||||
|
||||
for(int n = 0; n < param.ntimes; n++) {
|
||||
|
||||
//printf("Step:\t%d\r\n", n);
|
||||
|
||||
initialIntegrate(¶m, &atom);
|
||||
|
||||
if((n + 1) % param.reneigh_every) {
|
||||
if(!((n + 1) % param.prune_every)) {
|
||||
#if defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
|
||||
pruneNeighborGPU(¶m, &atom, &neighbor);
|
||||
#else
|
||||
pruneNeighbor(¶m, &atom, &neighbor);
|
||||
#endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
|
||||
}
|
||||
|
||||
updatePbc(&atom, ¶m, 0);
|
||||
|
@ -77,8 +77,13 @@ void setupNeighbor(Parameter *param, Atom *atom) {
|
||||
|
||||
MD_FLOAT atom_density = ((MD_FLOAT)(atom->Nlocal)) / ((xhi - xlo) * (yhi - ylo) * (zhi - zlo));
|
||||
MD_FLOAT atoms_in_cell = MAX(CLUSTER_M, CLUSTER_N);
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
MD_FLOAT targetsizex = cbrt(atoms_in_cell / atom_density) * (MD_FLOAT)SCLUSTER_SIZE_X;
|
||||
MD_FLOAT targetsizey = cbrt(atoms_in_cell / atom_density) * (MD_FLOAT)SCLUSTER_SIZE_Y;
|
||||
#else
|
||||
MD_FLOAT targetsizex = cbrt(atoms_in_cell / atom_density);
|
||||
MD_FLOAT targetsizey = cbrt(atoms_in_cell / atom_density);
|
||||
#endif
|
||||
nbinx = MAX(1, (int)ceil((xhi - xlo) / targetsizex));
|
||||
nbiny = MAX(1, (int)ceil((yhi - ylo) / targetsizey));
|
||||
binsizex = (xhi - xlo) / nbinx;
|
||||
@ -364,6 +369,197 @@ void buildNeighbor(Atom *atom, Neighbor *neighbor) {
|
||||
DEBUG_MESSAGE("buildNeighbor end\n");
|
||||
}
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
// TODO For future parallelization on GPU
|
||||
void buildNeighborGPU(Atom *atom, Neighbor *neighbor) {
|
||||
DEBUG_MESSAGE("buildNeighborGPU start\n");
|
||||
|
||||
/* extend atom arrays if necessary */
|
||||
if(atom->Nclusters_local > nmax) {
|
||||
nmax = atom->Nclusters_local;
|
||||
//nmax = atom->Nsclusters_local;
|
||||
if(neighbor->numneigh) free(neighbor->numneigh);
|
||||
if(neighbor->neighbors) free(neighbor->neighbors);
|
||||
neighbor->numneigh = (int*) malloc(nmax * sizeof(int));
|
||||
neighbor->neighbors = (int*) malloc(nmax * neighbor->maxneighs * sizeof(int*));
|
||||
}
|
||||
|
||||
MD_FLOAT bbx = 0.5 * (binsizex + binsizex);
|
||||
MD_FLOAT bby = 0.5 * (binsizey + binsizey);
|
||||
MD_FLOAT rbb_sq = MAX(0.0, cutneigh - 0.5 * sqrt(bbx * bbx + bby * bby));
|
||||
rbb_sq = rbb_sq * rbb_sq;
|
||||
int resize = 1;
|
||||
|
||||
/* loop over each atom, storing neighbors */
|
||||
while(resize) {
|
||||
int new_maxneighs = neighbor->maxneighs;
|
||||
resize = 0;
|
||||
|
||||
//for (int sci = 0; sci < atom->Nsclusters_local; sci++) {
|
||||
//for (int scii = 0; scii < atom->siclusters[sci].nclusters; scii++) {
|
||||
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
||||
//const int ci = atom->siclusters[sci].iclusters[scii];
|
||||
//const int ci = atom->icluster_idx[SCLUSTER_SIZE * sci + scii];
|
||||
int ci_cj1 = CJ1_FROM_CI(ci);
|
||||
int *neighptr = &(neighbor->neighbors[ci * neighbor->maxneighs]);
|
||||
//int *neighptr = &(neighbor->neighbors[sci * neighbor->maxneighs]);
|
||||
int n = 0;
|
||||
int ibin = atom->icluster_bin[ci];
|
||||
MD_FLOAT ibb_xmin = atom->iclusters[ci].bbminx;
|
||||
MD_FLOAT ibb_xmax = atom->iclusters[ci].bbmaxx;
|
||||
MD_FLOAT ibb_ymin = atom->iclusters[ci].bbminy;
|
||||
MD_FLOAT ibb_ymax = atom->iclusters[ci].bbmaxy;
|
||||
MD_FLOAT ibb_zmin = atom->iclusters[ci].bbminz;
|
||||
MD_FLOAT ibb_zmax = atom->iclusters[ci].bbmaxz;
|
||||
|
||||
for(int k = 0; k < nstencil; k++) {
|
||||
int jbin = ibin + stencil[k];
|
||||
int *loc_bin = &bin_clusters[jbin * clusters_per_bin];
|
||||
int cj, m = -1;
|
||||
MD_FLOAT jbb_xmin, jbb_xmax, jbb_ymin, jbb_ymax, jbb_zmin, jbb_zmax;
|
||||
const int c = bin_nclusters[jbin];
|
||||
|
||||
if(c > 0) {
|
||||
MD_FLOAT dl, dh, dm, dm0, d_bb_sq;
|
||||
|
||||
do {
|
||||
m++;
|
||||
cj = loc_bin[m];
|
||||
if(neighbor->half_neigh && ci_cj1 > cj) {
|
||||
continue;
|
||||
}
|
||||
jbb_zmin = atom->jclusters[cj].bbminz;
|
||||
jbb_zmax = atom->jclusters[cj].bbmaxz;
|
||||
dl = ibb_zmin - jbb_zmax;
|
||||
dh = jbb_zmin - ibb_zmax;
|
||||
dm = MAX(dl, dh);
|
||||
dm0 = MAX(dm, 0.0);
|
||||
d_bb_sq = dm0 * dm0;
|
||||
} while(m + 1 < c && d_bb_sq > cutneighsq);
|
||||
|
||||
jbb_xmin = atom->jclusters[cj].bbminx;
|
||||
jbb_xmax = atom->jclusters[cj].bbmaxx;
|
||||
jbb_ymin = atom->jclusters[cj].bbminy;
|
||||
jbb_ymax = atom->jclusters[cj].bbmaxy;
|
||||
|
||||
while(m < c) {
|
||||
if(!neighbor->half_neigh || ci_cj1 <= cj) {
|
||||
dl = ibb_zmin - jbb_zmax;
|
||||
dh = jbb_zmin - ibb_zmax;
|
||||
dm = MAX(dl, dh);
|
||||
dm0 = MAX(dm, 0.0);
|
||||
d_bb_sq = dm0 * dm0;
|
||||
|
||||
/*if(d_bb_sq > cutneighsq) {
|
||||
break;
|
||||
}*/
|
||||
|
||||
dl = ibb_ymin - jbb_ymax;
|
||||
dh = jbb_ymin - ibb_ymax;
|
||||
dm = MAX(dl, dh);
|
||||
dm0 = MAX(dm, 0.0);
|
||||
d_bb_sq += dm0 * dm0;
|
||||
|
||||
dl = ibb_xmin - jbb_xmax;
|
||||
dh = jbb_xmin - ibb_xmax;
|
||||
dm = MAX(dl, dh);
|
||||
dm0 = MAX(dm, 0.0);
|
||||
d_bb_sq += dm0 * dm0;
|
||||
|
||||
if(d_bb_sq < cutneighsq) {
|
||||
if(d_bb_sq < rbb_sq || atomDistanceInRange(atom, ci, cj, cutneighsq)) {
|
||||
neighptr[n++] = cj;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m++;
|
||||
if(m < c) {
|
||||
cj = loc_bin[m];
|
||||
jbb_xmin = atom->jclusters[cj].bbminx;
|
||||
jbb_xmax = atom->jclusters[cj].bbmaxx;
|
||||
jbb_ymin = atom->jclusters[cj].bbminy;
|
||||
jbb_ymax = atom->jclusters[cj].bbmaxy;
|
||||
jbb_zmin = atom->jclusters[cj].bbminz;
|
||||
jbb_zmax = atom->jclusters[cj].bbmaxz;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Fill neighbor list with dummy values to fit vector width
|
||||
if(CLUSTER_N < VECTOR_WIDTH) {
|
||||
while(n % (VECTOR_WIDTH / CLUSTER_N)) {
|
||||
neighptr[n++] = atom->dummy_cj; // Last cluster is always a dummy cluster
|
||||
}
|
||||
}
|
||||
|
||||
//neighbor->numneigh[sci] = n;
|
||||
neighbor->numneigh[ci] = n;
|
||||
if(n >= neighbor->maxneighs) {
|
||||
resize = 1;
|
||||
|
||||
if(n >= new_maxneighs) {
|
||||
new_maxneighs = n;
|
||||
}
|
||||
}
|
||||
}
|
||||
//}
|
||||
|
||||
if(resize) {
|
||||
fprintf(stdout, "RESIZE %d\n", neighbor->maxneighs);
|
||||
neighbor->maxneighs = new_maxneighs * 1.2;
|
||||
free(neighbor->neighbors);
|
||||
neighbor->neighbors = (int*) malloc(atom->Nmax * neighbor->maxneighs * sizeof(int));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
DEBUG_MESSAGE("\ncutneighsq = %f, rbb_sq = %f\n", cutneighsq, rbb_sq);
|
||||
for(int ci = 0; ci < 6; ci++) {
|
||||
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
||||
MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
|
||||
int* neighptr = &(neighbor->neighbors[ci * neighbor->maxneighs]);
|
||||
|
||||
DEBUG_MESSAGE("Cluster %d, bbx = {%f, %f}, bby = {%f, %f}, bbz = {%f, %f}\n",
|
||||
ci,
|
||||
atom->iclusters[ci].bbminx,
|
||||
atom->iclusters[ci].bbmaxx,
|
||||
atom->iclusters[ci].bbminy,
|
||||
atom->iclusters[ci].bbmaxy,
|
||||
atom->iclusters[ci].bbminz,
|
||||
atom->iclusters[ci].bbmaxz);
|
||||
|
||||
for(int cii = 0; cii < CLUSTER_M; cii++) {
|
||||
DEBUG_MESSAGE("%f, %f, %f\n", ci_x[CL_X_OFFSET + cii], ci_x[CL_Y_OFFSET + cii], ci_x[CL_Z_OFFSET + cii]);
|
||||
}
|
||||
|
||||
DEBUG_MESSAGE("Neighbors:\n");
|
||||
for(int k = 0; k < neighbor->numneigh[ci]; k++) {
|
||||
int cj = neighptr[k];
|
||||
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
|
||||
MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base];
|
||||
|
||||
DEBUG_MESSAGE(" Cluster %d, bbx = {%f, %f}, bby = {%f, %f}, bbz = {%f, %f}\n",
|
||||
cj,
|
||||
atom->jclusters[cj].bbminx,
|
||||
atom->jclusters[cj].bbmaxx,
|
||||
atom->jclusters[cj].bbminy,
|
||||
atom->jclusters[cj].bbmaxy,
|
||||
atom->jclusters[cj].bbminz,
|
||||
atom->jclusters[cj].bbmaxz);
|
||||
|
||||
for(int cjj = 0; cjj < CLUSTER_N; cjj++) {
|
||||
DEBUG_MESSAGE(" %f, %f, %f\n", cj_x[CL_X_OFFSET + cjj], cj_x[CL_Y_OFFSET + cjj], cj_x[CL_Z_OFFSET + cjj]);
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
DEBUG_MESSAGE("buildNeighborGPU end\n");
|
||||
}
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
|
||||
void pruneNeighbor(Parameter *param, Atom *atom, Neighbor *neighbor) {
|
||||
DEBUG_MESSAGE("pruneNeighbor start\n");
|
||||
//MD_FLOAT cutsq = param->cutforce * param->cutforce;
|
||||
@ -404,6 +600,53 @@ void pruneNeighbor(Parameter *param, Atom *atom, Neighbor *neighbor) {
|
||||
DEBUG_MESSAGE("pruneNeighbor end\n");
|
||||
}
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
void pruneNeighborGPU(Parameter *param, Atom *atom, Neighbor *neighbor) {
|
||||
DEBUG_MESSAGE("pruneNeighbor start\n");
|
||||
//MD_FLOAT cutsq = param->cutforce * param->cutforce;
|
||||
MD_FLOAT cutsq = cutneighsq;
|
||||
|
||||
for (int sci = 0; sci < atom->Nsclusters_local; sci++) {
|
||||
for (int scii = 0; scii < atom->siclusters[sci].nclusters; scii++) {
|
||||
//const int ci = atom->siclusters[sci].iclusters[scii];
|
||||
const int ci = atom->icluster_idx[SCLUSTER_SIZE * sci + ci];
|
||||
|
||||
int *neighs = &neighbor->neighbors[sci * neighbor->maxneighs];
|
||||
int numneighs = neighbor->numneigh[sci];
|
||||
int k = 0;
|
||||
|
||||
// Remove dummy clusters if necessary
|
||||
if(CLUSTER_N < VECTOR_WIDTH) {
|
||||
while(neighs[numneighs - 1] == atom->dummy_cj) {
|
||||
numneighs--;
|
||||
}
|
||||
}
|
||||
|
||||
while(k < numneighs) {
|
||||
int cj = neighs[k];
|
||||
if(atomDistanceInRange(atom, ci, cj, cutsq)) {
|
||||
k++;
|
||||
} else {
|
||||
numneighs--;
|
||||
neighs[k] = neighs[numneighs];
|
||||
}
|
||||
}
|
||||
|
||||
// Readd dummy clusters if necessary
|
||||
if(CLUSTER_N < VECTOR_WIDTH) {
|
||||
while(numneighs % (VECTOR_WIDTH / CLUSTER_N)) {
|
||||
neighs[numneighs++] = atom->dummy_cj; // Last cluster is always a dummy cluster
|
||||
}
|
||||
}
|
||||
|
||||
neighbor->numneigh[sci] = numneighs;
|
||||
}
|
||||
}
|
||||
|
||||
DEBUG_MESSAGE("pruneNeighbor end\n");
|
||||
}
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
|
||||
/* internal subroutines */
|
||||
MD_FLOAT bindist(int i, int j) {
|
||||
MD_FLOAT delx, dely, delz;
|
||||
@ -529,6 +772,36 @@ void sortAtomsByZCoord(Atom *atom) {
|
||||
DEBUG_MESSAGE("sortAtomsByZCoord end\n");
|
||||
}
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
// TODO: Use pigeonhole sorting
|
||||
void sortAtomsByCoord(Atom *atom, int dim, int bin, int start_index, int end_index) {
|
||||
//DEBUG_MESSAGE("sortAtomsByCoord start\n");
|
||||
int *bin_ptr = &bins[bin * atoms_per_bin];
|
||||
|
||||
for(int ac_i = start_index; ac_i <= end_index; ac_i++) {
|
||||
int i = bin_ptr[ac_i];
|
||||
int min_ac = ac_i;
|
||||
int min_idx = i;
|
||||
MD_FLOAT min_coord = DIM_COORD(dim, i);
|
||||
|
||||
for(int ac_j = ac_i + 1; ac_j <= end_index; ac_j++) {
|
||||
int j = bin_ptr[ac_j];
|
||||
MD_FLOAT coordj = DIM_COORD(dim, j);
|
||||
if(coordj < min_coord) {
|
||||
min_ac = ac_j;
|
||||
min_idx = j;
|
||||
min_coord = coordj;
|
||||
}
|
||||
}
|
||||
|
||||
bin_ptr[ac_i] = min_idx;
|
||||
bin_ptr[min_ac] = i;
|
||||
}
|
||||
|
||||
//DEBUG_MESSAGE("sortAtomsByCoord end\n");
|
||||
}
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
|
||||
void buildClusters(Atom *atom) {
|
||||
DEBUG_MESSAGE("buildClusters start\n");
|
||||
atom->Nclusters_local = 0;
|
||||
@ -605,6 +878,172 @@ void buildClusters(Atom *atom) {
|
||||
DEBUG_MESSAGE("buildClusters end\n");
|
||||
}
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
void buildClustersGPU(Atom *atom) {
|
||||
DEBUG_MESSAGE("buildClustersGPU start\n");
|
||||
atom->Nclusters_local = 0;
|
||||
|
||||
/* bin local atoms */
|
||||
binAtoms(atom);
|
||||
|
||||
for(int bin = 0; bin < mbins; bin++) {
|
||||
int c = bincount[bin];
|
||||
sortAtomsByCoord(atom, ZZ, bin, 0, c - 1);
|
||||
int ac = 0;
|
||||
int nclusters = ((c + CLUSTER_M - 1) / CLUSTER_M);
|
||||
if(CLUSTER_N > CLUSTER_M && nclusters % 2) { nclusters++; }
|
||||
|
||||
int n_super_clusters_xy = nclusters / (SCLUSTER_SIZE_X * SCLUSTER_SIZE_Y);
|
||||
if (nclusters % (SCLUSTER_SIZE_X * SCLUSTER_SIZE_Y)) n_super_clusters_xy++;
|
||||
int n_super_clusters = n_super_clusters_xy / SCLUSTER_SIZE_Z;
|
||||
if (n_super_clusters_xy % SCLUSTER_SIZE_Z) n_super_clusters++;
|
||||
|
||||
//printf("%d\t%d\t%d\t%d\r\n", nclusters, n_super_clusters_xy, n_super_clusters, (SCLUSTER_SIZE_X * SCLUSTER_SIZE_Y * SCLUSTER_SIZE_Z)*n_super_clusters);
|
||||
|
||||
int cl_count = 0;
|
||||
|
||||
for (int scl = 0; scl < n_super_clusters; scl++) {
|
||||
const int sci = atom->Nsclusters_local;
|
||||
if(sci >= atom->Nsclusters_max) {
|
||||
growSuperClusters(atom);
|
||||
}
|
||||
|
||||
if (cl_count >= nclusters) break;
|
||||
|
||||
int scl_offset = scl * SCLUSTER_SIZE * CLUSTER_M;
|
||||
|
||||
MD_FLOAT sc_bbminx = INFINITY, sc_bbmaxx = -INFINITY;
|
||||
MD_FLOAT sc_bbminy = INFINITY, sc_bbmaxy = -INFINITY;
|
||||
MD_FLOAT sc_bbminz = INFINITY, sc_bbmaxz = -INFINITY;
|
||||
|
||||
for (int scl_z = 0; scl_z < SCLUSTER_SIZE_Z; scl_z++) {
|
||||
|
||||
if (cl_count >= nclusters) break;
|
||||
|
||||
const int atom_scl_z_offset = scl_offset + scl_z * SCLUSTER_SIZE_Y * SCLUSTER_SIZE_X * CLUSTER_M;
|
||||
|
||||
|
||||
const int atom_scl_z_end_idx = MIN(atom_scl_z_offset +
|
||||
SCLUSTER_SIZE_Y * SCLUSTER_SIZE_X * CLUSTER_M - 1, c - 1);
|
||||
|
||||
sortAtomsByCoord(atom, YY, bin, atom_scl_z_offset, atom_scl_z_end_idx);
|
||||
|
||||
//printf("%d\t%d\t%d\t%d\t%d\t%d\r\n", nclusters, scl, scl_z, atom_scl_z_offset, atom_scl_z_end_idx, c);
|
||||
|
||||
for (int scl_y = 0; scl_y < SCLUSTER_SIZE_Y; scl_y++) {
|
||||
|
||||
if (cl_count >= nclusters) break;
|
||||
|
||||
const int atom_scl_y_offset = scl_offset +
|
||||
scl_z * SCLUSTER_SIZE_Y * SCLUSTER_SIZE_X * CLUSTER_M +
|
||||
scl_y * SCLUSTER_SIZE_Y * CLUSTER_M;
|
||||
|
||||
const int atom_scl_y_end_idx = MIN(atom_scl_y_offset +
|
||||
SCLUSTER_SIZE_X * CLUSTER_M - 1, c - 1);
|
||||
|
||||
//printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\r\n", nclusters, scl, scl_z, scl_y, atom_scl_y_offset, atom_scl_y_end_idx, c);
|
||||
|
||||
sortAtomsByCoord(atom, XX, bin, atom_scl_y_offset, atom_scl_y_end_idx);
|
||||
|
||||
|
||||
for (int scl_x = 0; scl_x < SCLUSTER_SIZE_X; scl_x++) {
|
||||
if (cl_count >= nclusters) break;
|
||||
cl_count++;
|
||||
|
||||
const int cluster_sup_idx = scl_z * SCLUSTER_SIZE_Z * SCLUSTER_SIZE_Y +
|
||||
scl_y * SCLUSTER_SIZE_X + scl_x;
|
||||
|
||||
const int ci = atom->Nclusters_local;
|
||||
if(ci >= atom->Nclusters_max) {
|
||||
growClusters(atom);
|
||||
}
|
||||
|
||||
int ci_sca_base = CI_SCALAR_BASE_INDEX(ci);
|
||||
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
||||
MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
|
||||
MD_FLOAT *ci_v = &atom->cl_v[ci_vec_base];
|
||||
int *ci_type = &atom->cl_type[ci_sca_base];
|
||||
MD_FLOAT bbminx = INFINITY, bbmaxx = -INFINITY;
|
||||
MD_FLOAT bbminy = INFINITY, bbmaxy = -INFINITY;
|
||||
MD_FLOAT bbminz = INFINITY, bbmaxz = -INFINITY;
|
||||
|
||||
atom->iclusters[ci].natoms = 0;
|
||||
for(int cii = 0; cii < CLUSTER_M; cii++) {
|
||||
if(ac < c) {
|
||||
int i = bins[bin * atoms_per_bin + ac];
|
||||
MD_FLOAT xtmp = atom_x(i);
|
||||
MD_FLOAT ytmp = atom_y(i);
|
||||
MD_FLOAT ztmp = atom_z(i);
|
||||
|
||||
ci_x[CL_X_OFFSET + cii] = xtmp;
|
||||
ci_x[CL_Y_OFFSET + cii] = ytmp;
|
||||
ci_x[CL_Z_OFFSET + cii] = ztmp;
|
||||
ci_v[CL_X_OFFSET + cii] = atom->vx[i];
|
||||
ci_v[CL_Y_OFFSET + cii] = atom->vy[i];
|
||||
ci_v[CL_Z_OFFSET + cii] = atom->vz[i];
|
||||
|
||||
// TODO: To create the bounding boxes faster, we can use SIMD operations
|
||||
if(bbminx > xtmp) { bbminx = xtmp; }
|
||||
if(bbmaxx < xtmp) { bbmaxx = xtmp; }
|
||||
if(bbminy > ytmp) { bbminy = ytmp; }
|
||||
if(bbmaxy < ytmp) { bbmaxy = ytmp; }
|
||||
if(bbminz > ztmp) { bbminz = ztmp; }
|
||||
if(bbmaxz < ztmp) { bbmaxz = ztmp; }
|
||||
|
||||
ci_type[cii] = atom->type[i];
|
||||
atom->iclusters[ci].natoms++;
|
||||
} else {
|
||||
ci_x[CL_X_OFFSET + cii] = INFINITY;
|
||||
ci_x[CL_Y_OFFSET + cii] = INFINITY;
|
||||
ci_x[CL_Z_OFFSET + cii] = INFINITY;
|
||||
}
|
||||
|
||||
ac++;
|
||||
}
|
||||
|
||||
atom->icluster_bin[ci] = bin;
|
||||
atom->iclusters[ci].bbminx = bbminx;
|
||||
atom->iclusters[ci].bbmaxx = bbmaxx;
|
||||
atom->iclusters[ci].bbminy = bbminy;
|
||||
atom->iclusters[ci].bbmaxy = bbmaxy;
|
||||
atom->iclusters[ci].bbminz = bbminz;
|
||||
atom->iclusters[ci].bbmaxz = bbmaxz;
|
||||
atom->Nclusters_local++;
|
||||
|
||||
// TODO: To create the bounding boxes faster, we can use SIMD operations
|
||||
if(sc_bbminx > bbminx) { sc_bbminx = bbminx; }
|
||||
if(sc_bbmaxx < bbmaxx) { sc_bbmaxx = bbmaxx; }
|
||||
if(sc_bbminy > bbminy) { sc_bbminy = bbminy; }
|
||||
if(sc_bbmaxy < bbmaxy) { sc_bbmaxy = bbmaxy; }
|
||||
if(sc_bbminz > bbminz) { sc_bbminz = bbminz; }
|
||||
if(sc_bbmaxz < bbmaxz) { sc_bbmaxz = bbmaxz; }
|
||||
|
||||
atom->siclusters[sci].nclusters++;
|
||||
atom->icluster_idx[SCLUSTER_SIZE * sci + cluster_sup_idx] = ci;
|
||||
//atom->siclusters[sci].iclusters[cluster_sup_idx] = ci;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
atom->sicluster_bin[sci] = bin;
|
||||
atom->siclusters[sci].bbminx = sc_bbminx;
|
||||
atom->siclusters[sci].bbmaxx = sc_bbmaxx;
|
||||
atom->siclusters[sci].bbminy = sc_bbminy;
|
||||
atom->siclusters[sci].bbmaxy = sc_bbmaxy;
|
||||
atom->siclusters[sci].bbminz = sc_bbminz;
|
||||
atom->siclusters[sci].bbmaxz = sc_bbmaxz;
|
||||
atom->Nsclusters_local++;
|
||||
}
|
||||
|
||||
//printf("%d\t%d\r\n", (SCLUSTER_SIZE_X * SCLUSTER_SIZE_Y * SCLUSTER_SIZE_Z)*n_super_clusters, count);
|
||||
|
||||
}
|
||||
|
||||
DEBUG_MESSAGE("buildClustersGPU end\n");
|
||||
}
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
|
||||
void defineJClusters(Atom *atom) {
|
||||
DEBUG_MESSAGE("defineJClusters start\n");
|
||||
|
||||
|
277
gromacs/utils.c
Normal file
277
gromacs/utils.c
Normal file
@ -0,0 +1,277 @@
|
||||
|
||||
/*
|
||||
* Temporal functions for debugging, remove before proceeding with pull request
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include <utils.h>
|
||||
|
||||
extern void alignDataToSuperclusters(Atom *atom);
|
||||
extern void alignDataFromSuperclusters(Atom *atom);
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
/*
|
||||
void verifyClusters(Atom *atom) {
|
||||
unsigned int count = 0;
|
||||
|
||||
for (int i = 0; i < atom->Nsclusters_local; i++) {
|
||||
for (int j = 0; j < atom->siclusters[i].nclusters; j++) {
|
||||
for(int cii = 0; cii < CLUSTER_M; cii++, count++);
|
||||
}
|
||||
}
|
||||
|
||||
MD_FLOAT *x = malloc(count * sizeof(MD_FLOAT));
|
||||
MD_FLOAT *y = malloc(count * sizeof(MD_FLOAT));
|
||||
MD_FLOAT *z = malloc(count * sizeof(MD_FLOAT));
|
||||
|
||||
count = 0;
|
||||
unsigned int diffs = 0;
|
||||
|
||||
printf("######### %d #########\r\n", atom->Nsclusters_local);
|
||||
for (int i = 0; i < atom->Nsclusters_local; i++) {
|
||||
printf("######### %d\t #########\r\n", atom->siclusters[i].nclusters);
|
||||
|
||||
for (int j = 0; j < atom->siclusters[i].nclusters; j++) {
|
||||
//printf("%d\t", atom.siclusters[i].iclusters[j]);
|
||||
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(atom->siclusters[i].iclusters[j])];
|
||||
|
||||
if (atom->iclusters[atom->siclusters[i].iclusters[j]].bbminx < atom->siclusters[i].bbminx ||
|
||||
atom->iclusters[atom->siclusters[i].iclusters[j]].bbmaxx > atom->siclusters[i].bbmaxx ||
|
||||
atom->iclusters[atom->siclusters[i].iclusters[j]].bbminy < atom->siclusters[i].bbminy ||
|
||||
atom->iclusters[atom->siclusters[i].iclusters[j]].bbmaxy > atom->siclusters[i].bbmaxy ||
|
||||
atom->iclusters[atom->siclusters[i].iclusters[j]].bbminz < atom->siclusters[i].bbminz ||
|
||||
atom->iclusters[atom->siclusters[i].iclusters[j]].bbmaxz > atom->siclusters[i].bbmaxz) diffs++;
|
||||
|
||||
|
||||
for(int cii = 0; cii < CLUSTER_M; cii++, count++) {
|
||||
x[count] = ci_x[CL_X_OFFSET + cii];
|
||||
y[count] = ci_x[CL_Y_OFFSET + cii];
|
||||
z[count] = ci_x[CL_Z_OFFSET + cii];
|
||||
//printf("x: %f\ty: %f\tz: %f\r\n", ci_x[CL_X_OFFSET + cii], ci_x[CL_Y_OFFSET + cii], ci_x[CL_Z_OFFSET + cii]);
|
||||
}
|
||||
}
|
||||
printf("######### \t #########\r\n");
|
||||
}
|
||||
|
||||
printf("######### Diffs: %d\t #########\r\n", diffs);
|
||||
|
||||
printf("\r\n");
|
||||
|
||||
count = 0;
|
||||
diffs = 0;
|
||||
|
||||
for (int i = 0; i < atom->Nclusters_local; i++) {
|
||||
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(i)];
|
||||
|
||||
for(int cii = 0; cii < CLUSTER_M; cii++, count++) {
|
||||
if (ci_x[CL_X_OFFSET + cii] != x[count] ||
|
||||
ci_x[CL_Y_OFFSET + cii] != y[count] ||
|
||||
ci_x[CL_Z_OFFSET + cii] != z[count]) diffs++;
|
||||
}
|
||||
}
|
||||
|
||||
printf("######### Diffs: %d\t #########\r\n", diffs);
|
||||
}
|
||||
*/
|
||||
|
||||
void verifyLayout(Atom *atom) {
|
||||
|
||||
printf("verifyLayout start\r\n");
|
||||
|
||||
/*
|
||||
unsigned int count = 0;
|
||||
|
||||
for (int i = 0; i < atom->Nsclusters_local; i++) {
|
||||
for (int j = 0; j < atom->siclusters[i].nclusters; j++, count++);
|
||||
}
|
||||
|
||||
MD_FLOAT *scl_x = malloc(atom->Nsclusters_local * SCLUSTER_SIZE * 3 * CLUSTER_M * sizeof(MD_FLOAT));
|
||||
|
||||
|
||||
for (int sci = 0; sci < atom->Nsclusters_local; sci++) {
|
||||
const unsigned int scl_offset = sci * SCLUSTER_SIZE * 3 * CLUSTER_M;
|
||||
|
||||
for (int ci = 0, scci = scl_offset; ci < atom->siclusters[sci].nclusters; ci++, scci += CLUSTER_M) {
|
||||
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
|
||||
|
||||
const unsigned int atom_offset = scci;
|
||||
|
||||
/*
|
||||
for(int cii = 0, scii = atom_offset; cii < CLUSTER_M; cii++, scii += 3) {
|
||||
scl_x[CL_X_OFFSET + scii] = ci_x[CL_X_OFFSET + cii];
|
||||
scl_x[CL_Y_OFFSET + scii] = ci_x[CL_Y_OFFSET + cii];
|
||||
scl_x[CL_Z_OFFSET + scii] = ci_x[CL_Z_OFFSET + cii];
|
||||
//printf("x: %f\ty: %f\tz: %f\r\n", ci_x[CL_X_OFFSET + cii], ci_x[CL_Y_OFFSET + cii], ci_x[CL_Z_OFFSET + cii]);
|
||||
}
|
||||
|
||||
|
||||
memcpy(&scl_x[atom_offset], &ci_x[0], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&scl_x[atom_offset + SCLUSTER_SIZE * CLUSTER_M], &ci_x[0 + CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
memcpy(&scl_x[atom_offset + 2 * SCLUSTER_SIZE * CLUSTER_M], &ci_x[0 + 2 * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
//alignDataToSuperclusters(atom);
|
||||
|
||||
//for (int sci = 0; sci < 2; sci++) {
|
||||
for (int sci = 4; sci < 6; sci++) {
|
||||
const unsigned int scl_offset = sci * SCLUSTER_SIZE;
|
||||
|
||||
MD_FLOAT *sci_x = &atom->scl_f[SCI_VECTOR_BASE_INDEX(sci)];
|
||||
|
||||
for (int cii = 0; cii < SCLUSTER_M; ++cii) {
|
||||
|
||||
const unsigned int cl_idx = cii / CLUSTER_M;
|
||||
const unsigned int ciii = cii % CLUSTER_M;
|
||||
|
||||
/*
|
||||
printf("%d\t%f\t%f\t%f\r\n", cl_idx, sci_x[cii],
|
||||
sci_x[cii + SCLUSTER_SIZE * CLUSTER_M], sci_x[cii + 2 * SCLUSTER_SIZE * CLUSTER_M]);
|
||||
*/
|
||||
|
||||
printf("%d\t%d\t%f\t%f\t%f\r\n", atom->icluster_idx[SCLUSTER_SIZE * sci + cl_idx], cl_idx, sci_x[SCL_CL_X_OFFSET(cl_idx) + ciii],
|
||||
sci_x[SCL_CL_Y_OFFSET(cl_idx) + ciii], sci_x[SCL_CL_Z_OFFSET(cl_idx) + ciii]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
//for (int cii = 0; cii < SCLUSTER_M; ++cii) {
|
||||
for (int cii = 0; cii < SCLUSTER_M; ++cii) {
|
||||
|
||||
const unsigned int cl_idx = cii / CLUSTER_M;
|
||||
const unsigned int ciii = cii % CLUSTER_M;
|
||||
|
||||
/*
|
||||
printf("%d\t%f\t%f\t%f\r\n", cl_idx, sci_x[SCL_X_OFFSET(cl_idx) + cii],
|
||||
sci_x[SCL_Y_OFFSET(cl_idx) + cii], sci_x[SCL_Z_OFFSET(cl_idx) + cii]);
|
||||
*/
|
||||
|
||||
/*
|
||||
printf("%d\t%f\t%f\t%f\r\n", cl_idx, sci_x[SCL_X_OFFSET(cl_idx) + ciii],
|
||||
sci_x[SCL_Y_OFFSET(cl_idx) + ciii], sci_x[SCL_Z_OFFSET(cl_idx) + ciii]);
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
for (int scii = scl_offset; scii < scl_offset + SCLUSTER_SIZE; scii++) {
|
||||
|
||||
for (int cii = 0; cii < CLUSTER_M; ++cii) {
|
||||
printf("%f\t%f\t%f\r\n", sci_x[SCL_X_OFFSET(scii) + cii],
|
||||
sci_x[SCL_Y_OFFSET(scii) + cii], sci_x[SCL_Z_OFFSET(scii) + cii]);
|
||||
}
|
||||
/*
|
||||
|
||||
const unsigned int cl_offset = scii * 3 * CLUSTER_M;
|
||||
//MD_FLOAT *sci_x = &scl_x[CI_VECTOR_BASE_INDEX(scii)];
|
||||
|
||||
for (int cii = cl_offset; cii < cl_offset + CLUSTER_M; ++cii) {
|
||||
printf("%f\t%f\t%f\r\n", sci_x[CL_X_OFFSET + cii],
|
||||
sci_x[CL_Y_OFFSET + cii], sci_x[CL_Z_OFFSET + cii]);
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
for (int cii = cl_offset; cii < cl_offset + CLUSTER_M; ++cii) {
|
||||
printf("%f\t%f\t%f\r\n", scl_x[CL_X_OFFSET + cii],
|
||||
scl_x[CL_Y_OFFSET + cii], scl_x[CL_Z_OFFSET + cii]);
|
||||
}
|
||||
*/
|
||||
|
||||
//}
|
||||
|
||||
printf("##########\t##########\r\n");
|
||||
}
|
||||
|
||||
printf("\r\n");
|
||||
|
||||
//for (int ci = 0; ci < 16; ci++) {
|
||||
for (int ci = 35; ci < 37; ci++) {
|
||||
printf("$$$$$$$$$$\t%d\t%d\t$$$$$$$$$$\r\n", ci, atom->icluster_bin[ci]);
|
||||
MD_FLOAT *ci_x = &atom->cl_f[CI_VECTOR_BASE_INDEX(ci)];
|
||||
|
||||
//for(int cii = 0; cii < CLUSTER_M; cii++, count++) {
|
||||
for(int cii = 0; cii < CLUSTER_M; cii++) {
|
||||
|
||||
printf("%f\t%f\t%f\r\n", ci_x[CL_X_OFFSET + cii],
|
||||
ci_x[CL_Y_OFFSET + cii],
|
||||
ci_x[CL_Z_OFFSET + cii]);
|
||||
}
|
||||
printf("##########\t##########\r\n");
|
||||
}
|
||||
|
||||
printf("verifyLayout end\r\n");
|
||||
|
||||
/*
|
||||
for (int i = 0; i < atom->Nclusters_local; i++) {
|
||||
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(i)];
|
||||
|
||||
for(int cii = 0; cii < CLUSTER_M; cii++, count++) {
|
||||
if (ci_x[CL_X_OFFSET + cii] != x[count] ||
|
||||
ci_x[CL_Y_OFFSET + cii] != y[count] ||
|
||||
ci_x[CL_Z_OFFSET + cii] != z[count]) diffs++;
|
||||
}
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
void checkAlignment(Atom *atom) {
|
||||
alignDataToSuperclusters(atom);
|
||||
|
||||
for (int sci = 4; sci < 6; sci++) {
|
||||
MD_FLOAT *sci_x = &atom->scl_x[SCI_VECTOR_BASE_INDEX(sci)];
|
||||
|
||||
for (int cii = 0; cii < SCLUSTER_M; ++cii) {
|
||||
|
||||
const unsigned int cl_idx = cii / CLUSTER_M;
|
||||
const unsigned int ciii = cii % CLUSTER_M;
|
||||
|
||||
printf("%d\t%f\t%f\t%f\r\n", cl_idx, sci_x[SCL_CL_X_OFFSET(cl_idx) + ciii],
|
||||
sci_x[SCL_CL_Y_OFFSET(cl_idx) + ciii], sci_x[SCL_CL_Z_OFFSET(cl_idx) + ciii]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
for (int ci = 35; ci < 37; ci++) {
|
||||
printf("$$$$$$$$$$\t%d\t%d\t$$$$$$$$$$\r\n", ci, atom->icluster_bin[ci]);
|
||||
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(ci)];
|
||||
|
||||
for(int cii = 0; cii < CLUSTER_M; cii++) {
|
||||
|
||||
printf("%f\t%f\t%f\r\n", ci_x[CL_X_OFFSET + cii],
|
||||
ci_x[CL_Y_OFFSET + cii],
|
||||
ci_x[CL_Z_OFFSET + cii]);
|
||||
}
|
||||
printf("##########\t##########\r\n");
|
||||
}
|
||||
}
|
||||
|
||||
void showSuperclusters(Atom *atom) {
|
||||
for (int sci = 4; sci < 6; sci++) {
|
||||
MD_FLOAT *sci_x = &atom->scl_x[SCI_VECTOR_BASE_INDEX(sci)];
|
||||
|
||||
for (int cii = 0; cii < SCLUSTER_M; ++cii) {
|
||||
|
||||
const unsigned int cl_idx = cii / CLUSTER_M;
|
||||
const unsigned int ciii = cii % CLUSTER_M;
|
||||
|
||||
printf("%d\t%f\t%f\t%f\r\n", cl_idx, sci_x[SCL_CL_X_OFFSET(cl_idx) + ciii],
|
||||
sci_x[SCL_CL_Y_OFFSET(cl_idx) + ciii], sci_x[SCL_CL_Z_OFFSET(cl_idx) + ciii]);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
#endif //USE_SUPER_CLUSTERS
|
@ -15,8 +15,61 @@ void write_data_to_vtk_file(const char *filename, Atom* atom, int timestep) {
|
||||
write_ghost_atoms_to_vtk_file(filename, atom, timestep);
|
||||
write_local_cluster_edges_to_vtk_file(filename, atom, timestep);
|
||||
write_ghost_cluster_edges_to_vtk_file(filename, atom, timestep);
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
write_super_clusters_to_vtk_file(filename, atom, timestep);
|
||||
#endif //#ifdef USE_SUPER_CLUSTERS
|
||||
}
|
||||
|
||||
#ifdef USE_SUPER_CLUSTERS
|
||||
int write_super_clusters_to_vtk_file(const char* filename, Atom* atom, int timestep) {
|
||||
char timestep_filename[128];
|
||||
snprintf(timestep_filename, sizeof timestep_filename, "%s_sup_%d.vtk", filename, timestep);
|
||||
FILE* fp = fopen(timestep_filename, "wb");
|
||||
|
||||
if(fp == NULL) {
|
||||
fprintf(stderr, "Could not open VTK file for writing!\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
fprintf(fp, "# vtk DataFile Version 2.0\n");
|
||||
fprintf(fp, "Particle data\n");
|
||||
fprintf(fp, "ASCII\n");
|
||||
fprintf(fp, "DATASET UNSTRUCTURED_GRID\n");
|
||||
fprintf(fp, "POINTS %d double\n", atom->Nsclusters_local * SCLUSTER_M);
|
||||
for(int ci = 0; ci < atom->Nsclusters_local; ++ci) {
|
||||
|
||||
int factor = (rand() % 1000) + 1;
|
||||
//double factor = ci * 10;
|
||||
|
||||
int ci_vec_base = SCI_VECTOR_BASE_INDEX(ci);
|
||||
MD_FLOAT *ci_x = &atom->scl_x[ci_vec_base];
|
||||
for(int cii = 0; cii < SCLUSTER_M; ++cii) {
|
||||
fprintf(fp, "%.4f %.4f %.4f\n", ci_x[SCL_X_OFFSET + cii] * factor, ci_x[SCL_Y_OFFSET + cii] * factor, ci_x[SCL_Z_OFFSET + cii] * factor);
|
||||
}
|
||||
}
|
||||
fprintf(fp, "\n\n");
|
||||
fprintf(fp, "CELLS %d %d\n", atom->Nlocal, atom->Nlocal * 2);
|
||||
for(int i = 0; i < atom->Nlocal; ++i) {
|
||||
fprintf(fp, "1 %d\n", i);
|
||||
}
|
||||
fprintf(fp, "\n\n");
|
||||
fprintf(fp, "CELL_TYPES %d\n", atom->Nlocal);
|
||||
for(int i = 0; i < atom->Nlocal; ++i) {
|
||||
fprintf(fp, "1\n");
|
||||
}
|
||||
fprintf(fp, "\n\n");
|
||||
fprintf(fp, "POINT_DATA %d\n", atom->Nlocal);
|
||||
fprintf(fp, "SCALARS mass double\n");
|
||||
fprintf(fp, "LOOKUP_TABLE default\n");
|
||||
for(int i = 0; i < atom->Nlocal; i++) {
|
||||
fprintf(fp, "1.0\n");
|
||||
}
|
||||
fprintf(fp, "\n\n");
|
||||
fclose(fp);
|
||||
return 0;
|
||||
}
|
||||
#endif //USE_SUPER_CLUSTERS
|
||||
|
||||
int write_local_atoms_to_vtk_file(const char* filename, Atom* atom, int timestep) {
|
||||
char timestep_filename[128];
|
||||
snprintf(timestep_filename, sizeof timestep_filename, "%s_local_%d.vtk", filename, timestep);
|
||||
|
@ -8,7 +8,8 @@ ANSI_CFLAGS += -Wextra
|
||||
|
||||
#
|
||||
# A100 + Native
|
||||
CFLAGS = -O3 -arch=sm_80 -march=native -ffast-math -funroll-loops --forward-unknown-to-host-compiler # -fopenmp
|
||||
#CFLAGS = -O3 -arch=sm_80 -march=native -ffast-math -funroll-loops --forward-unknown-to-host-compiler # -fopenmp
|
||||
CFLAGS = -O3 -arch=compute_61 -code=sm_61,sm_80,sm_86 -march=native -ffast-math -funroll-loops --forward-unknown-to-host-compiler # -fopenmp
|
||||
# A40 + Native
|
||||
#CFLAGS = -O3 -arch=sm_86 -march=native -ffast-math -funroll-loops --forward-unknown-to-host-compiler # -fopenmp
|
||||
# Cascade Lake
|
||||
|
Loading…
Reference in New Issue
Block a user