First crude attempt at parallelizing neighborhood computation (only the part after binning the atoms is parallelized with cuda)
This commit is contained in:
		
							
								
								
									
										35
									
								
								src/force.cu
									
									
									
									
									
								
							
							
						
						
									
										35
									
								
								src/force.cu
									
									
									
									
									
								
							| @@ -126,25 +126,9 @@ extern "C" { | ||||
|  | ||||
|  | ||||
|  | ||||
| int get_num_threads() { | ||||
|  | ||||
|     const char *num_threads_env = getenv("NUM_THREADS"); | ||||
|     int num_threads = 0; | ||||
|     if(num_threads_env == nullptr) | ||||
|         num_threads = 32; | ||||
|     else { | ||||
|         num_threads = atoi(num_threads_env); | ||||
|     } | ||||
|  | ||||
|     return num_threads; | ||||
| } | ||||
|  | ||||
| void cuda_final_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom) { | ||||
| void cuda_final_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom, const int num_threads_per_block) { | ||||
|  | ||||
|     const int Nlocal = atom->Nlocal; | ||||
|     const int num_threads = get_num_threads(); | ||||
|  | ||||
|     const int num_threads_per_block = num_threads; // this should be multiple of 32 as operations are performed at the level of warps | ||||
|     const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); | ||||
|  | ||||
|     kernel_final_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, Nlocal, *c_atom); | ||||
| @@ -157,12 +141,9 @@ void cuda_final_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom | ||||
|     } | ||||
| } | ||||
|  | ||||
| void cuda_initial_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom) { | ||||
| void cuda_initial_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom, const int num_threads_per_block) { | ||||
|  | ||||
|     const int Nlocal = atom->Nlocal; | ||||
|     const int num_threads = get_num_threads(); | ||||
|  | ||||
|     const int num_threads_per_block = num_threads; // this should be multiple of 32 as operations are performed at the level of warps | ||||
|     const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); | ||||
|  | ||||
|     kernel_initial_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, param->dt, Nlocal, *c_atom); | ||||
| @@ -182,7 +163,8 @@ double computeForce( | ||||
|         Atom *atom, | ||||
|         Neighbor *neighbor, | ||||
|         Atom *c_atom, | ||||
|         Neighbor *c_neighbor | ||||
|         Neighbor *c_neighbor, | ||||
|         int num_threads_per_block | ||||
|         ) | ||||
| { | ||||
|     int Nlocal = atom->Nlocal; | ||||
| @@ -192,8 +174,6 @@ double computeForce( | ||||
|     MD_FLOAT epsilon = param->epsilon; | ||||
| #endif | ||||
|  | ||||
|     const int num_threads = get_num_threads(); | ||||
|  | ||||
|     c_atom->Natoms = atom->Natoms; | ||||
|     c_atom->Nlocal = atom->Nlocal; | ||||
|     c_atom->Nghost = atom->Nghost; | ||||
| @@ -219,14 +199,11 @@ double computeForce( | ||||
|  | ||||
|     cudaProfilerStart(); | ||||
|  | ||||
|     checkCUDAError( "c_atom->x memcpy", cudaMemcpy(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) ); | ||||
|  | ||||
|     if(reneighbourHappenend) { | ||||
|         checkCUDAError( "c_neighbor->numneigh memcpy", cudaMemcpy(c_neighbor->numneigh, neighbor->numneigh, sizeof(int) * Nlocal, cudaMemcpyHostToDevice) ); | ||||
|         checkCUDAError( "c_neighbor->neighbors memcpy", cudaMemcpy(c_neighbor->neighbors, neighbor->neighbors, sizeof(int) * Nlocal * neighbor->maxneighs, cudaMemcpyHostToDevice) ); | ||||
|     if(!reneighbourHappenend) { | ||||
|         checkCUDAError( "c_atom.x memcpy", cudaMemcpy(c_atom.x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) ); | ||||
|     } | ||||
|  | ||||
|     const int num_threads_per_block = num_threads; // this should be multiple of 32 as operations are performed at the level of warps | ||||
|     const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); | ||||
|  | ||||
|     double S = getTimeStamp(); | ||||
|   | ||||
| @@ -46,4 +46,5 @@ extern void setupNeighbor(); | ||||
| extern void binatoms(Atom*); | ||||
| extern void buildNeighbor(Atom*, Neighbor*); | ||||
| extern void sortAtom(Atom*); | ||||
| extern void buildNeighbor_cuda(Atom*, Neighbor*, Atom*, Neighbor*, const int); | ||||
| #endif | ||||
|   | ||||
							
								
								
									
										50
									
								
								src/main.c
									
									
									
									
									
								
							
							
						
						
									
										50
									
								
								src/main.c
									
									
									
									
									
								
							| @@ -45,10 +45,14 @@ | ||||
|  | ||||
| #define HLINE "----------------------------------------------------------------------------\n" | ||||
|  | ||||
| extern void cuda_final_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom); | ||||
| extern void cuda_initial_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom); | ||||
| extern void cuda_final_integrate(bool doReneighbour, Parameter *param, | ||||
|                                  Atom *atom, Atom *c_atom, | ||||
|                                  const int num_threads_per_block); | ||||
| extern void cuda_initial_integrate(bool doReneighbour, Parameter *param, | ||||
|                                    Atom *atom, Atom *c_atom, | ||||
|                                    const int num_threads_per_block); | ||||
|  | ||||
| extern double computeForce(bool, Parameter*, Atom*, Neighbor*, Atom*, Neighbor*); | ||||
| extern double computeForce(bool, Parameter*, Atom*, Neighbor*, Atom*, Neighbor*, const int); | ||||
| extern double computeForceTracing(Parameter*, Atom*, Neighbor*, Stats*, int, int); | ||||
| extern double computeForceEam(Eam* eam, Parameter*, Atom *atom, Neighbor *neighbor, Stats *stats, int first_exec, int timestep); | ||||
|  | ||||
| @@ -111,7 +115,8 @@ double setup( | ||||
|         Neighbor *neighbor, | ||||
|         Atom *c_atom, | ||||
|         Neighbor *c_neighbor, | ||||
|         Stats *stats) | ||||
|         Stats *stats, | ||||
|         const int num_threads_per_block) | ||||
| { | ||||
|     if(param->force_field == FF_EAM) { initEam(eam, param); } | ||||
|     double S, E; | ||||
| @@ -131,7 +136,7 @@ double setup( | ||||
|     adjustThermo(param, atom); | ||||
|     setupPbc(atom, param); | ||||
|     updatePbc(atom, param); | ||||
|     buildNeighbor(atom, neighbor); | ||||
|     buildNeighbor_cuda(atom, neighbor, c_atom, c_neighbor, num_threads_per_block); | ||||
|     E = getTimeStamp(); | ||||
|  | ||||
|     initCudaAtom(atom, neighbor, c_atom, c_neighbor); | ||||
| @@ -142,7 +147,10 @@ double setup( | ||||
| double reneighbour( | ||||
|         Parameter *param, | ||||
|         Atom *atom, | ||||
|         Neighbor *neighbor) | ||||
|         Neighbor *neighbor, | ||||
|         Atom *c_atom, | ||||
|         Neighbor *c_neighbor, | ||||
|         const int num_threads_per_block) | ||||
| { | ||||
|     double S, E; | ||||
|  | ||||
| @@ -152,7 +160,7 @@ double reneighbour( | ||||
|     setupPbc(atom, param); | ||||
|     updatePbc(atom, param); | ||||
|     //sortAtom(atom); | ||||
|     buildNeighbor(atom, neighbor); | ||||
|     buildNeighbor(atom, neighbor, c_atom, c_neighbor, num_threads_per_block); | ||||
|     LIKWID_MARKER_STOP("reneighbour"); | ||||
|     E = getTimeStamp(); | ||||
|  | ||||
| @@ -206,6 +214,19 @@ const char* ff2str(int ff) | ||||
|     return "invalid"; | ||||
| } | ||||
|  | ||||
| int get_num_threads() { | ||||
|  | ||||
|     const char *num_threads_env = getenv("NUM_THREADS"); | ||||
|     int num_threads = 0; | ||||
|     if(num_threads_env == nullptr) | ||||
|         num_threads = 32; | ||||
|     else { | ||||
|         num_threads = atoi(num_threads_env); | ||||
|     } | ||||
|  | ||||
|     return num_threads; | ||||
| } | ||||
|  | ||||
| int main(int argc, char** argv) | ||||
| { | ||||
|     double timer[NUMTIMER]; | ||||
| @@ -286,7 +307,10 @@ int main(int argc, char** argv) | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     setup(¶m, &eam, &atom, &neighbor, &c_atom, &c_neighbor, &stats); | ||||
|     // this should be multiple of 32 as operations are performed at the level of warps | ||||
|     const int num_threads_per_block = get_num_threads(); | ||||
|  | ||||
|     setup(¶m, &eam, &atom, &neighbor, &c_atom, &c_neighbor, &stats, num_threads_per_block); | ||||
|     computeThermo(0, ¶m, &atom); | ||||
|     if(param.force_field == FF_EAM) { | ||||
|         computeForceEam(&eam, ¶m, &atom, &neighbor, &stats, 1, 0); | ||||
| @@ -294,7 +318,7 @@ int main(int argc, char** argv) | ||||
| #if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS) | ||||
|         computeForceTracing(¶m, &atom, &neighbor, &stats, 1, 0); | ||||
| #else | ||||
|         computeForce(true, ¶m, &atom, &neighbor, &c_atom, &c_neighbor); | ||||
|         computeForce(true, ¶m, &atom, &neighbor, &c_atom, &c_neighbor, num_threads_per_block); | ||||
| #endif | ||||
|     } | ||||
|  | ||||
| @@ -310,10 +334,10 @@ int main(int argc, char** argv) | ||||
|  | ||||
|         const bool doReneighbour = (n + 1) % param.every == 0; | ||||
|  | ||||
|         cuda_initial_integrate(doReneighbour, ¶m, &atom, &c_atom); | ||||
|         cuda_initial_integrate(doReneighbour, ¶m, &atom, &c_atom, num_threads_per_block); | ||||
|  | ||||
|         if(doReneighbour) { | ||||
|             timer[NEIGH] += reneighbour(¶m, &atom, &neighbor); | ||||
|             timer[NEIGH] += reneighbour(¶m, &atom, &neighbor, &c_atom, &c_neighbor, num_threads_per_block); | ||||
|         } else { | ||||
|             updatePbc(&atom, ¶m); | ||||
|         } | ||||
| @@ -324,11 +348,11 @@ int main(int argc, char** argv) | ||||
| #if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS) | ||||
|             timer[FORCE] += computeForceTracing(¶m, &atom, &neighbor, &stats, 0, n + 1); | ||||
| #else | ||||
|             timer[FORCE] += computeForce(doReneighbour, ¶m, &atom, &neighbor, &c_atom, &c_neighbor); | ||||
|             timer[FORCE] += computeForce(doReneighbour, ¶m, &atom, &neighbor, &c_atom, &c_neighbor, num_threads_per_block); | ||||
| #endif | ||||
|         } | ||||
|  | ||||
|         cuda_final_integrate(doReneighbour, ¶m, &atom, &c_atom); | ||||
|         cuda_final_integrate(doReneighbour, ¶m, &atom, &c_atom, num_threads_per_block); | ||||
|  | ||||
|         if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) { | ||||
|             computeThermo(n + 1, ¶m, &atom); | ||||
|   | ||||
							
								
								
									
										102
									
								
								src/neighbor.cu
									
									
									
									
									
								
							
							
						
						
									
										102
									
								
								src/neighbor.cu
									
									
									
									
									
								
							| @@ -67,9 +67,10 @@ __device__ int coord2bin_device(MD_FLOAT xin, MD_FLOAT yin, MD_FLOAT zin, | ||||
|     return (iz * np.mbiny * np.mbinx + iy * np.mbinx + ix + 1); | ||||
| } | ||||
|  | ||||
| __global__ void compute_neighborhood(Atom a, Neighbor neigh, int Nlocal, Neighbor_params np, int nstencil, int* stencil, | ||||
| __global__ void compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np, int nstencil, int* stencil, | ||||
|                                      int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs){ | ||||
|     const int i = blockIdx.x * blockDim.x + threadIdx.x; | ||||
|     const int Nlocal = a.Nlocal; | ||||
|     if( i >= Nlocal ) { | ||||
|         return; | ||||
|     } | ||||
| @@ -513,41 +514,110 @@ void sortAtom(Atom* atom) { | ||||
| #endif | ||||
| } | ||||
|  | ||||
| void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) | ||||
| void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor, const int num_threads_per_block) | ||||
| { | ||||
|     int nall = atom->Nlocal + atom->Nghost; | ||||
|  | ||||
|     /* extend atom arrays if necessary */ | ||||
|     c_atom->Natoms = atom->Natoms; | ||||
|     c_atom->Nlocal = atom->Nlocal; | ||||
|     c_atom->Nghost = atom->Nghost; | ||||
|     c_atom->Nmax = atom->Nmax; | ||||
|     c_atom->ntypes = atom->ntypes; | ||||
|  | ||||
|     c_neighbor->maxneighs = neighbor->maxneighs; | ||||
|  | ||||
|     /* extend c_neighbor arrays if necessary */ | ||||
|     if(nall > nmax) { | ||||
|         nmax = nall; | ||||
|         if(neighbor->numneigh) cudaFreeHost(neighbor->numneigh); | ||||
|         if(neighbor->neighbors) cudaFreeHost(neighbor->neighbors); | ||||
|         checkCUDAError( "buildNeighbor numneigh", cudaMallocHost((void**)&(neighbor->numneigh), nmax * sizeof(int)) ); | ||||
|         checkCUDAError( "buildNeighbor neighbors", cudaMallocHost((void**)&(neighbor->neighbors), nmax * neighbor->maxneighs * sizeof(int)) ); | ||||
|         // neighbor->numneigh = (int*) malloc(nmax * sizeof(int)); | ||||
|         // neighbor->neighbors = (int*) malloc(nmax * neighbor->maxneighs * sizeof(int*)); | ||||
|         if(c_neighbor->numneigh) cudaFree(c_neighbor->numneigh); | ||||
|         if(c_neighbor->neighbors) cudaFree(c_neighbor->neighbors); | ||||
|         checkCUDAError( "buildNeighbor c_numneigh malloc", cudaMalloc((void**)&(c_neighbor->numneigh), nmax * sizeof(int)) ); | ||||
|         checkCUDAError( "buildNeighbor c_neighbors malloc", cudaMalloc((void**)&(c_neighbor->neighbors), nmax * c_neighbor->maxneighs * sizeof(int)) ); | ||||
|     } | ||||
|  | ||||
|     /* bin local & ghost atoms */ | ||||
|     binatoms(atom); | ||||
|     int resize = 1; | ||||
|  | ||||
|     cudaProfilerStart(); | ||||
|  | ||||
|     checkCUDAError( "c_atom->x memcpy", cudaMemcpy(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) ); | ||||
|  | ||||
|     /* upload stencil */ | ||||
|     int* c_stencil; | ||||
|     // TODO move this to be done once at the start | ||||
|     checkCUDAError( "buildNeighbor c_n_stencil malloc", cudaMalloc((void**)&c_stencil, nstencil * sizeof(int)) ); | ||||
|     checkCUDAError( "buildNeighbor c_n_stencil memcpy", cudaMemcpy(c_stencil, stencil, nstencil * sizeof(int), cudaMemcpyHostToDevice )); | ||||
|  | ||||
|     int *c_bincount; | ||||
|     checkCUDAError( "buildNeighbor c_bincount malloc", cudaMalloc((void**)&c_bincount, mbins * sizeof(int)) ); | ||||
|     checkCUDAError( "buildNeighbor c_bincount memcpy", cudaMemcpy(c_bincount, bincount, mbins * sizeof(int), cudaMemcpyHostToDevice) ); | ||||
|  | ||||
|     int *c_bins; | ||||
|     checkCUDAError( "buidlNeighbor c_bins malloc", cudaMalloc((void**)&c_bins, mbins * atoms_per_bin * sizeof(int)) ); | ||||
|     checkCUDAError( "buildNeighbor c_bins memcpy", cudaMemcpy(c_bins, bins, mbins * atoms_per_bin * sizeof(int), cudaMemcpyHostToDevice ) ); | ||||
|  | ||||
|     Neighbor_params np{ | ||||
|         .xprd = xprd, | ||||
|         .yprd = yprd, | ||||
|         .zprd = zprd, | ||||
|         .bininvx = bininvx, | ||||
|         .bininvy = bininvy, | ||||
|         .bininvz = bininvz, | ||||
|         .mbinxlo = mbinxlo, | ||||
|         .mbinylo = mbinylo, | ||||
|         .mbinzlo = mbinzlo, | ||||
|         .nbinx = nbinx, | ||||
|         .nbiny = nbiny, | ||||
|         .nbinz = nbinz, | ||||
|         .mbinx = mbinx, | ||||
|         .mbiny = mbiny, | ||||
|         .mbinz = mbinz | ||||
|     }; | ||||
|  | ||||
|     int* c_new_maxneighs; | ||||
|     checkCUDAError("c_new_maxneighs malloc", cudaMalloc((void**)&c_new_maxneighs, sizeof(int) )); | ||||
|  | ||||
|     /* loop over each atom, storing neighbors */ | ||||
|     while(resize) { | ||||
|         int new_maxneighs = neighbor->maxneighs; | ||||
|         resize = 0; | ||||
|  | ||||
|         // TODO allocate space for and then copy all necessary components | ||||
|         // TODO dont forget to copy the atom positions over | ||||
|         checkCUDAError("c_new_maxneighs memset", cudaMemset(c_new_maxneighs, c_neighbor->maxneighs, sizeof(int) )); | ||||
|  | ||||
|         // TODO call compute_neigborhood kernel here | ||||
|         const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block); | ||||
|         /*compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np, int nstencil, int* stencil, | ||||
|                                      int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs) | ||||
|          * */ | ||||
|         compute_neighborhood<<<num_blocks, num_threads_per_block>>>(*c_Atom, *c_neighbor, | ||||
|                                                                     np, nstencil, c_stencil, | ||||
|                                                                     c_bins, atoms_per_bin, c_bincount, | ||||
|                                                                     c_new_maxneighs); | ||||
|  | ||||
|         // TODO copy the value of c_new_maxneighs back to host and check if it has been modified | ||||
|         int new_maxneighs; | ||||
|         checkCUDAError("c_new_maxneighs memcpy back", cudaMemcpy(&new_maxneighs, c_new_maxneighs, sizeof(int), cudaMemcpyDeviceToHost)); | ||||
|         if (new_maxneighs > c_neighbor->maxneighs){ | ||||
|             resize = 1; | ||||
|         } | ||||
|  | ||||
|         if(resize) { | ||||
|             printf("RESIZE %d\n", neighbor->maxneighs); | ||||
|             neighbor->maxneighs = new_maxneighs * 1.2; | ||||
|             free(neighbor->neighbors); | ||||
|             neighbor->neighbors = (int*) malloc(atom->Nmax * neighbor->maxneighs * sizeof(int)); | ||||
|             printf("RESIZE %d\n", c_neighbor->maxneighs); | ||||
|             c_neighbor->maxneighs = new_maxneighs * 1.2; | ||||
|             cudaFree(c_neighbor->neighbors); | ||||
|             checkCUDAError("c_neighbor->neighbors resize malloc", | ||||
|                            cudaMalloc((void**)(&c_neighbor->neighbors), | ||||
|                                       c_atom->Nmax * c_neighbor->maxneighs * sizeof(int))); | ||||
|         } | ||||
|  | ||||
|     } | ||||
|     neighbor->maxneighs = c_neighbor->maxneighs; | ||||
|  | ||||
|     cudaProfilerStop(); | ||||
|  | ||||
|     cudaFree(c_new_maxneighs); | ||||
|     cudaFree(c_n_stencil); | ||||
|     cudaFree(c_bincount); | ||||
|     cudaFree(c_bins); | ||||
| } | ||||
| } | ||||
		Reference in New Issue
	
	Block a user