Reorganize SIMD files and split AVX and AVX2

Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
This commit is contained in:
Rafael Ravedutti 2022-11-15 00:55:46 +01:00
parent f293cec960
commit cd1fbfb3c8
9 changed files with 240 additions and 66 deletions

View File

@ -65,20 +65,24 @@ ifneq ($(VECTOR_WIDTH),)
DEFINES += -DVECTOR_WIDTH=$(VECTOR_WIDTH) DEFINES += -DVECTOR_WIDTH=$(VECTOR_WIDTH)
endif endif
ifeq ($(strip $(MASK_REGISTERS)),true) ifeq ($(strip $(__SIMD_KERNEL__)),true)
DEFINES += -DMASK_REGISTERS DEFINES += -D__SIMD_KERNEL__
endif endif
ifeq ($(strip $(SIMD_KERNEL_AVAILABLE)),true) ifeq ($(strip $(__SSE__)),true)
DEFINES += -DSIMD_KERNEL_AVAILABLE DEFINES += -D__ISA_SSE__
endif endif
ifeq ($(strip $(NO_AVX2)),true) ifeq ($(strip $(__ISA_AVX__)),true)
DEFINES += -DNO_AVX2 DEFINES += -D__ISA_AVX__
endif endif
ifeq ($(strip $(AVX512)),true) ifeq ($(strip $(__ISA_AVX2__)),true)
DEFINES += -DAVX512 DEFINES += -D__ISA_AVX2__
endif
ifeq ($(strip $(__ISA_AVX512__)),true)
DEFINES += -D__ISA_AVX512__
endif endif
ifeq ($(strip $(ENABLE_OMP_SIMD)),true) ifeq ($(strip $(ENABLE_OMP_SIMD)),true)

View File

@ -4,10 +4,14 @@
* Use of this source code is governed by a LGPL-3.0 * Use of this source code is governed by a LGPL-3.0
* license that can be found in the LICENSE file. * license that can be found in the LICENSE file.
*/ */
#ifndef __SIMD_H__
#define __SIMD_H__
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include <immintrin.h> #include <immintrin.h>
#ifndef NO_ZMM_INTRIN #ifndef NO_ZMM_INTRIN
# include <zmmintrin.h> # include <zmmintrin.h>
#endif #endif
@ -20,17 +24,27 @@
# define CLUSTER_N 1 # define CLUSTER_N 1
#endif #endif
#ifdef AVX512 #if defined(__ISA_AVX512__)
# if PRECISION == 2 # if PRECISION == 2
# include "simd/avx512_double.h" # include "simd/avx512_double.h"
# else # else
# include "simd/avx512_float.h" # include "simd/avx512_float.h"
# endif # endif
#else #endif
#if defined(__ISA_AVX2__)
# if PRECISION == 2 # if PRECISION == 2
# include "simd/avx_avx2_double.h" # include "simd/avx2_double.h"
# else # else
# include "simd/avx_avx2_float.h" # include "simd/avx2_float.h"
# endif
#endif
#if defined(__ISA_AVX__)
# if PRECISION == 2
# include "simd/avx_double.h"
# else
# include "simd/avx_float.h"
# endif # endif
#endif #endif
@ -50,3 +64,5 @@ static inline void simd_print_real(const char *ref, MD_SIMD_FLOAT a) {
} }
static inline void simd_print_mask(const char *ref, MD_SIMD_MASK a) { fprintf(stdout, "%s: %x\n", ref, simd_mask_to_u32(a)); } static inline void simd_print_mask(const char *ref, MD_SIMD_MASK a) { fprintf(stdout, "%s: %x\n", ref, simd_mask_to_u32(a)); }
#endif // __SIMD_H__

View File

@ -10,12 +10,7 @@
#define MD_SIMD_FLOAT __m256d #define MD_SIMD_FLOAT __m256d
#define MD_SIMD_INT __m128i #define MD_SIMD_INT __m128i
#ifdef MASK_REGISTERS
# define MD_SIMD_MASK __mmask8
#else
#define MD_SIMD_MASK __m256d #define MD_SIMD_MASK __m256d
#endif
static inline MD_SIMD_FLOAT simd_broadcast(MD_FLOAT scalar) { return _mm256_set1_pd(scalar); } static inline MD_SIMD_FLOAT simd_broadcast(MD_FLOAT scalar) { return _mm256_set1_pd(scalar); }
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_pd(0.0); } static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_pd(0.0); }
@ -26,20 +21,20 @@ static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_pd(p); }
static inline void simd_store(MD_FLOAT *p, MD_SIMD_FLOAT a) { _mm256_store_pd(p, a); } static inline void simd_store(MD_FLOAT *p, MD_SIMD_FLOAT a) { _mm256_store_pd(p, a); }
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const MD_FLOAT *m) { static inline MD_SIMD_FLOAT simd_load_h_duplicate(const MD_FLOAT *m) {
MD_SIMD_FLOAT ret; MD_SIMD_FLOAT ret;
fprintf(stderr, "simd_load_h_duplicate(): Not implemented for AVX/AVX2 with double precision!"); fprintf(stderr, "simd_load_h_duplicate(): Not implemented for AVX2 with double precision!");
exit(-1); exit(-1);
return ret; return ret;
} }
static inline MD_SIMD_FLOAT simd_load_h_dual(const MD_FLOAT *m) { static inline MD_SIMD_FLOAT simd_load_h_dual(const MD_FLOAT *m) {
MD_SIMD_FLOAT ret; MD_SIMD_FLOAT ret;
fprintf(stderr, "simd_load_h_dual(): Not implemented for AVX/AVX2 with double precision!"); fprintf(stderr, "simd_load_h_dual(): Not implemented for AVX2 with double precision!");
exit(-1); exit(-1);
return ret; return ret;
} }
static inline MD_FLOAT simd_h_dual_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) { static inline MD_FLOAT simd_h_dual_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
fprintf(stderr, "simd_h_dual_incr_reduced_sum(): Not implemented for AVX/AVX2 with double precision!"); fprintf(stderr, "simd_h_dual_incr_reduced_sum(): Not implemented for AVX2 with double precision!");
exit(-1); exit(-1);
return 0.0; return 0.0;
} }
@ -64,11 +59,9 @@ static inline MD_FLOAT simd_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_S
return *((MD_FLOAT *) &a0); return *((MD_FLOAT *) &a0);
} }
#ifdef NO_AVX2
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm256_and_pd(a, m); } static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm256_and_pd(a, m); }
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_cvtps_pd(_mm_rcp_ps(_mm256_cvtpd_ps(a))); } static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_pd(a); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return simd_add(simd_mul(a, b), c); } static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_pd(a, b, c); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return simd_add(a, _mm256_and_pd(b, m)); } static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return simd_add(a, _mm256_and_pd(b, m)); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd(a, b, _CMP_LT_OQ); } static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_int_cond_lt(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm256_cvtepi32_pd(_mm_cmplt_epi32(a, b)); } static inline MD_SIMD_MASK simd_mask_int_cond_lt(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm256_cvtepi32_pd(_mm_cmplt_epi32(a, b)); }
@ -81,26 +74,6 @@ static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) {
} }
// TODO: Implement this, althrough it is just required for debugging // TODO: Implement this, althrough it is just required for debugging
static inline int simd_mask_to_u32(MD_SIMD_MASK a) { return 0; } static inline int simd_mask_to_u32(MD_SIMD_MASK a) { return 0; }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
__m128d a0, a1;
a = _mm256_add_pd(a, _mm256_permute_pd(a, 0b0101));
a0 = _mm256_castpd256_pd128(a);
a1 = _mm256_extractf128_pd(a, 0x1);
a0 = _mm_add_sd(a0, a1);
return *((MD_FLOAT *) &a0);
}
#else // AVX2
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm256_mask_mov_pd(_mm256_setzero_pd(), m, a); }
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_pd(a); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_pd(a, b, c); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm256_mask_add_pd(a, m, a, b); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd_mask(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_int_cond_lt(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm_cmplt_epi32_mask(a, b); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) { static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
__m128d a0, a1; __m128d a0, a1;
// test with shuffle & add as an alternative to hadd later // test with shuffle & add as an alternative to hadd later
@ -111,10 +84,8 @@ static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
return *((MD_FLOAT *) &a0); return *((MD_FLOAT *) &a0);
} }
#endif
static inline void simd_h_decr3(MD_FLOAT *m, MD_SIMD_FLOAT a0, MD_SIMD_FLOAT a1, MD_SIMD_FLOAT a2) { static inline void simd_h_decr3(MD_FLOAT *m, MD_SIMD_FLOAT a0, MD_SIMD_FLOAT a1, MD_SIMD_FLOAT a2) {
fprintf(stderr, "simd_h_decr3(): Not implemented for AVX/AVX2 with double precision!"); fprintf(stderr, "simd_h_decr3(): Not implemented for AVX2 with double precision!");
exit(-1); exit(-1);
} }

View File

@ -0,0 +1,99 @@
/*
* Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg.
* All rights reserved. This file is part of MD-Bench.
* Use of this source code is governed by a LGPL-3.0
* license that can be found in the LICENSE file.
*/
#include <stdlib.h>
#include <string.h>
#include <immintrin.h>
#define MD_SIMD_FLOAT __m256d
#define MD_SIMD_INT __m128i
#define MD_SIMD_MASK __m256d
static inline MD_SIMD_FLOAT simd_broadcast(MD_FLOAT scalar) { return _mm256_set1_pd(scalar); }
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_pd(0.0); }
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_add_pd(a, b); }
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_sub_pd(a, b); }
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_mul_pd(a, b); }
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_pd(p); }
static inline void simd_store(MD_FLOAT *p, MD_SIMD_FLOAT a) { _mm256_store_pd(p, a); }
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const MD_FLOAT *m) {
MD_SIMD_FLOAT ret;
fprintf(stderr, "simd_load_h_duplicate(): Not implemented for AVX with double precision!");
exit(-1);
return ret;
}
static inline MD_SIMD_FLOAT simd_load_h_dual(const MD_FLOAT *m) {
MD_SIMD_FLOAT ret;
fprintf(stderr, "simd_load_h_dual(): Not implemented for AVX with double precision!");
exit(-1);
return ret;
}
static inline MD_FLOAT simd_h_dual_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
fprintf(stderr, "simd_h_dual_incr_reduced_sum(): Not implemented for AVX with double precision!");
exit(-1);
return 0.0;
}
static inline MD_FLOAT simd_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1, MD_SIMD_FLOAT v2, MD_SIMD_FLOAT v3) {
__m256d t0, t1, t2;
__m128d a0, a1;
t0 = _mm256_hadd_pd(v0, v1);
t1 = _mm256_hadd_pd(v2, v3);
t2 = _mm256_permute2f128_pd(t0, t1, 0x21);
t0 = _mm256_add_pd(t0, t2);
t1 = _mm256_add_pd(t1, t2);
t0 = _mm256_blend_pd(t0, t1, 0b1100);
t1 = _mm256_add_pd(t0, _mm256_load_pd(m));
_mm256_store_pd(m, t1);
t0 = _mm256_add_pd(t0, _mm256_permute_pd(t0, 0b0101));
a0 = _mm256_castpd256_pd128(t0);
a1 = _mm256_extractf128_pd(t0, 0x1);
a0 = _mm_add_sd(a0, a1);
return *((MD_FLOAT *) &a0);
}
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm256_and_pd(a, m); }
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_cvtps_pd(_mm_rcp_ps(_mm256_cvtpd_ps(a))); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return simd_add(simd_mul(a, b), c); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return simd_add(a, _mm256_and_pd(b, m)); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_int_cond_lt(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm256_cvtepi32_pd(_mm_cmplt_epi32(a, b)); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _mm256_and_pd(a, b); }
// TODO: Initialize all diagonal cases and just select the proper one (all bits set or diagonal) based on cond0
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) {
const unsigned long long int all = 0xFFFFFFFFFFFFFFFF;
const unsigned long long int none = 0x0;
return _mm256_castsi256_pd(_mm256_set_epi64x((a & 0x8) ? all : none, (a & 0x4) ? all : none, (a & 0x2) ? all : none, (a & 0x1) ? all : none));
}
// TODO: Implement this, althrough it is just required for debugging
static inline int simd_mask_to_u32(MD_SIMD_MASK a) { return 0; }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
__m128d a0, a1;
a = _mm256_add_pd(a, _mm256_permute_pd(a, 0b0101));
a0 = _mm256_castpd256_pd128(a);
a1 = _mm256_extractf128_pd(a, 0x1);
a0 = _mm_add_sd(a0, a1);
return *((MD_FLOAT *) &a0);
}
static inline void simd_h_decr3(MD_FLOAT *m, MD_SIMD_FLOAT a0, MD_SIMD_FLOAT a1, MD_SIMD_FLOAT a2) {
fprintf(stderr, "simd_h_decr3(): Not implemented for AVX with double precision!");
exit(-1);
}
// Functions used in LAMMPS kernel
static inline MD_SIMD_FLOAT simd_gather(MD_SIMD_INT vidx, const MD_FLOAT *m, int s) { return _mm256_i32gather_pd(m, vidx, s); }
static inline MD_SIMD_INT simd_int_broadcast(int scalar) { return _mm_set1_epi32(scalar); }
static inline MD_SIMD_INT simd_int_zero() { return _mm_setzero_si128(); }
static inline MD_SIMD_INT simd_int_seq() { return _mm_set_epi32(3, 2, 1, 0); }
static inline MD_SIMD_INT simd_int_load(const int *m) { return _mm_load_si128((__m128i const *) m); }
static inline MD_SIMD_INT simd_int_add(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm_add_epi32(a, b); }
static inline MD_SIMD_INT simd_int_mul(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm_mul_epi32(a, b); }
static inline MD_SIMD_INT simd_int_mask_load(const int *m, MD_SIMD_MASK k) { return simd_int_load(m) & _mm256_cvtpd_epi32(k); }

View File

@ -0,0 +1,84 @@
/*
* Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg.
* All rights reserved. This file is part of MD-Bench.
* Use of this source code is governed by a LGPL-3.0
* license that can be found in the LICENSE file.
*/
#include <immintrin.h>
#include <zmmintrin.h>
#define MD_SIMD_FLOAT __m256
#define MD_SIMD_MASK __mmask8
static inline MD_SIMD_FLOAT simd_broadcast(MD_FLOAT scalar) { return _mm256_set1_ps(scalar); }
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_ps(0.0); }
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_add_ps(a, b); }
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_sub_ps(a, b); }
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_mul_ps(a, b); }
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_ps(p); }
static inline void simd_store(MD_FLOAT *p, MD_SIMD_FLOAT a) { _mm256_store_ps(p, a); }
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm256_mask_mov_ps(_mm256_setzero_ps(), m, a); }
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_ps(a); }
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_ps(a, b, c); }
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm256_mask_add_ps(a, m, a, b); }
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_ps_mask(a, b, _CMP_LT_OQ); }
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
__m128 t0;
t0 = _mm_add_ps(_mm256_castps256_ps128(a), _mm256_extractf128_ps(a, 0x1));
t0 = _mm_add_ps(t0, _mm_permute_ps(t0, _MM_SHUFFLE(1, 0, 3, 2)));
t0 = _mm_add_ss(t0, _mm_permute_ps(t0, _MM_SHUFFLE(0, 3, 2, 1)));
return *((MD_FLOAT *) &t0);
}
static inline MD_FLOAT simd_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1, MD_SIMD_FLOAT v2, MD_SIMD_FLOAT v3) {
__m128 t0, t2;
v0 = _mm256_hadd_ps(v0, v1);
v2 = _mm256_hadd_ps(v2, v3);
v0 = _mm256_hadd_ps(v0, v2);
t0 = _mm_add_ps(_mm256_castps256_ps128(v0), _mm256_extractf128_ps(v0, 0x1));
t2 = _mm_add_ps(t0, _mm_load_ps(m));
_mm_store_ps(m, t2);
t0 = _mm_add_ps(t0, _mm_permute_ps(t0, _MM_SHUFFLE(1, 0, 3, 2)));
t0 = _mm_add_ss(t0, _mm_permute_ps(t0, _MM_SHUFFLE(0, 3, 2, 1)));
return *((MD_FLOAT *) &t0);
}
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const MD_FLOAT *m) {
return _mm256_broadcast_ps((const __m128 *)(m));
}
static inline MD_SIMD_FLOAT simd_load_h_dual(const MD_FLOAT *m) {
__m128 t0, t1;
t0 = _mm_broadcast_ss(m);
t1 = _mm_broadcast_ss(m + 1);
return _mm256_insertf128_ps(_mm256_castps128_ps256(t0), t1, 0x1);
}
static inline MD_FLOAT simd_h_dual_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
__m128 t0, t1;
v0 = _mm256_hadd_ps(v0, v1);
t0 = _mm256_extractf128_ps(v0, 0x1);
t0 = _mm_hadd_ps(_mm256_castps256_ps128(v0), t0);
t0 = _mm_permute_ps(t0, _MM_SHUFFLE(3, 1, 2, 0));
t1 = _mm_add_ps(t0, _mm_load_ps(m));
_mm_store_ps(m, t1);
t0 = _mm_add_ps(t0, _mm_permute_ps(t0, _MM_SHUFFLE(1, 0, 3, 2)));
t0 = _mm_add_ss(t0, _mm_permute_ps(t0, _MM_SHUFFLE(0, 3, 2, 1)));
return *((MD_FLOAT *) &t0);
}
inline void simd_h_decr(MD_FLOAT *m, MD_SIMD_FLOAT a) {
__m128 asum = _mm_add_ps(_mm256_castps256_ps128(a), _mm256_extractf128_ps(a, 0x1));
_mm_store_ps(m, _mm_sub_ps(_mm_load_ps(m), asum));
}
static inline void simd_h_decr3(MD_FLOAT *m, MD_SIMD_FLOAT a0, MD_SIMD_FLOAT a1, MD_SIMD_FLOAT a2) {
simd_h_decr(m, a0);
simd_h_decr(m + CLUSTER_N, a1);
simd_h_decr(m + CLUSTER_N * 2, a2);
}

View File

@ -2,9 +2,6 @@
TAG ?= ICC TAG ?= ICC
# Instruction set (SSE/AVX/AVX2/AVX512) # Instruction set (SSE/AVX/AVX2/AVX512)
ISA ?= AVX512 ISA ?= AVX512
# Use mask registers (AVX512 must be available in the target CPU)
# This is always true when ISA is set to AVX512
MASK_REGISTERS ?= true
# Optimization scheme (lammps/gromacs/clusters_per_bin) # Optimization scheme (lammps/gromacs/clusters_per_bin)
OPT_SCHEME ?= lammps OPT_SCHEME ?= lammps
# Enable likwid (true or false) # Enable likwid (true or false)

View File

@ -1,20 +1,23 @@
ifeq ($(strip $(ISA)), SSE) ifeq ($(strip $(ISA)), SSE)
_VECTOR_WIDTH=2 __ISA_SSE__=true
__SIMD_WIDTH_DBL__=2
else ifeq ($(strip $(ISA)), AVX) else ifeq ($(strip $(ISA)), AVX)
# Vector width is 4 but AVX2 instruction set is not supported __ISA_AVX__=true
NO_AVX2=true __SIMD_WIDTH_DBL__=4
_VECTOR_WIDTH=4
else ifeq ($(strip $(ISA)), AVX2) else ifeq ($(strip $(ISA)), AVX2)
#SIMD_KERNEL_AVAILABLE=true __ISA_AVX2__=true
_VECTOR_WIDTH=4 #__SIMD_KERNEL__=true
__SIMD_WIDTH_DBL__=4
else ifeq ($(strip $(ISA)), AVX512) else ifeq ($(strip $(ISA)), AVX512)
AVX512=true __ISA_AVX512__=true
SIMD_KERNEL_AVAILABLE=true __SIMD_KERNEL__=true
_VECTOR_WIDTH=8 __SIMD_WIDTH_DBL__=8
endif endif
# SIMD width is specified in double-precision, hence it may
# need to be adjusted for single-precision
ifeq ($(strip $(DATA_TYPE)), SP) ifeq ($(strip $(DATA_TYPE)), SP)
VECTOR_WIDTH=$(shell echo $$(( $(_VECTOR_WIDTH) * 2 ))) VECTOR_WIDTH=$(shell echo $$(( $(__SIMD_WIDTH_DBL__) * 2 )))
else else
VECTOR_WIDTH=$(_VECTOR_WIDTH) VECTOR_WIDTH=$(__SIMD_WIDTH_DBL__)
endif endif

View File

@ -14,7 +14,7 @@
#include <stats.h> #include <stats.h>
#include <timing.h> #include <timing.h>
#ifdef SIMD_KERNEL_AVAILABLE #ifdef __SIMD_KERNEL__
#include <simd.h> #include <simd.h>
#endif #endif
@ -191,7 +191,7 @@ double computeForceLJFullNeigh_simd(Parameter *param, Atom *atom, Neighbor *neig
double S = getTimeStamp(); double S = getTimeStamp();
LIKWID_MARKER_START("force"); LIKWID_MARKER_START("force");
#ifndef SIMD_KERNEL_AVAILABLE #ifndef __SIMD_KERNEL__
fprintf(stderr, "Error: SIMD kernel not implemented for specified instruction set!"); fprintf(stderr, "Error: SIMD kernel not implemented for specified instruction set!");
exit(-1); exit(-1);
#else #else