Reorganize SIMD files and split AVX and AVX2
Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
This commit is contained in:
		@@ -8,14 +8,9 @@
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <immintrin.h>
 | 
			
		||||
 | 
			
		||||
#define MD_SIMD_FLOAT       __m256d
 | 
			
		||||
#define MD_SIMD_INT         __m128i
 | 
			
		||||
 | 
			
		||||
#ifdef MASK_REGISTERS
 | 
			
		||||
#   define MD_SIMD_MASK     __mmask8
 | 
			
		||||
#else
 | 
			
		||||
#   define MD_SIMD_MASK     __m256d
 | 
			
		||||
#endif
 | 
			
		||||
#define MD_SIMD_FLOAT   __m256d
 | 
			
		||||
#define MD_SIMD_INT     __m128i
 | 
			
		||||
#define MD_SIMD_MASK    __m256d
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_broadcast(MD_FLOAT scalar) { return _mm256_set1_pd(scalar); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_pd(0.0); }
 | 
			
		||||
@@ -26,20 +21,20 @@ static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_pd(p); }
 | 
			
		||||
static inline void simd_store(MD_FLOAT *p, MD_SIMD_FLOAT a) { _mm256_store_pd(p, a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const MD_FLOAT *m) {
 | 
			
		||||
    MD_SIMD_FLOAT ret;
 | 
			
		||||
    fprintf(stderr, "simd_load_h_duplicate(): Not implemented for AVX/AVX2 with double precision!");
 | 
			
		||||
    fprintf(stderr, "simd_load_h_duplicate(): Not implemented for AVX2 with double precision!");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
    return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_dual(const MD_FLOAT *m) {
 | 
			
		||||
    MD_SIMD_FLOAT ret;
 | 
			
		||||
    fprintf(stderr, "simd_load_h_dual(): Not implemented for AVX/AVX2 with double precision!");
 | 
			
		||||
    fprintf(stderr, "simd_load_h_dual(): Not implemented for AVX2 with double precision!");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
    return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_h_dual_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
 | 
			
		||||
    fprintf(stderr, "simd_h_dual_incr_reduced_sum(): Not implemented for AVX/AVX2 with double precision!");
 | 
			
		||||
    fprintf(stderr, "simd_h_dual_incr_reduced_sum(): Not implemented for AVX2 with double precision!");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
    return 0.0;
 | 
			
		||||
}
 | 
			
		||||
@@ -64,11 +59,9 @@ static inline MD_FLOAT simd_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_S
 | 
			
		||||
    return *((MD_FLOAT *) &a0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#ifdef NO_AVX2
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm256_and_pd(a, m); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_cvtps_pd(_mm_rcp_ps(_mm256_cvtpd_ps(a))); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return simd_add(simd_mul(a, b), c); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_pd(a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_pd(a, b, c); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return simd_add(a, _mm256_and_pd(b, m)); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd(a, b, _CMP_LT_OQ); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_int_cond_lt(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm256_cvtepi32_pd(_mm_cmplt_epi32(a, b)); }
 | 
			
		||||
@@ -81,26 +74,6 @@ static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) {
 | 
			
		||||
}
 | 
			
		||||
// TODO: Implement this, althrough it is just required for debugging
 | 
			
		||||
static inline int simd_mask_to_u32(MD_SIMD_MASK a) { return 0; }
 | 
			
		||||
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
 | 
			
		||||
    __m128d a0, a1;
 | 
			
		||||
    a = _mm256_add_pd(a, _mm256_permute_pd(a, 0b0101));
 | 
			
		||||
    a0 = _mm256_castpd256_pd128(a);
 | 
			
		||||
    a1 = _mm256_extractf128_pd(a, 0x1);
 | 
			
		||||
    a0 = _mm_add_sd(a0, a1);
 | 
			
		||||
    return *((MD_FLOAT *) &a0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#else // AVX2
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm256_mask_mov_pd(_mm256_setzero_pd(), m, a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_pd(a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_pd(a, b, c); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm256_mask_add_pd(a, m, a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd_mask(a, b, _CMP_LT_OQ); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_int_cond_lt(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm_cmplt_epi32_mask(a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
 | 
			
		||||
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
 | 
			
		||||
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
 | 
			
		||||
    __m128d a0, a1;
 | 
			
		||||
    // test with shuffle & add as an alternative to hadd later
 | 
			
		||||
@@ -111,10 +84,8 @@ static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
 | 
			
		||||
    return *((MD_FLOAT *) &a0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
static inline void simd_h_decr3(MD_FLOAT *m, MD_SIMD_FLOAT a0, MD_SIMD_FLOAT a1, MD_SIMD_FLOAT a2) {
 | 
			
		||||
    fprintf(stderr, "simd_h_decr3(): Not implemented for AVX/AVX2 with double precision!");
 | 
			
		||||
    fprintf(stderr, "simd_h_decr3(): Not implemented for AVX2 with double precision!");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										99
									
								
								common/includes/simd/avx_double.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										99
									
								
								common/includes/simd/avx_double.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,99 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg.
 | 
			
		||||
 * All rights reserved. This file is part of MD-Bench.
 | 
			
		||||
 * Use of this source code is governed by a LGPL-3.0
 | 
			
		||||
 * license that can be found in the LICENSE file.
 | 
			
		||||
 */
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <immintrin.h>
 | 
			
		||||
 | 
			
		||||
#define MD_SIMD_FLOAT   __m256d
 | 
			
		||||
#define MD_SIMD_INT     __m128i
 | 
			
		||||
#define MD_SIMD_MASK    __m256d
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_broadcast(MD_FLOAT scalar) { return _mm256_set1_pd(scalar); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_pd(0.0); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_add_pd(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_sub_pd(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_mul_pd(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_pd(p); }
 | 
			
		||||
static inline void simd_store(MD_FLOAT *p, MD_SIMD_FLOAT a) { _mm256_store_pd(p, a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const MD_FLOAT *m) {
 | 
			
		||||
    MD_SIMD_FLOAT ret;
 | 
			
		||||
    fprintf(stderr, "simd_load_h_duplicate(): Not implemented for AVX with double precision!");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
    return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_dual(const MD_FLOAT *m) {
 | 
			
		||||
    MD_SIMD_FLOAT ret;
 | 
			
		||||
    fprintf(stderr, "simd_load_h_dual(): Not implemented for AVX with double precision!");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
    return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_h_dual_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
 | 
			
		||||
    fprintf(stderr, "simd_h_dual_incr_reduced_sum(): Not implemented for AVX with double precision!");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
    return 0.0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1, MD_SIMD_FLOAT v2, MD_SIMD_FLOAT v3) {
 | 
			
		||||
    __m256d t0, t1, t2;
 | 
			
		||||
    __m128d a0, a1;
 | 
			
		||||
 | 
			
		||||
    t0 = _mm256_hadd_pd(v0, v1);
 | 
			
		||||
    t1 = _mm256_hadd_pd(v2, v3);
 | 
			
		||||
    t2 = _mm256_permute2f128_pd(t0, t1, 0x21);
 | 
			
		||||
    t0 = _mm256_add_pd(t0, t2);
 | 
			
		||||
    t1 = _mm256_add_pd(t1, t2);
 | 
			
		||||
    t0 = _mm256_blend_pd(t0, t1, 0b1100);
 | 
			
		||||
    t1 = _mm256_add_pd(t0, _mm256_load_pd(m));
 | 
			
		||||
    _mm256_store_pd(m, t1);
 | 
			
		||||
 | 
			
		||||
    t0 = _mm256_add_pd(t0, _mm256_permute_pd(t0, 0b0101));
 | 
			
		||||
    a0 = _mm256_castpd256_pd128(t0);
 | 
			
		||||
    a1 = _mm256_extractf128_pd(t0, 0x1);
 | 
			
		||||
    a0 = _mm_add_sd(a0, a1);
 | 
			
		||||
    return *((MD_FLOAT *) &a0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm256_and_pd(a, m); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_cvtps_pd(_mm_rcp_ps(_mm256_cvtpd_ps(a))); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return simd_add(simd_mul(a, b), c); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return simd_add(a, _mm256_and_pd(b, m)); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd(a, b, _CMP_LT_OQ); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_int_cond_lt(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm256_cvtepi32_pd(_mm_cmplt_epi32(a, b)); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _mm256_and_pd(a, b); }
 | 
			
		||||
// TODO: Initialize all diagonal cases and just select the proper one (all bits set or diagonal) based on cond0
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) {
 | 
			
		||||
    const unsigned long long int all = 0xFFFFFFFFFFFFFFFF;
 | 
			
		||||
    const unsigned long long int none = 0x0;
 | 
			
		||||
    return _mm256_castsi256_pd(_mm256_set_epi64x((a & 0x8) ? all : none, (a & 0x4) ? all : none, (a & 0x2) ? all : none, (a & 0x1) ? all : none));
 | 
			
		||||
}
 | 
			
		||||
// TODO: Implement this, althrough it is just required for debugging
 | 
			
		||||
static inline int simd_mask_to_u32(MD_SIMD_MASK a) { return 0; }
 | 
			
		||||
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
 | 
			
		||||
    __m128d a0, a1;
 | 
			
		||||
    a = _mm256_add_pd(a, _mm256_permute_pd(a, 0b0101));
 | 
			
		||||
    a0 = _mm256_castpd256_pd128(a);
 | 
			
		||||
    a1 = _mm256_extractf128_pd(a, 0x1);
 | 
			
		||||
    a0 = _mm_add_sd(a0, a1);
 | 
			
		||||
    return *((MD_FLOAT *) &a0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline void simd_h_decr3(MD_FLOAT *m, MD_SIMD_FLOAT a0, MD_SIMD_FLOAT a1, MD_SIMD_FLOAT a2) {
 | 
			
		||||
    fprintf(stderr, "simd_h_decr3(): Not implemented for AVX with double precision!");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Functions used in LAMMPS kernel
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_gather(MD_SIMD_INT vidx, const MD_FLOAT *m, int s) { return _mm256_i32gather_pd(m, vidx, s); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_broadcast(int scalar) { return _mm_set1_epi32(scalar); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_zero() { return _mm_setzero_si128(); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_seq() { return _mm_set_epi32(3, 2, 1, 0); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_load(const int *m) { return _mm_load_si128((__m128i const *) m); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_add(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm_add_epi32(a, b); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_mul(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm_mul_epi32(a, b); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_mask_load(const int *m, MD_SIMD_MASK k) { return simd_int_load(m) & _mm256_cvtpd_epi32(k); }
 | 
			
		||||
							
								
								
									
										84
									
								
								common/includes/simd/avx_float.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										84
									
								
								common/includes/simd/avx_float.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,84 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg.
 | 
			
		||||
 * All rights reserved. This file is part of MD-Bench.
 | 
			
		||||
 * Use of this source code is governed by a LGPL-3.0
 | 
			
		||||
 * license that can be found in the LICENSE file.
 | 
			
		||||
 */
 | 
			
		||||
#include <immintrin.h>
 | 
			
		||||
#include <zmmintrin.h>
 | 
			
		||||
 | 
			
		||||
#define MD_SIMD_FLOAT   __m256
 | 
			
		||||
#define MD_SIMD_MASK    __mmask8
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_broadcast(MD_FLOAT scalar) { return _mm256_set1_ps(scalar); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_ps(0.0); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_add_ps(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_sub_ps(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_mul_ps(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_ps(p); }
 | 
			
		||||
static inline void simd_store(MD_FLOAT *p, MD_SIMD_FLOAT a) { _mm256_store_ps(p, a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm256_mask_mov_ps(_mm256_setzero_ps(), m, a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_ps(a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_ps(a, b, c); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm256_mask_add_ps(a, m, a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_ps_mask(a, b, _CMP_LT_OQ); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
 | 
			
		||||
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
 | 
			
		||||
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
 | 
			
		||||
    __m128 t0;
 | 
			
		||||
    t0 = _mm_add_ps(_mm256_castps256_ps128(a), _mm256_extractf128_ps(a, 0x1));
 | 
			
		||||
    t0 = _mm_add_ps(t0, _mm_permute_ps(t0, _MM_SHUFFLE(1, 0, 3, 2)));
 | 
			
		||||
    t0 = _mm_add_ss(t0, _mm_permute_ps(t0, _MM_SHUFFLE(0, 3, 2, 1)));
 | 
			
		||||
    return *((MD_FLOAT *) &t0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1, MD_SIMD_FLOAT v2, MD_SIMD_FLOAT v3) {
 | 
			
		||||
    __m128 t0, t2;
 | 
			
		||||
    v0 = _mm256_hadd_ps(v0, v1);
 | 
			
		||||
    v2 = _mm256_hadd_ps(v2, v3);
 | 
			
		||||
    v0 = _mm256_hadd_ps(v0, v2);
 | 
			
		||||
    t0 = _mm_add_ps(_mm256_castps256_ps128(v0), _mm256_extractf128_ps(v0, 0x1));
 | 
			
		||||
    t2 = _mm_add_ps(t0, _mm_load_ps(m));
 | 
			
		||||
    _mm_store_ps(m, t2);
 | 
			
		||||
 | 
			
		||||
    t0 = _mm_add_ps(t0, _mm_permute_ps(t0, _MM_SHUFFLE(1, 0, 3, 2)));
 | 
			
		||||
    t0 = _mm_add_ss(t0, _mm_permute_ps(t0, _MM_SHUFFLE(0, 3, 2, 1)));
 | 
			
		||||
    return *((MD_FLOAT *) &t0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const MD_FLOAT *m) {
 | 
			
		||||
    return _mm256_broadcast_ps((const __m128 *)(m));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_dual(const MD_FLOAT *m) {
 | 
			
		||||
    __m128 t0, t1;
 | 
			
		||||
    t0 = _mm_broadcast_ss(m);
 | 
			
		||||
    t1 = _mm_broadcast_ss(m + 1);
 | 
			
		||||
    return _mm256_insertf128_ps(_mm256_castps128_ps256(t0), t1, 0x1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_h_dual_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
 | 
			
		||||
    __m128 t0, t1;
 | 
			
		||||
    v0 = _mm256_hadd_ps(v0, v1);
 | 
			
		||||
    t0 = _mm256_extractf128_ps(v0, 0x1);
 | 
			
		||||
    t0 = _mm_hadd_ps(_mm256_castps256_ps128(v0), t0);
 | 
			
		||||
    t0 = _mm_permute_ps(t0, _MM_SHUFFLE(3, 1, 2, 0));
 | 
			
		||||
    t1 = _mm_add_ps(t0, _mm_load_ps(m));
 | 
			
		||||
    _mm_store_ps(m, t1);
 | 
			
		||||
 | 
			
		||||
    t0 = _mm_add_ps(t0, _mm_permute_ps(t0, _MM_SHUFFLE(1, 0, 3, 2)));
 | 
			
		||||
    t0 = _mm_add_ss(t0, _mm_permute_ps(t0, _MM_SHUFFLE(0, 3, 2, 1)));
 | 
			
		||||
    return *((MD_FLOAT *) &t0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline void simd_h_decr(MD_FLOAT *m, MD_SIMD_FLOAT a) {
 | 
			
		||||
    __m128 asum = _mm_add_ps(_mm256_castps256_ps128(a), _mm256_extractf128_ps(a, 0x1));
 | 
			
		||||
    _mm_store_ps(m, _mm_sub_ps(_mm_load_ps(m), asum));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline void simd_h_decr3(MD_FLOAT *m, MD_SIMD_FLOAT a0, MD_SIMD_FLOAT a1, MD_SIMD_FLOAT a2) {
 | 
			
		||||
    simd_h_decr(m, a0);
 | 
			
		||||
    simd_h_decr(m + CLUSTER_N, a1);
 | 
			
		||||
    simd_h_decr(m + CLUSTER_N * 2, a2);
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user