Add first draft version of GROMACS method separating i-clusters and j-clusters

Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
This commit is contained in:
Rafael Ravedutti 2022-03-09 02:25:39 +01:00
parent cecb31d6a9
commit c7360305c8
9 changed files with 411 additions and 247 deletions

View File

@ -10,6 +10,7 @@ Q ?= @
include $(MAKE_DIR)/config.mk include $(MAKE_DIR)/config.mk
include $(MAKE_DIR)/include_$(TAG).mk include $(MAKE_DIR)/include_$(TAG).mk
include $(MAKE_DIR)/include_LIKWID.mk include $(MAKE_DIR)/include_LIKWID.mk
include $(MAKE_DIR)/include_ISA.mk
include $(MAKE_DIR)/include_GROMACS.mk include $(MAKE_DIR)/include_GROMACS.mk
INCLUDES += -I./$(SRC_DIR)/includes INCLUDES += -I./$(SRC_DIR)/includes

View File

@ -1,5 +1,7 @@
# Compiler tag (GCC/CLANG/ICC) # Compiler tag (GCC/CLANG/ICC)
TAG ?= ICC TAG ?= ICC
# Instruction set (SSE/AVX/AVX2/AVX512)
ISA ?= AVX512
# Optimization scheme (lammps/gromacs/clusters_per_bin) # Optimization scheme (lammps/gromacs/clusters_per_bin)
OPT_SCHEME ?= gromacs OPT_SCHEME ?= gromacs
# Enable likwid (true or false) # Enable likwid (true or false)
@ -23,10 +25,6 @@ EXPLICIT_TYPES ?= false
MEM_TRACER ?= false MEM_TRACER ?= false
# Trace indexes and distances for gather-md (true or false) # Trace indexes and distances for gather-md (true or false)
INDEX_TRACER ?= false INDEX_TRACER ?= false
# Vector width (elements) for index and distance tracer
VECTOR_WIDTH ?= 8
# When vector width is 4 but AVX2 is not supported (AVX only), set this to true
NO_AVX2 ?= false
# Compute statistics # Compute statistics
COMPUTE_STATS ?= true COMPUTE_STATS ?= true

View File

@ -63,7 +63,7 @@ double computeForceLJ_ref(Parameter *param, Atom *atom, Neighbor *neighbor, Stat
int cj = neighs[k]; int cj = neighs[k];
int any = 0; int any = 0;
MD_FLOAT *cjptr = cluster_pos_ptr(cj); MD_FLOAT *cjptr = cluster_pos_ptr(cj);
for(int cii = 0; cii < CLUSTER_DIM_M; cii++) { for(int cii = 0; cii < CLUSTER_M; cii++) {
MD_FLOAT xtmp = cluster_x(ciptr, cii); MD_FLOAT xtmp = cluster_x(ciptr, cii);
MD_FLOAT ytmp = cluster_y(ciptr, cii); MD_FLOAT ytmp = cluster_y(ciptr, cii);
MD_FLOAT ztmp = cluster_z(ciptr, cii); MD_FLOAT ztmp = cluster_z(ciptr, cii);
@ -71,7 +71,7 @@ double computeForceLJ_ref(Parameter *param, Atom *atom, Neighbor *neighbor, Stat
MD_FLOAT fiy = 0; MD_FLOAT fiy = 0;
MD_FLOAT fiz = 0; MD_FLOAT fiz = 0;
for(int cjj = 0; cjj < CLUSTER_DIM_M; cjj++) { for(int cjj = 0; cjj < CLUSTER_M; cjj++) {
if(ci != cj || cii != cjj) { if(ci != cj || cii != cjj) {
MD_FLOAT delx = xtmp - cluster_x(cjptr, cjj); MD_FLOAT delx = xtmp - cluster_x(cjptr, cjj);
MD_FLOAT dely = ytmp - cluster_y(cjptr, cjj); MD_FLOAT dely = ytmp - cluster_y(cjptr, cjj);
@ -106,7 +106,7 @@ double computeForceLJ_ref(Parameter *param, Atom *atom, Neighbor *neighbor, Stat
addStat(stats->calculated_forces, 1); addStat(stats->calculated_forces, 1);
addStat(stats->num_neighs, numneighs); addStat(stats->num_neighs, numneighs);
addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_DIM_M / CLUSTER_DIM_N)); addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_M / CLUSTER_N));
} }
LIKWID_MARKER_STOP("force"); LIKWID_MARKER_STOP("force");
@ -128,7 +128,7 @@ double computeForceLJ_4xn(Parameter *param, Atom *atom, Neighbor *neighbor, Stat
MD_SIMD_FLOAT epsilon_vec = simd_broadcast(epsilon); MD_SIMD_FLOAT epsilon_vec = simd_broadcast(epsilon);
MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0); MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0);
MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5); MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5);
const int unroll_j = CLUSTER_DIM_N / CLUSTER_DIM_M; const int unroll_j = CLUSTER_N / CLUSTER_M;
double S = getTimeStamp(); double S = getTimeStamp();
LIKWID_MARKER_START("force"); LIKWID_MARKER_START("force");
@ -262,7 +262,7 @@ double computeForceLJ_4xn(Parameter *param, Atom *atom, Neighbor *neighbor, Stat
addStat(stats->calculated_forces, 1); addStat(stats->calculated_forces, 1);
addStat(stats->num_neighs, numneighs); addStat(stats->num_neighs, numneighs);
addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_DIM_M / CLUSTER_DIM_N)); addStat(stats->force_iters, (long long int)((double)numneighs * CLUSTER_M / CLUSTER_N));
} }
LIKWID_MARKER_STOP("force"); LIKWID_MARKER_STOP("force");

View File

@ -27,13 +27,60 @@
#define DELTA 20000 #define DELTA 20000
#define CLUSTER_DIM_M 4 #define CLUSTER_M 4
#define CLUSTER_DIM_N VECTOR_WIDTH
// Nbnxn layouts (as of GROMACS):
// Simd4xN: M=4, N=VECTOR_WIDTH
// Simd2xNN: M=4, N=(VECTOR_WIDTH/2)
// Simd2XNN (here used for single-precision)
#if VECTOR_WIDTH > CLUSTER_M * 2
# define CLUSTER_N (VECTOR_WIDTH / 2)
// Simd4xN
#else
# define CLUSTER_N VECTOR_WIDTH
#endif
#if CLUSTER_M == CLUSTER_N
# define CJ0_FROM_CI(a) (a)
# define CJ1_FROM_CI(a) (a)
# define CI_BASE_INDEX(a,b) ((a) * CLUSTER_N * (b))
# define CJ_BASE_INDEX(a,b) ((a) * CLUSTER_N * (b))
#elif CLUSTER_M == CLUSTER_N * 2 // M > N
# define CJ0_FROM_CI(a) ((a) << 1)
# define CJ1_FROM_CI(a) (((a) << 1) | 0x1)
# define CI_BASE_INDEX(a,b) ((a) * CLUSTER_M * (b))
# define CJ_BASE_INDEX(a,b) (((a) >> 1) * CLUSTER_M * (b) + ((a) & 0x1) * (CLUSTER_M >> 1))
#elif CLUSTER_M == CLUSTER_N / 2 // M < N
# define CJ0_FROM_CI(a) ((a) >> 1)
# define CJ1_FROM_CI(a) ((a) >> 1)
# define CI_BASE_INDEX(a,b) (((a) >> 1) * CLUSTER_N * (b) + ((a) & 0x1) * (CLUSTER_N >> 1))
# define CJ_BASE_INDEX(a,b) ((a) * CLUSTER_N * (b))
#else
# error "Invalid cluster configuration!"
#endif
#if CLUSTER_N != 2 && CLUSTER_N != 4 && CLUSTER_N != 8
# error "Cluster N dimension can be only 2, 4 and 8"
#endif
#define CI_SCALAR_BASE_INDEX(a) (CI_BASE_INDEX(a, 1))
#define CI_VECTOR_BASE_INDEX(a) (CI_BASE_INDEX(a, 3))
#define CJ_SCALAR_BASE_INDEX(a) (CJ_BASE_INDEX(a, 1))
#define CJ_VECTOR_BASE_INDEX(a) (CJ_BASE_INDEX(a, 3))
#if CLUSTER_M >= CLUSTER_N
# define CL_X_OFFSET (0 * CLUSTER_M)
# define CL_Y_OFFSET (1 * CLUSTER_M)
# define CL_Z_OFFSET (2 * CLUSTER_M)
#else
# define CL_X_OFFSET (0 * CLUSTER_N)
# define CL_Y_OFFSET (1 * CLUSTER_N)
# define CL_Z_OFFSET (2 * CLUSTER_N)
#endif
typedef struct { typedef struct {
int bin;
int natoms; int natoms;
int type[CLUSTER_DIM_M];
MD_FLOAT bbminx, bbmaxx; MD_FLOAT bbminx, bbmaxx;
MD_FLOAT bbminy, bbmaxy; MD_FLOAT bbminy, bbmaxy;
MD_FLOAT bbminz, bbmaxz; MD_FLOAT bbminz, bbmaxz;
@ -44,9 +91,6 @@ typedef struct {
int Nclusters, Nclusters_local, Nclusters_ghost, Nclusters_max; int Nclusters, Nclusters_local, Nclusters_ghost, Nclusters_max;
MD_FLOAT *x, *y, *z; MD_FLOAT *x, *y, *z;
MD_FLOAT *vx, *vy, *vz; MD_FLOAT *vx, *vy, *vz;
MD_FLOAT *cl_x;
MD_FLOAT *cl_v;
MD_FLOAT *cl_f;
int *border_map; int *border_map;
int *type; int *type;
int ntypes; int ntypes;
@ -54,8 +98,13 @@ typedef struct {
MD_FLOAT *sigma6; MD_FLOAT *sigma6;
MD_FLOAT *cutforcesq; MD_FLOAT *cutforcesq;
MD_FLOAT *cutneighsq; MD_FLOAT *cutneighsq;
Cluster *clusters;
int *PBCx, *PBCy, *PBCz; int *PBCx, *PBCy, *PBCz;
// Data in cluster format
MD_FLOAT *cl_x;
MD_FLOAT *cl_v;
MD_FLOAT *cl_f;
int *cl_type;
Cluster *iclusters, *jclusters;
} Atom; } Atom;
extern void initAtom(Atom*); extern void initAtom(Atom*);
@ -67,10 +116,6 @@ extern int readAtom_dmp(Atom*, Parameter*);
extern void growAtom(Atom*); extern void growAtom(Atom*);
extern void growClusters(Atom*); extern void growClusters(Atom*);
#define cluster_pos_ptr(ci) &(atom->cl_x[(ci) * CLUSTER_DIM_M * 3])
#define cluster_velocity_ptr(ci) &(atom->cl_v[(ci) * CLUSTER_DIM_M * 3])
#define cluster_force_ptr(ci) &(atom->cl_f[(ci) * CLUSTER_DIM_M * 3])
#ifdef AOS #ifdef AOS
#define POS_DATA_LAYOUT "AoS" #define POS_DATA_LAYOUT "AoS"
#define atom_x(i) atom->x[(i) * 3 + 0] #define atom_x(i) atom->x[(i) * 3 + 0]
@ -83,14 +128,4 @@ extern void growClusters(Atom*);
#define atom_z(i) atom->z[i] #define atom_z(i) atom->z[i]
#endif #endif
#ifdef CLUSTER_AOS
#define cluster_x(cptr, i) cptr[(i) * 3 + 0]
#define cluster_y(cptr, i) cptr[(i) * 3 + 1]
#define cluster_z(cptr, i) cptr[(i) * 3 + 2]
#else
#define cluster_x(cptr, i) cptr[0 * CLUSTER_DIM_M + (i)]
#define cluster_y(cptr, i) cptr[1 * CLUSTER_DIM_M + (i)]
#define cluster_z(cptr, i) cptr[2 * CLUSTER_DIM_M + (i)]
#endif
#endif #endif

View File

@ -54,8 +54,8 @@ static MD_SIMD_FLOAT simd_load2(MD_FLOAT *c0, MD_FLOAT *c1, int d) {
x = _mm512_mask_i32gather_pd(simd_zero(), simd_mask_from_u32(0x0f), vindex, c0, sizeof(double)); x = _mm512_mask_i32gather_pd(simd_zero(), simd_mask_from_u32(0x0f), vindex, c0, sizeof(double));
x = _mm512_mask_i32gather_pd(x, simd_mask_from_u32(0xf0), vindex, c1, sizeof(double)); x = _mm512_mask_i32gather_pd(x, simd_mask_from_u32(0xf0), vindex, c1, sizeof(double));
#else #else
x = _mm512_load_pd(&c0[d * CLUSTER_DIM_M]); x = _mm512_load_pd(&c0[d * CLUSTER_M]);
x = _mm512_insertf64x4(x, _mm256_load_pd(&c1[d * CLUSTER_DIM_M]), 1); x = _mm512_insertf64x4(x, _mm256_load_pd(&c1[d * CLUSTER_M]), 1);
#endif #endif
return x; return x;
} }
@ -134,7 +134,7 @@ static MD_SIMD_FLOAT simd_load(MD_FLOAT *c0, int d) {
__m128i vindex = _mm128_add_epi32(aos_gather_vindex, _mm128_set1_epi32(d)); __m128i vindex = _mm128_add_epi32(aos_gather_vindex, _mm128_set1_epi32(d));
x = _mm256_i32gather_pd(c0, vindex, sizeof(double)); x = _mm256_i32gather_pd(c0, vindex, sizeof(double));
#else #else
x = _mm256_load_pd(&c0[d * CLUSTER_DIM_M]); x = _mm256_load_pd(&c0[d * CLUSTER_M]);
#endif #endif
return x; return x;
} }

View File

@ -217,8 +217,6 @@ int main(int argc, const char *argv[]) {
if(!csv) { if(!csv) {
printf("Number of timesteps: %d\n", param.ntimes); printf("Number of timesteps: %d\n", param.ntimes);
printf("Number of times to compute the atoms loop: %d\n", ATOMS_LOOP_RUNS);
printf("Number of times to compute the neighbors loop: %d\n", NEIGHBORS_LOOP_RUNS);
printf("System size (unit cells): %dx%dx%d\n", param.nx, param.ny, param.nz); printf("System size (unit cells): %dx%dx%d\n", param.nx, param.ny, param.nz);
printf("Atoms per unit cell: %d\n", atoms_per_unit_cell); printf("Atoms per unit cell: %d\n", atoms_per_unit_cell);
printf("Total number of atoms: %d\n", atom->Nlocal); printf("Total number of atoms: %d\n", atom->Nlocal);
@ -257,9 +255,8 @@ int main(int argc, const char *argv[]) {
E = getTimeStamp(); E = getTimeStamp();
double T_accum = E-S; double T_accum = E-S;
double freq_hz = param.proc_freq * 1.e9; double freq_hz = param.proc_freq * 1.e9;
const double repeats = ATOMS_LOOP_RUNS * NEIGHBORS_LOOP_RUNS; const double atoms_updates_per_sec = (double)(atom->Nlocal) / T_accum * (double)(param.ntimes);
const double atoms_updates_per_sec = (double)(atom->Nlocal) / T_accum * (double)(param.ntimes * repeats); const double cycles_per_atom = T_accum / (double)(atom->Nlocal) / (double)(param.ntimes) * freq_hz;
const double cycles_per_atom = T_accum / (double)(atom->Nlocal) / (double)(param.ntimes * repeats) * freq_hz;
const double cycles_per_neigh = cycles_per_atom / (double)(atoms_per_unit_cell - 1); const double cycles_per_neigh = cycles_per_atom / (double)(atoms_per_unit_cell - 1);
if(!csv) { if(!csv) {

View File

@ -39,8 +39,9 @@ static int nbinx, nbiny;
static int mbinx, mbiny; // n bins in x, y static int mbinx, mbiny; // n bins in x, y
static int *bincount; static int *bincount;
static int *bins; static int *bins;
static int *cluster_bincount; static int *bin_nclusters;
static int *cluster_bins; static int *bin_clusters;
static int *icluster_bin;
static int mbins; //total number of bins static int mbins; //total number of bins
static int atoms_per_bin; // max atoms per bin static int atoms_per_bin; // max atoms per bin
static int clusters_per_bin; // max clusters per bin static int clusters_per_bin; // max clusters per bin
@ -63,12 +64,12 @@ void initNeighbor(Neighbor *neighbor, Parameter *param) {
cutneigh = param->cutneigh; cutneigh = param->cutneigh;
nmax = 0; nmax = 0;
atoms_per_bin = 8; atoms_per_bin = 8;
clusters_per_bin = (atoms_per_bin / CLUSTER_DIM_M) + 4; clusters_per_bin = (atoms_per_bin / CLUSTER_M) + 4;
stencil = NULL; stencil = NULL;
bins = NULL; bins = NULL;
bincount = NULL; bincount = NULL;
cluster_bins = NULL; bin_clusters = NULL;
cluster_bincount = NULL; bin_nclusters = NULL;
neighbor->maxneighs = 100; neighbor->maxneighs = 100;
neighbor->numneigh = NULL; neighbor->numneigh = NULL;
neighbor->neighbors = NULL; neighbor->neighbors = NULL;
@ -91,7 +92,7 @@ void setupNeighbor(Parameter *param, Atom *atom) {
MD_FLOAT zlo = 0.0; MD_FLOAT zhi = zprd; MD_FLOAT zlo = 0.0; MD_FLOAT zhi = zprd;
MD_FLOAT atom_density = ((MD_FLOAT)(atom->Nlocal)) / ((xhi - xlo) * (yhi - ylo) * (zhi - zlo)); MD_FLOAT atom_density = ((MD_FLOAT)(atom->Nlocal)) / ((xhi - xlo) * (yhi - ylo) * (zhi - zlo));
MD_FLOAT atoms_in_cell = MAX(CLUSTER_DIM_M, CLUSTER_DIM_N); MD_FLOAT atoms_in_cell = MAX(CLUSTER_M, CLUSTER_N);
MD_FLOAT targetsizex = cbrt(atoms_in_cell / atom_density); MD_FLOAT targetsizex = cbrt(atoms_in_cell / atom_density);
MD_FLOAT targetsizey = cbrt(atoms_in_cell / atom_density); MD_FLOAT targetsizey = cbrt(atoms_in_cell / atom_density);
nbinx = MAX(1, (int)ceil((xhi - xlo) / targetsizex)); nbinx = MAX(1, (int)ceil((xhi - xlo) / targetsizex));
@ -103,20 +104,16 @@ void setupNeighbor(Parameter *param, Atom *atom) {
cutneighsq = cutneigh * cutneigh; cutneighsq = cutneigh * cutneigh;
coord = xlo - cutneigh - SMALL * xprd; coord = xlo - cutneigh - SMALL * xprd;
mbinxlo = (int) (coord * bininvx); mbinxlo = (int)(coord * bininvx);
if (coord < 0.0) { if(coord < 0.0) { mbinxlo = mbinxlo - 1; }
mbinxlo = mbinxlo - 1;
}
coord = xhi + cutneigh + SMALL * xprd; coord = xhi + cutneigh + SMALL * xprd;
mbinxhi = (int) (coord * bininvx); mbinxhi = (int)(coord * bininvx);
coord = ylo - cutneigh - SMALL * yprd; coord = ylo - cutneigh - SMALL * yprd;
mbinylo = (int) (coord * bininvy); mbinylo = (int)(coord * bininvy);
if (coord < 0.0) { if(coord < 0.0) { mbinylo = mbinylo - 1; }
mbinylo = mbinylo - 1;
}
coord = yhi + cutneigh + SMALL * yprd; coord = yhi + cutneigh + SMALL * yprd;
mbinyhi = (int) (coord * bininvy); mbinyhi = (int)(coord * bininvy);
mbinxlo = mbinxlo - 1; mbinxlo = mbinxlo - 1;
mbinxhi = mbinxhi + 1; mbinxhi = mbinxhi + 1;
@ -126,16 +123,12 @@ void setupNeighbor(Parameter *param, Atom *atom) {
mbinyhi = mbinyhi + 1; mbinyhi = mbinyhi + 1;
mbiny = mbinyhi - mbinylo + 1; mbiny = mbinyhi - mbinylo + 1;
nextx = (int) (cutneigh * bininvx); nextx = (int)(cutneigh * bininvx);
nexty = (int)(cutneigh * bininvy);
if(nextx * binsizex < FACTOR * cutneigh) nextx++; if(nextx * binsizex < FACTOR * cutneigh) nextx++;
nexty = (int) (cutneigh * bininvy);
if(nexty * binsizey < FACTOR * cutneigh) nexty++; if(nexty * binsizey < FACTOR * cutneigh) nexty++;
if (stencil) { if (stencil) { free(stencil); }
free(stencil);
}
stencil = (int *) malloc((2 * nexty + 1) * (2 * nextx + 1) * sizeof(int)); stencil = (int *) malloc((2 * nexty + 1) * (2 * nextx + 1) * sizeof(int));
nstencil = 0; nstencil = 0;
@ -147,19 +140,15 @@ void setupNeighbor(Parameter *param, Atom *atom) {
} }
} }
if(bincount) { free(bincount); }
if(bins) { free(bins); }
if(bin_nclusters) { free(bin_nclusters); }
if(bin_clusters) { free(bin_clusters); }
mbins = mbinx * mbiny; mbins = mbinx * mbiny;
if (bincount) { free(bincount); }
bincount = (int*) malloc(mbins * sizeof(int)); bincount = (int*) malloc(mbins * sizeof(int));
if (bins) { free(bins); }
bins = (int*) malloc(mbins * atoms_per_bin * sizeof(int)); bins = (int*) malloc(mbins * atoms_per_bin * sizeof(int));
bin_nclusters = (int*) malloc(mbins * sizeof(int));
if (cluster_bincount) { free(cluster_bincount); } bin_clusters = (int*) malloc(mbins * clusters_per_bin * sizeof(int));
cluster_bincount = (int*) malloc(mbins * sizeof(int));
if (cluster_bins) { free(cluster_bins); }
cluster_bins = (int*) malloc(mbins * clusters_per_bin * sizeof(int));
/* /*
DEBUG_MESSAGE("lo, hi = (%e, %e, %e), (%e, %e, %e)\n", xlo, ylo, zlo, xhi, yhi, zhi); DEBUG_MESSAGE("lo, hi = (%e, %e, %e), (%e, %e, %e)\n", xlo, ylo, zlo, xhi, yhi, zhi);
@ -171,20 +160,20 @@ void setupNeighbor(Parameter *param, Atom *atom) {
} }
MD_FLOAT getBoundingBoxDistanceSq(Atom *atom, int ci, int cj) { MD_FLOAT getBoundingBoxDistanceSq(Atom *atom, int ci, int cj) {
MD_FLOAT dl = atom->clusters[ci].bbminx - atom->clusters[cj].bbmaxx; MD_FLOAT dl = atom->iclusters[ci].bbminx - atom->jclusters[cj].bbmaxx;
MD_FLOAT dh = atom->clusters[cj].bbminx - atom->clusters[ci].bbmaxx; MD_FLOAT dh = atom->jclusters[cj].bbminx - atom->iclusters[ci].bbmaxx;
MD_FLOAT dm = MAX(dl, dh); MD_FLOAT dm = MAX(dl, dh);
MD_FLOAT dm0 = MAX(dm, 0.0); MD_FLOAT dm0 = MAX(dm, 0.0);
MD_FLOAT d2 = dm0 * dm0; MD_FLOAT d2 = dm0 * dm0;
dl = atom->clusters[ci].bbminy - atom->clusters[cj].bbmaxy; dl = atom->iclusters[ci].bbminy - atom->jclusters[cj].bbmaxy;
dh = atom->clusters[cj].bbminy - atom->clusters[ci].bbmaxy; dh = atom->jclusters[cj].bbminy - atom->iclusters[ci].bbmaxy;
dm = MAX(dl, dh); dm = MAX(dl, dh);
dm0 = MAX(dm, 0.0); dm0 = MAX(dm, 0.0);
d2 += dm0 * dm0; d2 += dm0 * dm0;
dl = atom->clusters[ci].bbminz - atom->clusters[cj].bbmaxz; dl = atom->iclusters[ci].bbminz - atom->jclusters[cj].bbmaxz;
dh = atom->clusters[cj].bbminz - atom->clusters[ci].bbmaxz; dh = atom->jclusters[cj].bbminz - atom->iclusters[ci].bbmaxz;
dm = MAX(dl, dh); dm = MAX(dl, dh);
dm0 = MAX(dm, 0.0); dm0 = MAX(dm, 0.0);
d2 += dm0 * dm0; d2 += dm0 * dm0;
@ -192,14 +181,16 @@ MD_FLOAT getBoundingBoxDistanceSq(Atom *atom, int ci, int cj) {
} }
int atomDistanceInRange(Atom *atom, int ci, int cj, MD_FLOAT rsq) { int atomDistanceInRange(Atom *atom, int ci, int cj, MD_FLOAT rsq) {
MD_FLOAT *ciptr = cluster_pos_ptr(ci); int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
MD_FLOAT *cjptr = cluster_pos_ptr(cj); int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base];
for(int cii = 0; cii < atom->clusters[ci].natoms; cii++) { for(int cii = 0; cii < atom->iclusters[ci].natoms; cii++) {
for(int cjj = 0; cjj < atom->clusters[cj].natoms; cjj++) { for(int cjj = 0; cjj < atom->jclusters[cj].natoms; cjj++) {
MD_FLOAT delx = cluster_x(ciptr, cii) - cluster_x(cjptr, cjj); MD_FLOAT delx = ci_x[CL_X_OFFSET + cii] - cj_x[CL_X_OFFSET + cjj];
MD_FLOAT dely = cluster_y(ciptr, cii) - cluster_y(cjptr, cjj); MD_FLOAT dely = ci_x[CL_Y_OFFSET + cii] - cj_x[CL_Y_OFFSET + cjj];
MD_FLOAT delz = cluster_z(ciptr, cii) - cluster_z(cjptr, cjj); MD_FLOAT delz = ci_x[CL_Z_OFFSET + cii] - cj_x[CL_Z_OFFSET + cjj];
if(delx * delx + dely * dely + delz * delz < rsq) { if(delx * delx + dely * dely + delz * delz < rsq) {
return 1; return 1;
} }
@ -234,22 +225,22 @@ void buildNeighbor(Atom *atom, Neighbor *neighbor) {
resize = 0; resize = 0;
for(int ci = 0; ci < atom->Nclusters_local; ci++) { for(int ci = 0; ci < atom->Nclusters_local; ci++) {
int* neighptr = &(neighbor->neighbors[ci * neighbor->maxneighs]); int *neighptr = &(neighbor->neighbors[ci * neighbor->maxneighs]);
int n = 0; int n = 0;
int ibin = atom->clusters[ci].bin; int ibin = icluster_bin[ci];
MD_FLOAT ibb_xmin = atom->clusters[ci].bbminx; MD_FLOAT ibb_xmin = atom->iclusters[ci].bbminx;
MD_FLOAT ibb_xmax = atom->clusters[ci].bbmaxx; MD_FLOAT ibb_xmax = atom->iclusters[ci].bbmaxx;
MD_FLOAT ibb_ymin = atom->clusters[ci].bbminy; MD_FLOAT ibb_ymin = atom->iclusters[ci].bbminy;
MD_FLOAT ibb_ymax = atom->clusters[ci].bbmaxy; MD_FLOAT ibb_ymax = atom->iclusters[ci].bbmaxy;
MD_FLOAT ibb_zmin = atom->clusters[ci].bbminz; MD_FLOAT ibb_zmin = atom->iclusters[ci].bbminz;
MD_FLOAT ibb_zmax = atom->clusters[ci].bbmaxz; MD_FLOAT ibb_zmax = atom->iclusters[ci].bbmaxz;
for(int k = 0; k < nstencil; k++) { for(int k = 0; k < nstencil; k++) {
int jbin = ibin + stencil[k]; int jbin = ibin + stencil[k];
int *loc_bin = &cluster_bins[jbin * clusters_per_bin]; int *loc_bin = &bin_clusters[jbin * clusters_per_bin];
int cj, m = -1; int cj, m = -1;
MD_FLOAT jbb_xmin, jbb_xmax, jbb_ymin, jbb_ymax, jbb_zmin, jbb_zmax; MD_FLOAT jbb_xmin, jbb_xmax, jbb_ymin, jbb_ymax, jbb_zmin, jbb_zmax;
const int c = cluster_bincount[jbin]; const int c = bin_nclusters[jbin];
if(c > 0) { if(c > 0) {
MD_FLOAT dl, dh, dm, dm0, d_bb_sq; MD_FLOAT dl, dh, dm, dm0, d_bb_sq;
@ -257,8 +248,8 @@ void buildNeighbor(Atom *atom, Neighbor *neighbor) {
do { do {
m++; m++;
cj = loc_bin[m]; cj = loc_bin[m];
jbb_zmin = atom->clusters[cj].bbminz; jbb_zmin = atom->jclusters[cj].bbminz;
jbb_zmax = atom->clusters[cj].bbmaxz; jbb_zmax = atom->jclusters[cj].bbmaxz;
dl = ibb_zmin - jbb_zmax; dl = ibb_zmin - jbb_zmax;
dh = jbb_zmin - ibb_zmax; dh = jbb_zmin - ibb_zmax;
dm = MAX(dl, dh); dm = MAX(dl, dh);
@ -266,10 +257,10 @@ void buildNeighbor(Atom *atom, Neighbor *neighbor) {
d_bb_sq = dm0 * dm0; d_bb_sq = dm0 * dm0;
} while(m + 1 < c && d_bb_sq > cutneighsq); } while(m + 1 < c && d_bb_sq > cutneighsq);
jbb_xmin = atom->clusters[cj].bbminx; jbb_xmin = atom->jclusters[cj].bbminx;
jbb_xmax = atom->clusters[cj].bbmaxx; jbb_xmax = atom->jclusters[cj].bbmaxx;
jbb_ymin = atom->clusters[cj].bbminy; jbb_ymin = atom->jclusters[cj].bbminy;
jbb_ymax = atom->clusters[cj].bbmaxy; jbb_ymax = atom->jclusters[cj].bbmaxy;
while(m < c) { while(m < c) {
dl = ibb_zmin - jbb_zmax; dl = ibb_zmin - jbb_zmax;
@ -303,20 +294,21 @@ void buildNeighbor(Atom *atom, Neighbor *neighbor) {
m++; m++;
if(m < c) { if(m < c) {
cj = loc_bin[m]; cj = loc_bin[m];
jbb_xmin = atom->clusters[cj].bbminx; jbb_xmin = atom->jclusters[cj].bbminx;
jbb_xmax = atom->clusters[cj].bbmaxx; jbb_xmax = atom->jclusters[cj].bbmaxx;
jbb_ymin = atom->clusters[cj].bbminy; jbb_ymin = atom->jclusters[cj].bbminy;
jbb_ymax = atom->clusters[cj].bbmaxy; jbb_ymax = atom->jclusters[cj].bbmaxy;
jbb_zmin = atom->clusters[cj].bbminz; jbb_zmin = atom->jclusters[cj].bbminz;
jbb_zmax = atom->clusters[cj].bbmaxz; jbb_zmax = atom->jclusters[cj].bbmaxz;
} }
} }
} }
} }
if(CLUSTER_DIM_N > CLUSTER_DIM_M) { // Fill neighbor list with dummy values to fit vector width
while(n % (CLUSTER_DIM_N / CLUSTER_DIM_M)) { if(CLUSTER_N < VECTOR_WIDTH) {
neighptr[n++] = nall - 1; // Last cluster is always a dummy cluster while(n % (VECTOR_WIDTH / CLUSTER_N)) {
neighptr[n++] = CJ0_FROM_CI(nall - 1); // Last cluster is always a dummy cluster
} }
} }
@ -353,7 +345,7 @@ void buildNeighbor(Atom *atom, Neighbor *neighbor) {
atom->clusters[ci].bbminz, atom->clusters[ci].bbminz,
atom->clusters[ci].bbmaxz); atom->clusters[ci].bbmaxz);
for(int cii = 0; cii < CLUSTER_DIM_M; cii++) { for(int cii = 0; cii < CLUSTER_M; cii++) {
DEBUG_MESSAGE("%f, %f, %f\n", cluster_x(ciptr, cii), cluster_y(ciptr, cii), cluster_z(ciptr, cii)); DEBUG_MESSAGE("%f, %f, %f\n", cluster_x(ciptr, cii), cluster_y(ciptr, cii), cluster_z(ciptr, cii));
} }
@ -371,7 +363,7 @@ void buildNeighbor(Atom *atom, Neighbor *neighbor) {
atom->clusters[cj].bbminz, atom->clusters[cj].bbminz,
atom->clusters[cj].bbmaxz); atom->clusters[cj].bbmaxz);
for(int cjj = 0; cjj < CLUSTER_DIM_M; cjj++) { for(int cjj = 0; cjj < CLUSTER_M; cjj++) {
DEBUG_MESSAGE(" %f, %f, %f\n", cluster_x(cjptr, cjj), cluster_y(cjptr, cjj), cluster_z(cjptr, cjj)); DEBUG_MESSAGE(" %f, %f, %f\n", cluster_x(cjptr, cjj), cluster_y(cjptr, cjj), cluster_z(cjptr, cjj));
} }
} }
@ -393,8 +385,8 @@ void pruneNeighbor(Parameter *param, Atom *atom, Neighbor *neighbor) {
int k = 0; int k = 0;
// Remove dummy clusters if necessary // Remove dummy clusters if necessary
if(CLUSTER_DIM_N > CLUSTER_DIM_M) { if(CLUSTER_N < VECTOR_WIDTH) {
while(neighs[numneighs - 1] == nall - 1) { while(neighs[numneighs - 1] == CJ0_FROM_CI(nall - 1)) {
numneighs--; numneighs--;
} }
} }
@ -410,9 +402,9 @@ void pruneNeighbor(Parameter *param, Atom *atom, Neighbor *neighbor) {
} }
// Readd dummy clusters if necessary // Readd dummy clusters if necessary
if(CLUSTER_DIM_N > CLUSTER_DIM_M) { if(CLUSTER_N < VECTOR_WIDTH) {
while(numneighs % (CLUSTER_DIM_N / CLUSTER_DIM_M)) { while(numneighs % (VECTOR_WIDTH / CLUSTER_N)) {
neighs[numneighs++] = nall - 1; // Last cluster is always a dummy cluster neighs[numneighs++] = CJ0_FROM_CI(nall - 1); // Last cluster is always a dummy cluster
} }
} }
@ -558,34 +550,37 @@ void buildClusters(Atom *atom) {
for(int bin = 0; bin < mbins; bin++) { for(int bin = 0; bin < mbins; bin++) {
int c = bincount[bin]; int c = bincount[bin];
int ac = 0; int ac = 0;
const int nclusters = ((c + CLUSTER_DIM_M - 1) / CLUSTER_DIM_M); int nclusters = ((c + CLUSTER_M - 1) / CLUSTER_M);
if(CLUSTER_N > CLUSTER_M && nclusters % 2) { nclusters++; }
for(int cl = 0; cl < nclusters; cl++) { for(int cl = 0; cl < nclusters; cl++) {
const int ci = atom->Nclusters_local; const int ci = atom->Nclusters_local;
if(ci >= atom->Nclusters_max) { if(ci >= atom->Nclusters_max) {
growClusters(atom); growClusters(atom);
} }
MD_FLOAT *cptr = cluster_pos_ptr(ci); int ci_sca_base = CI_SCALAR_BASE_INDEX(ci);
MD_FLOAT *cvptr = cluster_velocity_ptr(ci); int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
MD_FLOAT *ci_v = &atom->cl_v[ci_vec_base];
int *ci_type = &atom->cl_type[ci_sca_base];
MD_FLOAT bbminx = INFINITY, bbmaxx = -INFINITY; MD_FLOAT bbminx = INFINITY, bbmaxx = -INFINITY;
MD_FLOAT bbminy = INFINITY, bbmaxy = -INFINITY; MD_FLOAT bbminy = INFINITY, bbmaxy = -INFINITY;
MD_FLOAT bbminz = INFINITY, bbmaxz = -INFINITY; MD_FLOAT bbminz = INFINITY, bbmaxz = -INFINITY;
atom->clusters[ci].natoms = 0;
for(int cii = 0; cii < CLUSTER_DIM_M; cii++) { atom->iclusters[ci].natoms = 0;
for(int cii = 0; cii < CLUSTER_M; cii++) {
if(ac < c) { if(ac < c) {
int i = bins[bin * atoms_per_bin + ac]; int i = bins[bin * atoms_per_bin + ac];
MD_FLOAT xtmp = atom_x(i); MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i); MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i); MD_FLOAT ztmp = atom_z(i);
cluster_x(cptr, cii) = xtmp; ci_x[CL_X_OFFSET + cii] = xtmp;
cluster_y(cptr, cii) = ytmp; ci_x[CL_Y_OFFSET + cii] = ytmp;
cluster_z(cptr, cii) = ztmp; ci_x[CL_Z_OFFSET + cii] = ztmp;
cluster_x(cvptr, cii) = atom->vx[i]; ci_v[CL_X_OFFSET + cii] = atom->vx[i];
cluster_y(cvptr, cii) = atom->vy[i]; ci_v[CL_Y_OFFSET + cii] = atom->vy[i];
cluster_z(cvptr, cii) = atom->vz[i]; ci_v[CL_Z_OFFSET + cii] = atom->vz[i];
// TODO: To create the bounding boxes faster, we can use SIMD operations // TODO: To create the bounding boxes faster, we can use SIMD operations
if(bbminx > xtmp) { bbminx = xtmp; } if(bbminx > xtmp) { bbminx = xtmp; }
@ -595,24 +590,24 @@ void buildClusters(Atom *atom) {
if(bbminz > ztmp) { bbminz = ztmp; } if(bbminz > ztmp) { bbminz = ztmp; }
if(bbmaxz < ztmp) { bbmaxz = ztmp; } if(bbmaxz < ztmp) { bbmaxz = ztmp; }
atom->clusters[ci].type[cii] = atom->type[i]; atom->cl_type[cii] = atom->type[i];
atom->clusters[ci].natoms++; atom->iclusters[ci].natoms++;
} else { } else {
cluster_x(cptr, cii) = INFINITY; ci_x[CL_X_OFFSET + cii] = INFINITY;
cluster_y(cptr, cii) = INFINITY; ci_x[CL_Y_OFFSET + cii] = INFINITY;
cluster_z(cptr, cii) = INFINITY; ci_x[CL_Z_OFFSET + cii] = INFINITY;
} }
ac++; ac++;
} }
atom->clusters[ci].bin = bin; icluster_bin[ci] = bin;
atom->clusters[ci].bbminx = bbminx; atom->iclusters[ci].bbminx = bbminx;
atom->clusters[ci].bbmaxx = bbmaxx; atom->iclusters[ci].bbmaxx = bbmaxx;
atom->clusters[ci].bbminy = bbminy; atom->iclusters[ci].bbminy = bbminy;
atom->clusters[ci].bbmaxy = bbmaxy; atom->iclusters[ci].bbmaxy = bbmaxy;
atom->clusters[ci].bbminz = bbminz; atom->iclusters[ci].bbminz = bbminz;
atom->clusters[ci].bbmaxz = bbmaxz; atom->iclusters[ci].bbmaxz = bbmaxz;
atom->Nclusters_local++; atom->Nclusters_local++;
} }
} }
@ -620,6 +615,93 @@ void buildClusters(Atom *atom) {
DEBUG_MESSAGE("buildClusters end\n"); DEBUG_MESSAGE("buildClusters end\n");
} }
void defineJClusters(Atom *atom) {
DEBUG_MESSAGE("defineJClusters start\n");
for(int ci = 0; ci < atom->Nclusters_local + atom->Nclusters_ghost; ci++) {
int cj0 = CJ0_FROM_CI(ci);
if(CLUSTER_M == CLUSTER_N) {
atom->jclusters[cj0].bbminx = atom->iclusters[ci].bbminx;
atom->jclusters[cj0].bbmaxx = atom->iclusters[ci].bbmaxx;
atom->jclusters[cj0].bbminy = atom->iclusters[ci].bbminy;
atom->jclusters[cj0].bbmaxy = atom->iclusters[ci].bbmaxy;
atom->jclusters[cj0].bbminz = atom->iclusters[ci].bbminz;
atom->jclusters[cj0].bbmaxz = atom->iclusters[ci].bbmaxz;
atom->jclusters[cj0].natoms = atom->iclusters[ci].natoms;
} else if(CLUSTER_M > CLUSTER_N) {
int cj1 = CJ1_FROM_CI(ci);
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
MD_FLOAT bbminx = INFINITY, bbmaxx = -INFINITY;
MD_FLOAT bbminy = INFINITY, bbmaxy = -INFINITY;
MD_FLOAT bbminz = INFINITY, bbmaxz = -INFINITY;
for(int cii = 0; cii < MAX(atom->iclusters[ci].natoms, CLUSTER_N); cii++) {
MD_FLOAT xtmp = ci_x[CL_X_OFFSET + cii];
MD_FLOAT ytmp = ci_x[CL_Y_OFFSET + cii];
MD_FLOAT ztmp = ci_x[CL_Z_OFFSET + cii];
// TODO: To create the bounding boxes faster, we can use SIMD operations
if(bbminx > xtmp) { bbminx = xtmp; }
if(bbmaxx < xtmp) { bbmaxx = xtmp; }
if(bbminy > ytmp) { bbminy = ytmp; }
if(bbmaxy < ytmp) { bbmaxy = ytmp; }
if(bbminz > ztmp) { bbminz = ztmp; }
if(bbmaxz < ztmp) { bbmaxz = ztmp; }
}
atom->jclusters[cj0].bbminx = bbminx;
atom->jclusters[cj0].bbmaxx = bbmaxx;
atom->jclusters[cj0].bbminy = bbminy;
atom->jclusters[cj0].bbmaxy = bbmaxy;
atom->jclusters[cj0].bbminz = bbminz;
atom->jclusters[cj0].bbmaxz = bbmaxz;
atom->jclusters[cj0].natoms = MAX(atom->iclusters[ci].natoms, CLUSTER_N);
bbminx = INFINITY, bbmaxx = -INFINITY;
bbminy = INFINITY, bbmaxy = -INFINITY;
bbminz = INFINITY, bbmaxz = -INFINITY;
for(int cii = CLUSTER_N; cii < atom->iclusters[ci].natoms; cii++) {
MD_FLOAT xtmp = ci_x[CL_X_OFFSET + cii];
MD_FLOAT ytmp = ci_x[CL_Y_OFFSET + cii];
MD_FLOAT ztmp = ci_x[CL_Z_OFFSET + cii];
// TODO: To create the bounding boxes faster, we can use SIMD operations
if(bbminx > xtmp) { bbminx = xtmp; }
if(bbmaxx < xtmp) { bbmaxx = xtmp; }
if(bbminy > ytmp) { bbminy = ytmp; }
if(bbmaxy < ytmp) { bbmaxy = ytmp; }
if(bbminz > ztmp) { bbminz = ztmp; }
if(bbmaxz < ztmp) { bbmaxz = ztmp; }
}
atom->jclusters[cj1].bbminx = bbminx;
atom->jclusters[cj1].bbmaxx = bbmaxx;
atom->jclusters[cj1].bbminy = bbminy;
atom->jclusters[cj1].bbmaxy = bbmaxy;
atom->jclusters[cj1].bbminz = bbminz;
atom->jclusters[cj1].bbmaxz = bbmaxz;
atom->jclusters[cj1].natoms = MIN(0, atom->iclusters[ci].natoms - CLUSTER_N);
} else {
if(ci % 2 == 0) {
atom->jclusters[cj0].bbminx = MIN(atom->iclusters[ci].bbminx, atom->iclusters[ci + 1].bbminx);
atom->jclusters[cj0].bbmaxx = MAX(atom->iclusters[ci].bbmaxx, atom->iclusters[ci + 1].bbmaxx);
atom->jclusters[cj0].bbminy = MIN(atom->iclusters[ci].bbminy, atom->iclusters[ci + 1].bbminy);
atom->jclusters[cj0].bbmaxy = MAX(atom->iclusters[ci].bbmaxy, atom->iclusters[ci + 1].bbmaxy);
atom->jclusters[cj0].bbminz = MIN(atom->iclusters[ci].bbminz, atom->iclusters[ci + 1].bbminz);
atom->jclusters[cj0].bbmaxz = MAX(atom->iclusters[ci].bbmaxz, atom->iclusters[ci + 1].bbmaxz);
atom->jclusters[cj0].natoms = atom->iclusters[ci].natoms + atom->iclusters[ci + 1].natoms;
}
}
}
DEBUG_MESSAGE("defineJClusters end\n");
}
void binClusters(Atom *atom) { void binClusters(Atom *atom) {
DEBUG_MESSAGE("binClusters start\n"); DEBUG_MESSAGE("binClusters start\n");
@ -629,7 +711,7 @@ void binClusters(Atom *atom) {
MD_FLOAT *cptr = cluster_pos_ptr(ci); MD_FLOAT *cptr = cluster_pos_ptr(ci);
DEBUG_MESSAGE("Cluster %d:\n", ci); DEBUG_MESSAGE("Cluster %d:\n", ci);
DEBUG_MESSAGE("bin=%d, Natoms=%d, bbox={%f,%f},{%f,%f},{%f,%f}\n", DEBUG_MESSAGE("bin=%d, Natoms=%d, bbox={%f,%f},{%f,%f},{%f,%f}\n",
atom->clusters[ci].bin, icluster_bin[ci],
atom->clusters[ci].natoms, atom->clusters[ci].natoms,
atom->clusters[ci].bbminx, atom->clusters[ci].bbminx,
atom->clusters[ci].bbmaxx, atom->clusters[ci].bbmaxx,
@ -638,49 +720,75 @@ void binClusters(Atom *atom) {
atom->clusters[ci].bbminz, atom->clusters[ci].bbminz,
atom->clusters[ci].bbmaxz); atom->clusters[ci].bbmaxz);
for(int cii = 0; cii < CLUSTER_DIM_M; cii++) { for(int cii = 0; cii < CLUSTER_M; cii++) {
DEBUG_MESSAGE("%f, %f, %f\n", cluster_x(cptr, cii), cluster_y(cptr, cii), cluster_z(cptr, cii)); DEBUG_MESSAGE("%f, %f, %f\n", cluster_x(cptr, cii), cluster_y(cptr, cii), cluster_z(cptr, cii));
} }
} }
*/ */
const int nlocal = atom->Nclusters_local; const int nlocal = atom->Nclusters_local;
int resize = 1; const int ncji = MAX(1, CLUSTER_M / CLUSTER_N);
if(ncji > 2) {
fprintf(stderr, "binClusters(): ncji cannot be higher than 2!");
}
defineJClusters(atom);
int resize = 1;
while(resize > 0) { while(resize > 0) {
resize = 0; resize = 0;
for(int bin = 0; bin < mbins; bin++) { for(int bin = 0; bin < mbins; bin++) {
cluster_bincount[bin] = 0; bin_nclusters[bin] = 0;
} }
for(int ci = 0; ci < nlocal && !resize; ci++) { for(int ci = 0; ci < nlocal && !resize; ci++) {
int bin = atom->clusters[ci].bin; // Assure we add this j-cluster only once in the bin
int c = cluster_bincount[bin]; if(!(CLUSTER_M < CLUSTER_N && ci % 2)) {
if(c < clusters_per_bin) { int bin = icluster_bin[ci];
cluster_bins[bin * clusters_per_bin + c] = ci; int c = bin_nclusters[bin];
cluster_bincount[bin]++; if(c + 1 < clusters_per_bin) {
bin_clusters[bin * clusters_per_bin + c] = CJ0_FROM_CI(ci);
bin_nclusters[bin]++;
if(CLUSTER_M > CLUSTER_N) {
int cj1 = CJ1_FROM_CI(ci);
if(atoms->jclusters[cj1].natoms > 0) {
bin_clusters[bin * clusters_per_bin + c + 1] = cj1;
bin_nclusters[bin]++;
}
}
} else { } else {
resize = 1; resize = 1;
} }
} }
}
for(int cg = 0; cg < atom->Nclusters_ghost && !resize; cg++) { for(int cg = 0; cg < atom->Nclusters_ghost && !resize; cg++) {
// Assure we add this j-cluster only once in the bin
if(!(CLUSTER_M < CLUSTER_N && cg % 2)) {
const int ci = nlocal + cg; const int ci = nlocal + cg;
MD_FLOAT *cptr = cluster_pos_ptr(ci);
MD_FLOAT ci_minz = atom->clusters[ci].bbminz;
MD_FLOAT xtmp, ytmp;
int ix = -1, iy = -1; int ix = -1, iy = -1;
MD_FLOAT xtmp, ytmp;
xtmp = cluster_x(cptr, 0); for(int cji = 0; cji < ncji && !resize; cji++) {
ytmp = cluster_y(cptr, 0); int cj = (cji == 0) ? CJ0_FROM_CI(ci) : CJ1_FROM_CI(ci);
const int n = atom->jclusters[cj].natoms;
if(n > 0) {
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base];
MD_FLOAT cj_minz = atom->jclusters[cj].bbminz;
xtmp = cj_x[CL_X_OFFSET + 0]
ytmp = cj_x[CL_Y_OFFSET + 0]
coord2bin2D(xtmp, ytmp, &ix, &iy); coord2bin2D(xtmp, ytmp, &ix, &iy);
ix = MAX(MIN(ix, mbinx - 1), 0); ix = MAX(MIN(ix, mbinx - 1), 0);
iy = MAX(MIN(iy, mbiny - 1), 0); iy = MAX(MIN(iy, mbiny - 1), 0);
for(int cii = 1; cii < atom->clusters[ci].natoms; cii++) { for(int cjj = 1; cjj < n; cjj++) {
int nix, niy; int nix, niy;
xtmp = cluster_x(cptr, cii); xtmp = cj_x[CL_X_OFFSET + cjj]
ytmp = cluster_y(cptr, cii); ytmp = cj_x[CL_Y_OFFSET + cjj]
coord2bin2D(xtmp, ytmp, &nix, &niy); coord2bin2D(xtmp, ytmp, &nix, &niy);
nix = MAX(MIN(nix, mbinx - 1), 0); nix = MAX(MIN(nix, mbinx - 1), 0);
niy = MAX(MIN(niy, mbiny - 1), 0); niy = MAX(MIN(niy, mbiny - 1), 0);
@ -694,19 +802,19 @@ void binClusters(Atom *atom) {
} }
int bin = iy * mbinx + ix + 1; int bin = iy * mbinx + ix + 1;
int c = cluster_bincount[bin]; int c = bin_nclusters[bin];
if(c < clusters_per_bin) { if(c < clusters_per_bin) {
// Insert the current ghost cluster in the bin keeping clusters // Insert the current ghost cluster in the bin keeping clusters
// sorted by z coordinate // sorted by z coordinate
int inserted = 0; int inserted = 0;
for(int i = 0; i < c; i++) { for(int i = 0; i < c; i++) {
int last_cl = cluster_bins[bin * clusters_per_bin + i]; int last_cl = bin_clusters[bin * clusters_per_bin + i];
if(atom->clusters[last_cl].bbminz > ci_minz) { if(atom->jclusters[last_cl].bbminz > cj_minz) {
cluster_bins[bin * clusters_per_bin + i] = ci; bin_clusters[bin * clusters_per_bin + i] = cj;
for(int j = i + 1; j <= c; j++) { for(int j = i + 1; j <= c; j++) {
int tmp = cluster_bins[bin * clusters_per_bin + j]; int tmp = bin_clusters[bin * clusters_per_bin + j];
cluster_bins[bin * clusters_per_bin + j] = last_cl; bin_clusters[bin * clusters_per_bin + j] = last_cl;
last_cl = tmp; last_cl = tmp;
} }
@ -716,26 +824,29 @@ void binClusters(Atom *atom) {
} }
if(!inserted) { if(!inserted) {
cluster_bins[bin * clusters_per_bin + c] = ci; bin_clusters[bin * clusters_per_bin + c] = cj;
} }
atom->clusters[ci].bin = bin; icluster_bin[ci] = bin;
cluster_bincount[bin]++; bin_nclusters[bin]++;
} else { } else {
resize = 1; resize = 1;
} }
} }
}
}
}
if(resize) { if(resize) {
free(cluster_bins); free(bin_clusters);
clusters_per_bin *= 2; clusters_per_bin *= 2;
cluster_bins = (int*) malloc(mbins * clusters_per_bin * sizeof(int)); bin_clusters = (int*) malloc(mbins * clusters_per_bin * sizeof(int));
} }
} }
/* /*
DEBUG_MESSAGE("cluster_bincount\n"); DEBUG_MESSAGE("bin_nclusters\n");
for(int i = 0; i < mbins; i++) { DEBUG_MESSAGE("%d, ", cluster_bincount[i]); } for(int i = 0; i < mbins; i++) { DEBUG_MESSAGE("%d, ", bin_nclusters[i]); }
DEBUG_MESSAGE("\n"); DEBUG_MESSAGE("\n");
*/ */
@ -747,16 +858,17 @@ void updateSingleAtoms(Atom *atom) {
int Natom = 0; int Natom = 0;
for(int ci = 0; ci < atom->Nclusters_local; ci++) { for(int ci = 0; ci < atom->Nclusters_local; ci++) {
MD_FLOAT *cptr = cluster_pos_ptr(ci); int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
MD_FLOAT *cvptr = cluster_velocity_ptr(ci); MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
MD_FLOAT *ci_v = &atom->cl_v[ci_vec_base];
for(int cii = 0; cii < atom->clusters[ci].natoms; cii++) { for(int cii = 0; cii < atom->clusters[ci].natoms; cii++) {
atom_x(Natom) = cluster_x(cptr, cii); atom_x(Natom) = ci_x[CL_X_OFFSET + cii];
atom_y(Natom) = cluster_y(cptr, cii); atom_y(Natom) = ci_x[CL_Y_OFFSET + cii];
atom_z(Natom) = cluster_z(cptr, cii); atom_z(Natom) = ci_x[CL_Z_OFFSET + cii];
atom->vx[Natom] = cluster_x(cvptr, cii); atom->vx[Natom] = ci_v[CL_X_OFFSET + cii];
atom->vy[Natom] = cluster_y(cvptr, cii); atom->vy[Natom] = ci_v[CL_Y_OFFSET + cii];
atom->vz[Natom] = cluster_z(cvptr, cii); atom->vz[Natom] = ci_v[CL_Z_OFFSET + cii];
Natom++; Natom++;
} }
} }

View File

@ -53,20 +53,22 @@ void updatePbc(Atom *atom, Parameter *param, int firstUpdate) {
for(int cg = 0; cg < atom->Nclusters_ghost; cg++) { for(int cg = 0; cg < atom->Nclusters_ghost; cg++) {
const int ci = nlocal + cg; const int ci = nlocal + cg;
MD_FLOAT *cptr = cluster_pos_ptr(ci); int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
MD_FLOAT *bmap_cptr = cluster_pos_ptr(border_map[cg]); int bmap_vec_base = CI_VECTOR_BASE_INDEX(border_map[cg]);
MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
MD_FLOAT *bmap_x = &atom->cl_x[bmap_vec_base];
MD_FLOAT bbminx = INFINITY, bbmaxx = -INFINITY; MD_FLOAT bbminx = INFINITY, bbmaxx = -INFINITY;
MD_FLOAT bbminy = INFINITY, bbmaxy = -INFINITY; MD_FLOAT bbminy = INFINITY, bbmaxy = -INFINITY;
MD_FLOAT bbminz = INFINITY, bbmaxz = -INFINITY; MD_FLOAT bbminz = INFINITY, bbmaxz = -INFINITY;
for(int cii = 0; cii < atom->clusters[ci].natoms; cii++) { for(int cii = 0; cii < atom->clusters[ci].natoms; cii++) {
MD_FLOAT xtmp = cluster_x(bmap_cptr, cii) + atom->PBCx[cg] * xprd; MD_FLOAT xtmp = bmap_x[CL_X_OFFSET + cii] + atom->PBCx[cg] * xprd;
MD_FLOAT ytmp = cluster_y(bmap_cptr, cii) + atom->PBCy[cg] * yprd; MD_FLOAT ytmp = bmap_x[CL_Y_OFFSET + cii] + atom->PBCy[cg] * yprd;
MD_FLOAT ztmp = cluster_z(bmap_cptr, cii) + atom->PBCz[cg] * zprd; MD_FLOAT ztmp = bmap_x[CL_Z_OFFSET + cii] + atom->PBCz[cg] * zprd;
cluster_x(cptr, cii) = xtmp; ci_x[CL_X_OFFSET + cii] = xtmp;
cluster_y(cptr, cii) = ytmp; ci_x[CL_Y_OFFSET + cii] = ytmp;
cluster_z(cptr, cii) = ztmp; ci_x[CL_Z_OFFSET + cii] = ztmp;
if(firstUpdate) { if(firstUpdate) {
// TODO: To create the bounding boxes faster, we can use SIMD operations // TODO: To create the bounding boxes faster, we can use SIMD operations
@ -80,18 +82,18 @@ void updatePbc(Atom *atom, Parameter *param, int firstUpdate) {
} }
if(firstUpdate) { if(firstUpdate) {
for(int cii = atom->clusters[ci].natoms; cii < CLUSTER_DIM_M; cii++) { for(int cii = atom->clusters[ci].natoms; cii < CLUSTER_M; cii++) {
cluster_x(cptr, cii) = INFINITY; ci_x[CL_X_OFFSET + cii] = INFINITY;
cluster_y(cptr, cii) = INFINITY; ci_x[CL_Y_OFFSET + cii] = INFINITY;
cluster_z(cptr, cii) = INFINITY; ci_x[CL_Z_OFFSET + cii] = INFINITY;
} }
atom->clusters[ci].bbminx = bbminx; atom->iclusters[ci].bbminx = bbminx;
atom->clusters[ci].bbmaxx = bbmaxx; atom->iclusters[ci].bbmaxx = bbmaxx;
atom->clusters[ci].bbminy = bbminy; atom->iclusters[ci].bbminy = bbminy;
atom->clusters[ci].bbmaxy = bbmaxy; atom->iclusters[ci].bbmaxy = bbmaxy;
atom->clusters[ci].bbminz = bbminz; atom->iclusters[ci].bbminz = bbminz;
atom->clusters[ci].bbmaxz = bbmaxz; atom->iclusters[ci].bbmaxz = bbmaxz;
} }
} }
} }
@ -131,14 +133,17 @@ void updateAtomsPbc(Atom *atom, Parameter *param) {
#define ADDGHOST(dx,dy,dz); \ #define ADDGHOST(dx,dy,dz); \
Nghost++; \ Nghost++; \
const int g_atom_idx = atom->Nclusters_local + Nghost; \ const int g_atom_idx = atom->Nclusters_local + Nghost; \
const int natoms_ci = atom->iclusters[ci].natoms; \
border_map[Nghost] = ci; \ border_map[Nghost] = ci; \
atom->PBCx[Nghost] = dx; \ atom->PBCx[Nghost] = dx; \
atom->PBCy[Nghost] = dy; \ atom->PBCy[Nghost] = dy; \
atom->PBCz[Nghost] = dz; \ atom->PBCz[Nghost] = dz; \
atom->clusters[g_atom_idx].natoms = atom->clusters[ci].natoms; \ atom->iclusters[g_atom_idx].natoms = natoms_ci; \
Nghost_atoms += atom->clusters[g_atom_idx].natoms; \ Nghost_atoms += natoms_ci; \
for(int cii = 0; cii < atom->clusters[ci].natoms; cii++) { \ int ci_sca_base = CI_SCALAR_BASE_INDEX(ci); \
atom->clusters[g_atom_idx].type[cii] = atom->clusters[ci].type[cii]; \ int cg_sca_base = CI_SCALAR_BASE_INDEX(cg); \
for(int cii = 0; cii < natoms_ci; cii++) { \
atom->cl_type[cg_sca_base + cii] = atom->cl_type[ci_sca_base + cii]; \
} }
/* internal subroutines */ /* internal subroutines */
@ -171,12 +176,12 @@ void setupPbc(Atom *atom, Parameter *param) {
border_map = atom->border_map; border_map = atom->border_map;
} }
MD_FLOAT bbminx = atom->clusters[ci].bbminx; MD_FLOAT bbminx = atom->iclusters[ci].bbminx;
MD_FLOAT bbmaxx = atom->clusters[ci].bbmaxx; MD_FLOAT bbmaxx = atom->iclusters[ci].bbmaxx;
MD_FLOAT bbminy = atom->clusters[ci].bbminy; MD_FLOAT bbminy = atom->iclusters[ci].bbminy;
MD_FLOAT bbmaxy = atom->clusters[ci].bbmaxy; MD_FLOAT bbmaxy = atom->iclusters[ci].bbmaxy;
MD_FLOAT bbminz = atom->clusters[ci].bbminz; MD_FLOAT bbminz = atom->iclusters[ci].bbminz;
MD_FLOAT bbmaxz = atom->clusters[ci].bbmaxz; MD_FLOAT bbmaxz = atom->iclusters[ci].bbmaxz;
/* Setup ghost atoms */ /* Setup ghost atoms */
/* 6 planes */ /* 6 planes */
@ -210,16 +215,17 @@ void setupPbc(Atom *atom, Parameter *param) {
if (bbmaxy >= (yprd-Cutneigh) && bbmaxx >= (xprd-Cutneigh)) { ADDGHOST(-1,-1,0); } if (bbmaxy >= (yprd-Cutneigh) && bbmaxx >= (xprd-Cutneigh)) { ADDGHOST(-1,-1,0); }
} }
if(atom->Nclusters_local + Nghost + 1 >= atom->Nclusters_max) { if(atom->Nclusters_local + Nghost + 2 >= atom->Nclusters_max) {
growClusters(atom); growClusters(atom);
} }
// Add dummy cluster at the end // Add dummy cluster at the end
MD_FLOAT *cptr = cluster_pos_ptr(atom->Nclusters_local + Nghost + 1); int ci_vec_base = CI_VECTOR_BASE_INDEX(atom->Nclusters_local + Nghost + 1);
for(int cii = 0; cii < CLUSTER_DIM_M; cii++) { MD_FLOAT *ci_x = &atom->cl_x[ci_vec_base];
cluster_x(cptr, cii) = INFINITY; for(int cii = 0; cii < MAX(CLUSTER_M, CLUSTER_N); cii++) {
cluster_y(cptr, cii) = INFINITY; ci_x[CL_X_OFFSET + cii] = INFINITY;
cluster_z(cptr, cii) = INFINITY; ci_x[CL_Y_OFFSET + cii] = INFINITY;
ci_x[CL_Z_OFFSET + cii] = INFINITY;
} }
// increase by one to make it the ghost atom count // increase by one to make it the ghost atom count

15
include_ISA.mk Normal file
View File

@ -0,0 +1,15 @@
ifeq ($(strip $(ISA)), SSE)
VECTOR_WIDTH=2
else ifeq ($(strip $(ISA)), AVX)
# Vector width is 4 but AVX2 instruction set is not supported
NO_AVX2=true
VECTOR_WIDTH=4
else ifeq ($(strip $(ISA)), AVX2)
VECTOR_WIDTH=4
else ifeq ($(strip $(ISA)), AVX512)
VECTOR_WIDTH=8
endif
ifeq ($(strip $(DATA_TYPE)), SP)
VECTOR_WIDTH=$((VECTOR_WIDTH * 2))
endif