First crude attempt at parallelizing neighborhood computation (only the part after binning the atoms is parallelized with cuda)

This commit is contained in:
Martin Bauernfeind 2022-06-26 16:25:59 +02:00
parent 757d4329f3
commit c49278cb21
4 changed files with 130 additions and 58 deletions

View File

@ -126,25 +126,9 @@ extern "C" {
int get_num_threads() { void cuda_final_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom, const int num_threads_per_block) {
const char *num_threads_env = getenv("NUM_THREADS");
int num_threads = 0;
if(num_threads_env == nullptr)
num_threads = 32;
else {
num_threads = atoi(num_threads_env);
}
return num_threads;
}
void cuda_final_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom) {
const int Nlocal = atom->Nlocal; const int Nlocal = atom->Nlocal;
const int num_threads = get_num_threads();
const int num_threads_per_block = num_threads; // this should be multiple of 32 as operations are performed at the level of warps
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
kernel_final_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, Nlocal, *c_atom); kernel_final_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, Nlocal, *c_atom);
@ -157,12 +141,9 @@ void cuda_final_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom
} }
} }
void cuda_initial_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom) { void cuda_initial_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom, const int num_threads_per_block) {
const int Nlocal = atom->Nlocal; const int Nlocal = atom->Nlocal;
const int num_threads = get_num_threads();
const int num_threads_per_block = num_threads; // this should be multiple of 32 as operations are performed at the level of warps
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
kernel_initial_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, param->dt, Nlocal, *c_atom); kernel_initial_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, param->dt, Nlocal, *c_atom);
@ -182,7 +163,8 @@ double computeForce(
Atom *atom, Atom *atom,
Neighbor *neighbor, Neighbor *neighbor,
Atom *c_atom, Atom *c_atom,
Neighbor *c_neighbor Neighbor *c_neighbor,
int num_threads_per_block
) )
{ {
int Nlocal = atom->Nlocal; int Nlocal = atom->Nlocal;
@ -192,8 +174,6 @@ double computeForce(
MD_FLOAT epsilon = param->epsilon; MD_FLOAT epsilon = param->epsilon;
#endif #endif
const int num_threads = get_num_threads();
c_atom->Natoms = atom->Natoms; c_atom->Natoms = atom->Natoms;
c_atom->Nlocal = atom->Nlocal; c_atom->Nlocal = atom->Nlocal;
c_atom->Nghost = atom->Nghost; c_atom->Nghost = atom->Nghost;
@ -219,14 +199,11 @@ double computeForce(
cudaProfilerStart(); cudaProfilerStart();
checkCUDAError( "c_atom->x memcpy", cudaMemcpy(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
if(reneighbourHappenend) { if(!reneighbourHappenend) {
checkCUDAError( "c_neighbor->numneigh memcpy", cudaMemcpy(c_neighbor->numneigh, neighbor->numneigh, sizeof(int) * Nlocal, cudaMemcpyHostToDevice) ); checkCUDAError( "c_atom.x memcpy", cudaMemcpy(c_atom.x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "c_neighbor->neighbors memcpy", cudaMemcpy(c_neighbor->neighbors, neighbor->neighbors, sizeof(int) * Nlocal * neighbor->maxneighs, cudaMemcpyHostToDevice) );
} }
const int num_threads_per_block = num_threads; // this should be multiple of 32 as operations are performed at the level of warps
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
double S = getTimeStamp(); double S = getTimeStamp();

View File

@ -46,4 +46,5 @@ extern void setupNeighbor();
extern void binatoms(Atom*); extern void binatoms(Atom*);
extern void buildNeighbor(Atom*, Neighbor*); extern void buildNeighbor(Atom*, Neighbor*);
extern void sortAtom(Atom*); extern void sortAtom(Atom*);
extern void buildNeighbor_cuda(Atom*, Neighbor*, Atom*, Neighbor*, const int);
#endif #endif

View File

@ -45,10 +45,14 @@
#define HLINE "----------------------------------------------------------------------------\n" #define HLINE "----------------------------------------------------------------------------\n"
extern void cuda_final_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom); extern void cuda_final_integrate(bool doReneighbour, Parameter *param,
extern void cuda_initial_integrate(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom); Atom *atom, Atom *c_atom,
const int num_threads_per_block);
extern void cuda_initial_integrate(bool doReneighbour, Parameter *param,
Atom *atom, Atom *c_atom,
const int num_threads_per_block);
extern double computeForce(bool, Parameter*, Atom*, Neighbor*, Atom*, Neighbor*); extern double computeForce(bool, Parameter*, Atom*, Neighbor*, Atom*, Neighbor*, const int);
extern double computeForceTracing(Parameter*, Atom*, Neighbor*, Stats*, int, int); extern double computeForceTracing(Parameter*, Atom*, Neighbor*, Stats*, int, int);
extern double computeForceEam(Eam* eam, Parameter*, Atom *atom, Neighbor *neighbor, Stats *stats, int first_exec, int timestep); extern double computeForceEam(Eam* eam, Parameter*, Atom *atom, Neighbor *neighbor, Stats *stats, int first_exec, int timestep);
@ -111,7 +115,8 @@ double setup(
Neighbor *neighbor, Neighbor *neighbor,
Atom *c_atom, Atom *c_atom,
Neighbor *c_neighbor, Neighbor *c_neighbor,
Stats *stats) Stats *stats,
const int num_threads_per_block)
{ {
if(param->force_field == FF_EAM) { initEam(eam, param); } if(param->force_field == FF_EAM) { initEam(eam, param); }
double S, E; double S, E;
@ -131,7 +136,7 @@ double setup(
adjustThermo(param, atom); adjustThermo(param, atom);
setupPbc(atom, param); setupPbc(atom, param);
updatePbc(atom, param); updatePbc(atom, param);
buildNeighbor(atom, neighbor); buildNeighbor_cuda(atom, neighbor, c_atom, c_neighbor, num_threads_per_block);
E = getTimeStamp(); E = getTimeStamp();
initCudaAtom(atom, neighbor, c_atom, c_neighbor); initCudaAtom(atom, neighbor, c_atom, c_neighbor);
@ -142,7 +147,10 @@ double setup(
double reneighbour( double reneighbour(
Parameter *param, Parameter *param,
Atom *atom, Atom *atom,
Neighbor *neighbor) Neighbor *neighbor,
Atom *c_atom,
Neighbor *c_neighbor,
const int num_threads_per_block)
{ {
double S, E; double S, E;
@ -152,7 +160,7 @@ double reneighbour(
setupPbc(atom, param); setupPbc(atom, param);
updatePbc(atom, param); updatePbc(atom, param);
//sortAtom(atom); //sortAtom(atom);
buildNeighbor(atom, neighbor); buildNeighbor(atom, neighbor, c_atom, c_neighbor, num_threads_per_block);
LIKWID_MARKER_STOP("reneighbour"); LIKWID_MARKER_STOP("reneighbour");
E = getTimeStamp(); E = getTimeStamp();
@ -206,6 +214,19 @@ const char* ff2str(int ff)
return "invalid"; return "invalid";
} }
int get_num_threads() {
const char *num_threads_env = getenv("NUM_THREADS");
int num_threads = 0;
if(num_threads_env == nullptr)
num_threads = 32;
else {
num_threads = atoi(num_threads_env);
}
return num_threads;
}
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
double timer[NUMTIMER]; double timer[NUMTIMER];
@ -286,7 +307,10 @@ int main(int argc, char** argv)
} }
} }
setup(&param, &eam, &atom, &neighbor, &c_atom, &c_neighbor, &stats); // this should be multiple of 32 as operations are performed at the level of warps
const int num_threads_per_block = get_num_threads();
setup(&param, &eam, &atom, &neighbor, &c_atom, &c_neighbor, &stats, num_threads_per_block);
computeThermo(0, &param, &atom); computeThermo(0, &param, &atom);
if(param.force_field == FF_EAM) { if(param.force_field == FF_EAM) {
computeForceEam(&eam, &param, &atom, &neighbor, &stats, 1, 0); computeForceEam(&eam, &param, &atom, &neighbor, &stats, 1, 0);
@ -294,7 +318,7 @@ int main(int argc, char** argv)
#if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS) #if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS)
computeForceTracing(&param, &atom, &neighbor, &stats, 1, 0); computeForceTracing(&param, &atom, &neighbor, &stats, 1, 0);
#else #else
computeForce(true, &param, &atom, &neighbor, &c_atom, &c_neighbor); computeForce(true, &param, &atom, &neighbor, &c_atom, &c_neighbor, num_threads_per_block);
#endif #endif
} }
@ -310,10 +334,10 @@ int main(int argc, char** argv)
const bool doReneighbour = (n + 1) % param.every == 0; const bool doReneighbour = (n + 1) % param.every == 0;
cuda_initial_integrate(doReneighbour, &param, &atom, &c_atom); cuda_initial_integrate(doReneighbour, &param, &atom, &c_atom, num_threads_per_block);
if(doReneighbour) { if(doReneighbour) {
timer[NEIGH] += reneighbour(&param, &atom, &neighbor); timer[NEIGH] += reneighbour(&param, &atom, &neighbor, &c_atom, &c_neighbor, num_threads_per_block);
} else { } else {
updatePbc(&atom, &param); updatePbc(&atom, &param);
} }
@ -324,11 +348,11 @@ int main(int argc, char** argv)
#if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS) #if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS)
timer[FORCE] += computeForceTracing(&param, &atom, &neighbor, &stats, 0, n + 1); timer[FORCE] += computeForceTracing(&param, &atom, &neighbor, &stats, 0, n + 1);
#else #else
timer[FORCE] += computeForce(doReneighbour, &param, &atom, &neighbor, &c_atom, &c_neighbor); timer[FORCE] += computeForce(doReneighbour, &param, &atom, &neighbor, &c_atom, &c_neighbor, num_threads_per_block);
#endif #endif
} }
cuda_final_integrate(doReneighbour, &param, &atom, &c_atom); cuda_final_integrate(doReneighbour, &param, &atom, &c_atom, num_threads_per_block);
if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) { if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) {
computeThermo(n + 1, &param, &atom); computeThermo(n + 1, &param, &atom);

View File

@ -67,9 +67,10 @@ __device__ int coord2bin_device(MD_FLOAT xin, MD_FLOAT yin, MD_FLOAT zin,
return (iz * np.mbiny * np.mbinx + iy * np.mbinx + ix + 1); return (iz * np.mbiny * np.mbinx + iy * np.mbinx + ix + 1);
} }
__global__ void compute_neighborhood(Atom a, Neighbor neigh, int Nlocal, Neighbor_params np, int nstencil, int* stencil, __global__ void compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np, int nstencil, int* stencil,
int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs){ int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs){
const int i = blockIdx.x * blockDim.x + threadIdx.x; const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int Nlocal = a.Nlocal;
if( i >= Nlocal ) { if( i >= Nlocal ) {
return; return;
} }
@ -513,41 +514,110 @@ void sortAtom(Atom* atom) {
#endif #endif
} }
void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor, const int num_threads_per_block)
{ {
int nall = atom->Nlocal + atom->Nghost; int nall = atom->Nlocal + atom->Nghost;
/* extend atom arrays if necessary */ c_atom->Natoms = atom->Natoms;
c_atom->Nlocal = atom->Nlocal;
c_atom->Nghost = atom->Nghost;
c_atom->Nmax = atom->Nmax;
c_atom->ntypes = atom->ntypes;
c_neighbor->maxneighs = neighbor->maxneighs;
/* extend c_neighbor arrays if necessary */
if(nall > nmax) { if(nall > nmax) {
nmax = nall; nmax = nall;
if(neighbor->numneigh) cudaFreeHost(neighbor->numneigh); if(c_neighbor->numneigh) cudaFree(c_neighbor->numneigh);
if(neighbor->neighbors) cudaFreeHost(neighbor->neighbors); if(c_neighbor->neighbors) cudaFree(c_neighbor->neighbors);
checkCUDAError( "buildNeighbor numneigh", cudaMallocHost((void**)&(neighbor->numneigh), nmax * sizeof(int)) ); checkCUDAError( "buildNeighbor c_numneigh malloc", cudaMalloc((void**)&(c_neighbor->numneigh), nmax * sizeof(int)) );
checkCUDAError( "buildNeighbor neighbors", cudaMallocHost((void**)&(neighbor->neighbors), nmax * neighbor->maxneighs * sizeof(int)) ); checkCUDAError( "buildNeighbor c_neighbors malloc", cudaMalloc((void**)&(c_neighbor->neighbors), nmax * c_neighbor->maxneighs * sizeof(int)) );
// neighbor->numneigh = (int*) malloc(nmax * sizeof(int));
// neighbor->neighbors = (int*) malloc(nmax * neighbor->maxneighs * sizeof(int*));
} }
/* bin local & ghost atoms */ /* bin local & ghost atoms */
binatoms(atom); binatoms(atom);
int resize = 1; int resize = 1;
cudaProfilerStart();
checkCUDAError( "c_atom->x memcpy", cudaMemcpy(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
/* upload stencil */
int* c_stencil;
// TODO move this to be done once at the start
checkCUDAError( "buildNeighbor c_n_stencil malloc", cudaMalloc((void**)&c_stencil, nstencil * sizeof(int)) );
checkCUDAError( "buildNeighbor c_n_stencil memcpy", cudaMemcpy(c_stencil, stencil, nstencil * sizeof(int), cudaMemcpyHostToDevice ));
int *c_bincount;
checkCUDAError( "buildNeighbor c_bincount malloc", cudaMalloc((void**)&c_bincount, mbins * sizeof(int)) );
checkCUDAError( "buildNeighbor c_bincount memcpy", cudaMemcpy(c_bincount, bincount, mbins * sizeof(int), cudaMemcpyHostToDevice) );
int *c_bins;
checkCUDAError( "buidlNeighbor c_bins malloc", cudaMalloc((void**)&c_bins, mbins * atoms_per_bin * sizeof(int)) );
checkCUDAError( "buildNeighbor c_bins memcpy", cudaMemcpy(c_bins, bins, mbins * atoms_per_bin * sizeof(int), cudaMemcpyHostToDevice ) );
Neighbor_params np{
.xprd = xprd,
.yprd = yprd,
.zprd = zprd,
.bininvx = bininvx,
.bininvy = bininvy,
.bininvz = bininvz,
.mbinxlo = mbinxlo,
.mbinylo = mbinylo,
.mbinzlo = mbinzlo,
.nbinx = nbinx,
.nbiny = nbiny,
.nbinz = nbinz,
.mbinx = mbinx,
.mbiny = mbiny,
.mbinz = mbinz
};
int* c_new_maxneighs;
checkCUDAError("c_new_maxneighs malloc", cudaMalloc((void**)&c_new_maxneighs, sizeof(int) ));
/* loop over each atom, storing neighbors */ /* loop over each atom, storing neighbors */
while(resize) { while(resize) {
int new_maxneighs = neighbor->maxneighs;
resize = 0; resize = 0;
// TODO allocate space for and then copy all necessary components checkCUDAError("c_new_maxneighs memset", cudaMemset(c_new_maxneighs, c_neighbor->maxneighs, sizeof(int) ));
// TODO dont forget to copy the atom positions over
// TODO call compute_neigborhood kernel here // TODO call compute_neigborhood kernel here
const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block);
/*compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np, int nstencil, int* stencil,
int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs)
* */
compute_neighborhood<<<num_blocks, num_threads_per_block>>>(*c_Atom, *c_neighbor,
np, nstencil, c_stencil,
c_bins, atoms_per_bin, c_bincount,
c_new_maxneighs);
// TODO copy the value of c_new_maxneighs back to host and check if it has been modified
int new_maxneighs;
checkCUDAError("c_new_maxneighs memcpy back", cudaMemcpy(&new_maxneighs, c_new_maxneighs, sizeof(int), cudaMemcpyDeviceToHost));
if (new_maxneighs > c_neighbor->maxneighs){
resize = 1;
}
if(resize) { if(resize) {
printf("RESIZE %d\n", neighbor->maxneighs); printf("RESIZE %d\n", c_neighbor->maxneighs);
neighbor->maxneighs = new_maxneighs * 1.2; c_neighbor->maxneighs = new_maxneighs * 1.2;
free(neighbor->neighbors); cudaFree(c_neighbor->neighbors);
neighbor->neighbors = (int*) malloc(atom->Nmax * neighbor->maxneighs * sizeof(int)); checkCUDAError("c_neighbor->neighbors resize malloc",
cudaMalloc((void**)(&c_neighbor->neighbors),
c_atom->Nmax * c_neighbor->maxneighs * sizeof(int)));
} }
} }
neighbor->maxneighs = c_neighbor->maxneighs;
cudaProfilerStop();
cudaFree(c_new_maxneighs);
cudaFree(c_n_stencil);
cudaFree(c_bincount);
cudaFree(c_bins);
} }
} }